Efeito das condições de tratamento termomecânico nas propriedades de um aço baixo C microligado ao Nb, Ti e B

Júlio Cézar Bellon
Paulo Roberto Mel
Hans Jurgen Kestenbach

Realizou-se um estudo, conduzido em escala de laboratório, sobre a influência de diferentes condições de lâminação e resfriamento controlados na formação da microestrutura, e por implicações, nas propriedades mecânicas de um aço 0,04% C - 1,51% Mn - 0,04% Nb - 0,02% Ti - 0,0007% B. Verificou-se também o efeito de borô nas propriedades mecânicas do material. Os resultados obtidos mostraram que a temperatura de acabamento pode afetar as propriedades mecânicas e que a quantidade total de deformação é fundamental para a preservação da ductilidade. Além disso, o aumento da taxa de resfriamento e a redução da temperatura do final de resfriamento melhoraram a resistência mecânica sem prejudicar a ductilidade. Com respeito à adição de borô, foi possível comprovar o seu efeito benéfico na resistência mecânica do aço.

INTRODUÇÃO
Os requisitos de qualidade cada vez mais rigorosos exigem um refinamento dos produtos planos de aço, especialmente para aplicação em tubos para oleodutos e gasodutos, têm impulsionado o desenvolvimento de novas gerações de aços, denominados baixinhos e ferriticos acuículares, em substituição aos ferriticos-perliticos convencionais. Estes aços caracterizam-se principalmente por teores de carbono baixo ou extra-baixos (C < 0,03%) e uma microestrutura final altamente refinada na qual estão presentes microconstituintes acuículares (bainita/ferrita acuícular) de elevada densidade de discordâncias. Estas características possibilitam que elevados valores de resistência mecânica e ductilidade, balanceados com excelente ductilidade, possam ser obtidos em produtos na condição como laminados a quente, isto é, sem a necessidade de tratamentos térmicos posteriores à lâminação.

Como regra geral, na produção de aços baixinhos e ferriticos acuículares, são importantes as seguintes condições: aplicação de tratamentos termomecânicos de lâminação controlada seguida de resfriamento acelerado, adição de elementos microligantes formadores de carboneto e nítrato, e adição de elementos de liga em maior efeito na ductilidade e.

No desenvolvimento de aços com estruturas acuículares, tanto em linhas de lâminação de tiras quentes como de chapas grossas, especial atenção tem sido dada à prática de resfriamento acelerado até baixas temperaturas de final de resfriamento (<800ºC). Esta prática possibilita uma redução nas adições de elementos de ligação e naços de carbono, favorecendo não somente a redução dos custos de produção, mas também as características de ductilidade do aço.

Desde o início dos anos 80, aços baixinhos e ferriticos acuículares de teores de carbono baixos e extra-baixos têm sido produzidos para atendimento ao mercado de tubos API de elevada resistência. Entretanto, apesar dos progressos já alcançados, pouca divulgação foi dada ao desenvolvimento das condições de processamento destes aços, sobretudo em linhas de lâminação de tiras a quente. Dentro deste contexto, estudou-se no presente trabalho os efeitos de diferentes condições de lâminação.
e resfriamento controlados nas propriedades de um aço baixo carbono microligado ao nióbio, titânio e boro.

Para tal foi adotada uma composição química representativa da classe dos aços bainíticos e ferríticos adiutares para atendimento dos requisitos da norma API 5LX-X70, que especifica limite de escoamento mínimo de 70,000 psi (492.21 kgf/mm²)³. Nos experimentos, conduzidos em estaleiros de laboratório, procurou-se adotar condições de processamento que se aproximassem daquelas aplicadas na laminagem de tiras de aço.

MATERIAIS E MÉTODOS

Aços estudados - As composições químicas dos aços estudados estão indicadas na Tabela I. O aço Nb-Ti foi utilizado como aço de referência para que se pudesse verificar o efeito da adição de boro na propriedades do material. O aço Nb-Ti-B apresenta uma composição balanceada, na qual o boro é adicionado para que, em solução na austenita, iniba a formação da ferrita polygonal.

O nióbio, agindo sinergicamente com o boro, tem a função de retardar a recristalização da austenita em baixas temperaturas e contribuir para o aumento da temperabilidade do aço, e o titânio, devido a sua grande afinidade pelo nitrogênio, é adicionado principalmente para evitar a precipitação de nitreto de boro. Além disto, as finas partículas de TiN impedem o crescimento excessivo dos grãos austeníticos em altas temperaturas.

