MECHANICAL BEHAVIOR OF TI-10Mo-20Nb ALLOY HOT SWAGED AND AGED FOR BIOMEDICAL APPLICATION

<u>S. B. Gabriel</u>^{1,2*}, L.S. Araujo¹, J. Dille³, M. C. Rezende¹, P. Mei⁴, L.H de Almeida¹, Renato Baldan⁵, C. A. Nunes⁵

¹ Universidade Federal do Rio de Janeiro, Rio de Janeiro – RJ, 21.941-972, Brazil
²Centro Universitário de Volta Redonda, Volta Redonda - RJ, Brazil
³ Université Libre de Bruxelles, Brussels, Belgium
⁴ Universidade Estadual de Campinas, Campinas –SP, Brazil
⁵ Universidade de São Paulo, Escola de Engenharia, Lorena - SP, Brazil

*corresponding author: sinara@metalmat.ufrj.br

Metastable β -Ti alloys composed of nontoxic elements are being developed for biomedical applications. Mechanical properties of β -Ti alloys are highly dependent of the final microstructure which is controlled by the thermomechanical treatments. These alloys for biomedical application require high mechanical strength and a low Young's modulus to avoid stress shielding. Previous work on the development of Ti- 10Mo –20Nb alloy showed than the better properties (hardness and Young's Modulus) were obtained in the aging at 500 °C/4h after hot swaging. This paper presents the microstructure and mechanical properties of the Ti-10Mo-20Nb hot swaged and aged at 500°C for 4h under high vacuum and then water quenched. The structure alloy was characterized by X-ray diffraction and transmission electron microscopy. Tensile tests were carried out at room temperature. The results show a microstructure consisting of fine α phase dispersed in a β matrix and good mechanical properties including low elastic modulus. The results indicate that Ti-10Mo-20Nb alloy can be a promising alternative for biomedical application.

Keywords: Ti-Mo-Nb alloy; microstructure; Mechanical Properties