Figura 1 - Grãos gerados com um passe de laminação.

Figura 2 - Desenvolvimento da microestrutura previsto pelo modelamento matemático, quando ocorre recristalização parcial entre passes.

EFEITOS DA DEFORMAÇÃO A QUENTE EM AÇÕES PERLÍTICOS COM NIÓBIO*

Sérgio Horizonte Doi**
Paulo Roberto Mei***
Hans-Jürgen Ristenbach****

RESUMO

Foi estudado o efeito da deformação de austenita sobre a transformação para perlita em aços contendo 0,9% de C. Utilizou-se forjamento a quente de pequenas amostras que em seguida foram transformadas isoreáticamente em banho de estanho a 650°C. Foram estudadas a temperatura e a porcentagem de deformação como principais variáveis. Outros efeitos investigados incluíram o tamanho de grão de austenita e a presença de nióbio na composição química.

Os resultados mostraram que a deformação plástica acelera a transformação de austenita para perlita, tanto em altas temperaturas onde ocorre recristalização como em baixas temperaturas onde a perlita se forma a partir da austenita deformada. O efeito foi maior em amostras de aço microligado onde o nióbio foi solubilizado antes do forjamento. Discussão dos resultados com base em observações metalográficas de amostras parcialmente transformadas.

* Trabalho apresentado no Seminário de Metalurgia Física da ABM, Maio de 1982, Rio de Janeiro, RJ.
** Engº de Materiais, M.Sc., Engenheiro de Codisa, Cubatão, S.P.
*** Engº Mecânico, Dr., Engº, Professor Livre-Docente do Depto. de Engenharia de Materiais da UFMG, Campinas, S.P.
**** Dipl.-Ing., M.Sc., Ph.D., Professor Titular do Depto. de Engenharia de Materiais da UFSCar, São Carlos, S.P.
1. INTRODUÇÃO

O desenvolvimento de aços mais resistentes e tenazes são almejados principalmente pelo controle das microestruturas através da utilização dos elementos de ligas e dos tratamentos termomecânicos. Até a pouco tempo a deformação era usada para dar forma ao material, mas não para controlar a microestrutura. Atualmente, tanto o controle das microestruturas quanto o das formas, são atingidos pelo desenvolvimento dos tratamentos termomecânicos.

As variações do estado austenítico provocadas pelo processoamento termomecânico com microadição de elementos de ligas afetam a transformação, a microestrutura e as propriedades mecânicas dos aços. Os efeitos do tamanho de grão austenítico, da presença ou não da deformação plástica são removidos por recristalização e de nióbio em solução a eutética de transmutação austenita-perlita e consequentemente, a microestrutura resultante.

Entretanto, a transformação de austenita deformada, que é a base dos tratamentos termomecânicos, ainda não é bem entendida.

2. MATERIAIS E MÉTODOS

2.1. Preparação dos aços

Os aços foram preparados por fusão e vácuo em forno de indução. A tabela I apresenta as composições químicas dos aços utilizados.

<table>
<thead>
<tr>
<th>AÇO</th>
<th>C</th>
<th>Mn</th>
<th>Si</th>
<th>P</th>
<th>S</th>
<th>Al</th>
<th>Nb</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>0.78</td>
<td>1.01</td>
<td>0.03</td>
<td>0.007</td>
<td>0.005</td>
<td>0.014</td>
<td>-</td>
<td>40 ppm</td>
</tr>
<tr>
<td>RH</td>
<td>0.78</td>
<td>1.00</td>
<td>0.03</td>
<td>0.012</td>
<td>0.005</td>
<td>0.014</td>
<td>-</td>
<td>35 ppm</td>
</tr>
</tbody>
</table>

Forças obtidas limpos com a adição de nióbio como elemento de microgrão. Os lingotes originais com seção transversal de 70x70 mm e peso aproximado de 5 kg foram solubilizados a 1200°C por 6 horas e reduzidos em forja de martelo para uma seção redonda de aproximadamente 14 mm de diâmetro.