Os aços experimentais foram fabricados em um forno de fusão e vácuo, adotando-se uma sequência de adições que previnisse a reação do boro com o nitrogênio. Foram produzidos lingotes de 50 kg que, posteriormente, foram laminados em barras de 65 mm (esp.) x 165 mm (larg.) x 630 mm (compr.). Destas barras foram obtidos, através de corte e usinagem, os corpos-de-prova para laminagem experimental nas dimensões 30 mm x 75 mm x 100 mm.

Tratamentos termomecânicos - A Figura 1 apresenta esquematicamente as diversas condições de laminagem e resfriamento aplicadas no material. O processamento experimental consistiu fundamentalmente de austenitização.

Tabela I - Composição química dos aços estudados

<table>
<thead>
<tr>
<th>Tipo de aço</th>
<th>C</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-Ti</td>
<td>0.10</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>99.0</td>
</tr>
<tr>
<td>Nb-Ti-B</td>
<td>0.16</td>
<td><0.06</td>
<td><0.06</td>
<td><0.06</td>
<td><0.06</td>
<td>99.0</td>
</tr>
</tbody>
</table>

Tabela II - Esquema de passos aplicado na laminagem de debulhamento

<table>
<thead>
<tr>
<th>Nº de passos</th>
<th>Espessura inicial (mm)</th>
<th>Espessura final (mm)</th>
<th>Redução de espessura (%)</th>
<th>Temperatura de trituração (ºC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.8</td>
<td>11.8</td>
<td>30.5</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>13.1</td>
<td>9.3</td>
<td>39.0</td>
<td>550</td>
</tr>
<tr>
<td>3</td>
<td>10.3</td>
<td>7.1</td>
<td>31.5</td>
<td>550</td>
</tr>
<tr>
<td>4</td>
<td>8.2</td>
<td>4.6</td>
<td>39.2</td>
<td>550</td>
</tr>
<tr>
<td>5</td>
<td>6.3</td>
<td>2.7</td>
<td>37.5</td>
<td>550</td>
</tr>
</tbody>
</table>

Tabela III - Esquema de passos aplicado ao resfriamento

<table>
<thead>
<tr>
<th>Nº de passos</th>
<th>Def. total: 700ºC</th>
<th>Def. total: 100ºC</th>
<th>Def. total: 50ºC</th>
<th>Def. total: 400ºC</th>
<th>Def. total: 300ºC</th>
<th>Def. total: 200ºC</th>
<th>Def. total: 100ºC</th>
<th>Def. total: 50ºC</th>
<th>Def. total: 40ºC</th>
<th>Def. total: 30ºC</th>
<th>Def. total: 20ºC</th>
<th>Def. total: 10ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16.8</td>
<td>11.8</td>
<td>10.3</td>
<td>9.3</td>
<td>8.2</td>
<td>7.1</td>
<td>6.3</td>
<td>5.2</td>
<td>4.9</td>
<td>4.5</td>
<td>4.1</td>
<td>3.7</td>
</tr>
</tbody>
</table>

METALURGIA & MATERIAIS-ABM, VOL. 48, Nº 412, DEZEMBRO 1992
Fig. 2 - Micrografias das amostras do aço Nb-Ti-B por microscopia ótica. aumento 400 x - ataque com Nital 2%
das amostras através de reaquecimento a 1200°C por 45 min, condicionamento da austenita pela prática da laminação controlada seguido de um tratamento isotérmico por uma hora na temperatura de fim de resfriamento, e resfriamento lento ao ar até a temperatura ambiente. As Tabelas II e III mostram as escalas de passos aplicadas nas etapas de desbaste e acabamento, respectivamente.

Para simulação da laminação controlada, utilizou-se um laminador FENN 051 dúo reversível de 50 t de carga máxima. As diferentes taxas de resfriamento foram obtidas resfriando-se amostras ao ar, resultando na taxa média de 2,5°C/s ou inserindo-as em um recipiente contendo água a 75°C para a taxa média objetivada de 10°C/s.

O tratamento isotérmico foi feito em um forno a resistência elétrica com câmara tubular e teve por objetivo simular o resfriamento natural de bobinas. Durante todo o processo experimental a temperatura do material foi controlada por intermédio de termopares de cromel-alumel inseridos até o centro das amostras. Os experimentos foram realizados no Laboratório de Tratamento Termomecânico da Universidade Federal de São Carlos.

As propriedades mecânicas do material foram avaliadas através de ensaios de tração e impacto Charpy com entalhe "V". Em ambos os ensaios foram utilizados corpos-de-prova longitudinais de dimensões reduzidas, de acordo com norma ASTM A 370. As espessuras dos corpos-de-prova de tração e impacto foram de 3 mm e 3,2 mm, respectivamente. As microestruturas finais foram reveladas com reagente Nital 2% e analisadas através de microscopia ótica eletrônica de varredura.