2.2. Método de processamento austenítico e de transformação

Das barras forjadas de 14 mm de diâmetro, foram confeccionadas amostras cilíndricas com diâmetro de 10,0 mm por 20,0 mm de cogimento.

O sistema de forjamento a que este é apresentado, de forma sequencial, na figura 1. A deformação plástica é introduzida através de queda livre de um peso de 40 kg, que incide sobre duas amostras simultaneamente. Portanto, este modo de deformação ocorre por passo único, e a deformação total pode ser acolhida através da altura do placó limite, em 10, 30 e 50% de redução em altura. O que todas pelas deformações simultâneas de duas amostras (uma do aço com nióbio e outra do aço com nióbio) para garantir o mesmo tratamento termomecânico nas amostras, que possibilite a comparação entre elas.

Na prática, as duas amostras (BC e RH) com os seus respectivos tempos de embutidos e conectados a um registrador gráfico de dois canais, foram ensaiadas em forma suave, mantidas por um período de tempo, retiradas e posicionadas na base do equipamento de forjamento, submetidas ao impacto de peso e transferidas para banho isotérmico de tempo, simultaneamente. A curva de análise térmica deste processoamento é mostrada na figura 2, indicando a temperatura e o tempo de austenitização, a temperatura e a quantidade de deformação, o tempo de permanência e a temperatura do banho isotérmico.

As amostras foram austenitizadas a 1200°C por 30 minutos, degemreadas a 873°C com redução de 10, 30 e 50%; e a 1100°C com redução de 50% em altura, transferidas para um banho isotérmico de 5 e 680°C, mantidas por diferentes períodos de tempo de transformação e finalmente interrompidas por táperea em água.

Também foram executados ensaios de transmutação de amostras não deformadas.

2.3. Análise metalográfica

Após táperea em água, as amostras foram secionadas no sentido longitudinal dos cilindros, polidos e etecadas com Nitral 3% e solução aquosa saturada de ácido picrico com agente molhante e observadas em microscópio óptico. A solução de Nitral 3% foi utilizada para revelar os núcleos de perlita e a solução de picrico para revelar os contornos do grão austenítico. Os efeitos da deformação de austenita sobre a subsequente reação de formação de perlita foram estudados pela comparação das microestruturas em amostras deformadas e não deformadas. A fração volumétrica de perlita foi medida pa
3. RESULTADOS E DISCUSSÕES

3.1. Efeito do tamanho de grão austenítico na transformação austenite-perlita

Amostras de aços com e sem níquel foram austenitizadas a 950 e 1200°C por 30 minutos, para se verificar o efeito do tamanho de grão austenítico sobre a velocidade de transformação da austenita em perlita, num banho isoterma a 650°C. O tamanho de grão austenítico para austenitização a 950°C durante 30 minutos foi de 0,5 mm para o aço 8N e de 0,3 mm para o aço 8C. Para a temperatura de 1200°C e tempo de 30 minutos, foi de 0,4 mm para o aço 8N e de 0,3 mm para o aço 8C.

A figura 3 mostra as curvas de fração volumétrica de perlita transformada em função do tempo de transformação em banho isoterma, de ambos os aços, 8C e 8N.

Para a temperatura de austenitização de 950°C, a transformação perlítica iniciou aos 30 s para o aço 8N e aos 47 s para o aço 8C. Neste caso o níquel não foi efetivo no retardamento da transformação para perlita, devido à baixa solubilidade do níquel nessa temperatura. Até isso o níquel foi efetivo na retenção do crescimento do grão austenítico durante a austenitização.

Já, para a temperatura de austenitização de 1200°C, o início de formação da perlita foi aos 150 s para o aço 8C e 450 s para o aço 8N, onde teve a solubilização -0,0094K, segundo equação de Nordberg-Kroncoe[9] mostrando ser bastante efetivo no retardamento da transformação para perlita e pouco efetivo na retenção do crescimento do grão.

A figura 4 mostra as micrografias das amostras parcialmente transformadas de ambos os aços, 8C e 8N. Palavras 4(a) e (b) pode-se verificar que a perlita núcleo essencialmente nos contornos do crescendo dos grãos austeníticos.

A figura 4(a) e (b) mostram o efeito do tamanho de grão austenítico.

isto é, quanto menor for o tamanho de grão austenítico maior será a quantidade de núcleos nucleados para uma mesma porcentagem volumétrica de perlita transformada e num tempo de transformação inferior da mesma maneira. Portanto, um tamanho de grão austenítico menor acelerou notavemente a transformação para a perlita, tanto no aço sem Nb (8C) como no aço com Nb (8N).

3.2. Efeito de temperatura de deformação sobre a transformação austenite-perlita

Foram utilizadas duas temperaturas de deformação, 1100 e 875°C, para se obter uma estrutura austenítica recrystallizada e outra austenítica deformada e sem recristalização, respectivamente. Os aços 8N deformados à 875°C apresentaram uma estrutura austenítica totalmente deformada, sem recristalização; já os aços 8C com 5% de deformação à 875°C apresentaram uma estrutura parcialmente recristalizada. A temperatura de deformação de 1100°C, ambos os aços apresentaram estruturas austeníticas totalmente recristalizadas.

A figura 5 mostra as curvas de fração volumétrica de perlita (V(75%)) transformada em função do tempo de transformação, no banho isoterma a 650°C, de ambos os aços, 8C e 8N. A estrutura austenítica deformada mostrou-se mais eficaz na aceleração da transformação de perlita do que a estrutura austenítica totalmente recristalizada.

A figura 6 mostra as micrografias das amostras transformadas parcialmente dos aços 8C e 8N que foram austenitizados a 1200°C por 30 minutos, e deformados com 30% de redução em altura. As estruturas recristalizadas, figuras 6(a) e (b), os núcleos de perlita são granulares e os contornos de grão não estão completamente ocupados. Isso indica que a transformação para perlita em aços recristalizados tanto a nucleação quanto o crescimento são importantes. Enquanto que na amostra deformada, figura 6(d), quase todo o contorno de grão é ocupado pelos núcleos de perlita e neste caso a transformação prossegue principalmente pelo espessamento (crescimento) dos filmes de perlita e pelas nucleações adicionais. Também pode-se observar nitidamente que a quantidade de núcleo de perlita é bem maior no aço com níquel do que no aço sem níquel.

3.3. Efeito de quantidade de deformação sobre a transformação austenite-perlita
Para verificar o efeito de deformação sobre a transformação para perlita, foram utilizadas deformações de 10,30 e 50% de redução em altura, em amostras cilíndricas de ambos os aços SC e 8N, as quais foram executadas à temperatura de 875°C.

As figuras 7 e 8 mostram as curvas de fração volumétrica de perlita (FVP%) transformada, em função do tempo de permanência no banho isotérmico a 650°C, dos aços SC e 8N, respectivamente. As curvas das figuras 7 e 8 indicam que a deformação plástica acelerou a transformação de austenita para perlita, isto é, quanto maior a quantidade de deformação de austenita, mais rápida é a transformação para perlita. Também pode-se observar que o aço 8N demorou mais para se transformar em perlita do que o aço SC, para as mesmas quantidades de deformação introduzidas.

Portanto a deformação acelera e o níquel retarda a transformação da austenita para perlita. Koszen et alii(15) observaram que um aumento na área interfacial efectiva da austenita, isto é, a área interfacial de contorno de grão de austenita mais as áreas das bandas de deformação, produz um acréscimo no número de sítios de nucleação por unidade de volume.