RESULTADOS E DISCUSSÕES

As Figuras 2 e 3 mostram as microestruturas finais, representativas de cada amostra, obtidas por microscopia ótica. Com exceção apenas da aço sem boro submetido ao resfriamento lento (2,5°C/s), observa-se a presença de microconstituintes aciculares em todas as outras amostras, em maior ou menor proporção, dependendo das condições de laminação e resfriamento aplicadas. De uma maneira geral, as microestruturas mostram-se refinadas, porém com alguma heterogeneidade que pode ser atribuída às baixas reduções nos passos e às reduzidas quantidades totais de deformação aplicadas na laminação experimental.

São visíveis as alterações microestruturais provocadas pela adição de boro, conforme pode ser visto comparando-se as Figuras 2a e 3a. Na amostra sem boro, a microestrutura é composta de uma matriz de ferrita poligonal com ilhas de perlita, enquanto que na amostra de aço Nb-Ti-B, submetida às mesmas condições de processamento, observa-se a presença de microconstituintes aciculares, além de uma menor quantidade de perlita presente.

Estas alterações microestruturais resultam do aumento da temperabilidade do aço pela presença de átomos de boro em solução na austenita. Durante o processo de laminação, os átomos de boro difundem-se para os contornos de grão, bandas de deformação e contornos de sub-grão de austenita não transformada, retardando com isso a nucleação da ferrita poligonal. A presença do nióbio tem efeito importante neste processo, principalmente em aços abaixo do carbono, por contribuir para a formação de precipitados de carbonetos de nióbio.

As razões para isto parecem estar na diminuição da mobilidade dos átomos de carbono pelo nióbio em solução e na redução da sua disponibilidade pela precipitação de carbonetos de nióbio. Ambos os fatores contribuem para dificultar a formação de precipitados de boro. Variações na temperatura de acabamento (Figuras 2a e 2b) e na temperatura de fim de resfriamento (Figuras 2a e 2b) parecem não promover alterações sensíveis na microestrutura final. Por outro lado, são visíveis os efeitos da quantidade total de deformação no acabamento e da taxa de resfriamento.
O aumento da deformação no acabamento (Figura 2c e 2d) resultou em uma microestrutura mais refinada, como consequência de uma austenita prévia para a transformação com maior densidade de sílos para nucleação dos constituintes finais. Quanto ao refriamento, a condição mais severa promoveu uma maior formação de estruturas acicular, bem como uma redução na presença de perita, conforme pode ser visto comparando-se as Figuras 2e e 2f.

Este efeito decorre da diminuição da mobilidade dos átomos de carbono com aumento da taxa de refriamento, o que possibilita que a transformação da austenita ocorra dentro do campo de formação de estruturas acicular. As Figuras 4a e 4b mostram, respectivamente, as microestruturas finais de amostra de aço Nb-Ti refriada lentamente e Ni-Ti-B submetida ao refriamento forçado, obtidas por microscopia eletrônica de varredura.

O objetivo desta comparação foi evidenciar as diferenças entre as estruturas poligonais e acicular resultantes dos experimentos. Na Figura 4a, observa-se claramente uma matriz de ferrita poligonal com ilhas de perita, enquanto que na Figura 4b, uma matriz predominantemente acicular na qual ainda se verifica a presença de parte dos antigos contornos de grão de austenita.

LIMITE DE ESCOAMENTO

A adição de boro resultou em incrementos substanciais no limite de escoamento e limite de resistência, tanto nas amostras refriadas ao ar (Figura 5) quanto naquelas submetidas ao refriamento forçado (Figura 6). Entretanto, enquanto no primeiro caso não se observou qualquer alteração na tenacidade, no segundo verificou-se um aumento na temperatura de transição no aço Nb-Ti-B.

A melhoria da resistência mecânica com a adição de boro em aços de baixos carbono microriladados com Nb e Ti, também foi observada em outros trabalhos. Este comportamento tem sido atribuído a maior presença de microconstituintes aciculares de elevada densidade de discordância na microestrutura final, resultantes do aumento da temporalidade do aço provocado pelo efeito sinergético Nb-B.

A queda da tenacidade verificada no aço Nb-Ti-B refriado de forma forçada (Figura 6), pode ser decorrente da presença de estruturas aciculares menos refinadas, que se formaram a partir de uma austenita não suficientemente condicionada.