3.4. Efeito do níquel na transformação austenita-perlita

Na figura 9 observa-se a curva de fração volumétrica de perlita (FVP%) transformada no tempo de permanência no banho isotérmico a 650°C, de amostras sem deformação e com 50% de redução em altura à 875°C de ambos os aços (SC e 8N), as quais foram austenitizadas a 1200°C por 30 minutos. Comparando-se as curvas dos aços SC e 8N sem deformação, notou-se que o níquel retarda acentuadamente o início da transformação para perlita. Para FVP = 20%, o tempo de transformação é de ordem de 180 s para o aço SC e 480 s para o aço 8N. Uma deformação de 50%, altera o tempo de transformação em aproximadamente 40 s no aço SC e 60 s no aço 8N, para umas FVP de 75%. Portanto, o níquel em solução na austenita mostrou ser bastante efetivo no retardamento da transformação austenita - perlita.

4. CONCLUSÃO

As principais conclusões obtidas foram:

1. A transformação austenita - perlita foi acentuadamente acelerada pela deformação.
2. Quanto menor for o tamanho de grão austenítico, mais rápida será a transformação austenita - perlita.
3. O níquel quando em solução na austenita, mostrou-se efetivo no retardamento da transformação austenita - perlita.
4. A quantidade de níquel do perita foi bem maior no aço com níquel do que no aço sem níquel, para amostras sem deformação.

BIBLIOGRAFIA

AGRADECIMENTOS

À Eletrônica metal S.A., através de seu Presidente, Dr. José Diniz de Souza, pela preparação dos aços espregados para o trabalho.
Ao Prof. Dr. Oscar Salomão do SEMA/UFScar pela utilização do Laboratório de Tratamento Termomecânico daquele Instituto.
À COSIPA - Companhia Siderúrgica Paulista através de seu Gerente de Pesquisas, Dr. Ernesto Gentile e de seu Coordenador de Desenvolvimento de Produtos Dr. Roberto R. Bakelli, pelo suporte financeiro recebido para a realização deste trabalho.
Ao CNPq e à FAPEP pelos auxílios recebidos.
Fig. 1 - Sistema de forjamento a quente.

Fig. 2 - Curva esquemática de história térmica dos procedimentos termomecânicos.
Fig. 3 - Curvas de fração volumétrica de perlita (VFP(%)) versus tempo de transformação a 650°C, dos aços 8C e 8H que foram austenitizados a 950°C e 1200°C.

Figura 4 - Micrografias mostrando a transformação para perlita a 650°C, em amostras sem deformação.
(a) aço 8C, austenitizado a 950°C/30', transformado por 55 s.
(b) aço 8H, austenitizado a 950°C/30', transformado por 55 s.
(c) aço 8C, austenitizado a 1200°C/30', transformado por 190 s.
(d) aço 8H, austenitizado a 1200°C/30', transformado por 500 s.
Fig. 5 - Curvas de fração volumétrica de peritite (VFP(%)) versus tempo de transformação a 650°C, dos aços SC e SN que foram austenitizados a 1200°C/30' e deformados (50%) às temperaturas de 1100 e 875°C.

Figura 6 - Micrografias mostrando a transformação para peritite a 650°C, em amostras austenitizadas a 1200°C (30') e submetidas a 50% de redução em altura.
(a) aço SC, deformado a 1100°C e transformado por 88 s.
(b) aço SC, deformado a 1100°C e transformado por 68 s.
(c) aço SC, deformado a 875°C e transformado por 49 s.
(d) aço SN, deformado a 875°C e transformado por 70 s.
Fig. 7 - Curvas de fração volumétrica de perlita (VFP(%)) versus tempo de transformação a 650°C, dos aços 8C que foram austenitizados a 1200°C/30', e deformados a 875°C por 10, 30 e 50% de redução em altura.

Fig. 8 - Curvas de fração volumétrica de perlita (VFP(%)) versus tempo de transformação a 650°C, dos aços 8C que foram austenitizados a 1200°C/30', e deformados a 875°C por 10, 30 e 50% de redução em altura.
Fig. 9 - Curvas de fração volumétrica de perlita (VFP%) versus tempo de transformação a 650°C, das águas SC e RH que foram aços aumentados a 1200°C/300°C e aços aços austenitizados a 1200°C/300°C e deformados por 50% a 875°C.