O aumento de 40°C na temperatura de acabamento não resultou em alterações sensíveis nas propriedades mecânicas, conforme pode ser visto na Figura 7. Por outro lado, o aumento da quantidade total de deformação nesta etapa do processamento termomecânico foi fundamental para preservar a tenacidade (Figura 8). Isso pode ser explicado considerando-se que as propriedades de im-
pacto em aços aciculars apresentam melhores resultados na medida em que são menores as colônias de ferrita acicular e bainita e, por conseguinte, dependem de um melhor condicionamento da austenita. A utilização do resfriamento forçado (Figura 9) e o abaixamento da temperatura de fim de resfriamento (Figura 10), promoveram um aumento na resistência mecânica sem alterações significativas na ductilidade, confirmando resultados obtidos por Tamehiro e colaboradores. A melhoria da resistência mecânica é explicada pelo refino adicional dos precipitados e de microestrutura, assim como pelo aumento da fração volumétrica das estruturas aciculares. A preservação das propriedades de impacto é atribuída também ao refino dos produtos de transformação.

CONCLUSÕES

No estudo de laboratório realizado, verificou-se os efeitos do baixo e do paraísmo de lamação e resfriamento nas propriedades do aço, 0.04%C - 0.04%Nb - 0.02%Ti - 0.007%B. Os resultados experimentais conduziram às seguintes conclusões:

- A presença de apenas 7 ppm de boro resultou em uma melhoria significativa da resistência mecânica do aço. Por outro lado, verificou-se perda da ductilidade com a adição deste elemento juntamente com a aplicação de resfriamento forçado após laminação. O ganho de resistência mecânica deve-se ao efeito do boro no aumento da ductilidade ao aço. A queda da ductilidade pode ser explicada pelo condicionamento insuficiente da austenita na laminação controlada experimental;

- A quantidade total de deformação no acabamento foi o parâmetro mais importante na etapa de lamação, devido ao seu efeito na preservação de propriedades de impacto;

- A temperatura de acabamento pouco afetou as propriedades mecânicas do material;

- O aumento da taxa de resfriamento e a redução da temperatura de fim de resfriamento melhoraram a resistência mecânica sem prejuízo da ductilidade;

- A aplicação de resfriamento acelerado até baixas temperaturas de fim de resfriamento, a partir de uma austenita severamente deformada, parece ser um caminho promissor para a obtenção de um balanço ótimo entre resistência mecânica e ductilidade nestes aços.

Bibliografia

1. PICKERING, F. B.; High-Strength, Low-Alloy Steels - A Decade of Progress; Proceedings of Microalloying 75, p. 3-24, 1977

2. DIETZ, N.; DEVITO, A.; BUFALINI, P. M.; Production and Properties on Pipeline Steels with non Polygonal Ferrite Microstructure; Niobium Proceedings, 1983

3. ROBERTS, W.; Recent Innovations in Alloy Design and Processing of Microalloyed Steels; HSLA Steels Technology and Applications, Conference Proceedings, p. 33-64; ASM; outubro 1983

4. PICKERING, F. B.; The Spectrum of Microalloyed High-Strength Low-Alloy Steels; HSLA Steels Technology and Applications, Conference Proceedings, p. 1-31; ASM; outubro 1983

5. JONES, B. L.; Advances in Alloy Development and Process Technology in the Production of High-Strength Linepipe Steel; HSLA Steels, Conference Proceedings; Wollongong, Australia; p. 210-217; agosto 1984

6. WOODHEAD, J. H.; KEOWN, S. R.; The History of Microalloyed Steels; HSLA Steels: Metallurgy and Applications - Proceedings of an International Conference on HSLA Steels 85; Beijing, China; p. 15-28; novembro 1985

7. BUFALINI, P.; DE LISI, M.; DE VITO, A.; PETRUCCI, M.; Development and Production by Accelerated Cooling of a Linepipe Steels for X80 Grade; International Conference - Pipe Technology; Rome; p. 243-261; novembro 1987

12. NAKAGISHI, K.; MATSUDA, H.; TAMEHIRO, H.; Ultra-Low Carbon Bainitic Steel for Linepipes; Conference on: Steels for Linepipe and Pipeline Fittings; London; paper n. 9; outubro 1981

13. API 5LX - X70, Physical Properties and Tests; American Petroleum Institute - Specification of High Test Linepipe; Twenty-Fourth Edition; Section 3, p. 7; março 1982

14. ASTM A-370/77; Mechanical Testing of Steel Products; in Annual Book of ASTM Standard; Steel Piping, Tubing, Fittings; vol. 01.01, p. 336-391; 1985

15. TAMEHIRO, H.; MURATA, M.; HABU, R.; Effect of Combined Addition of Niobium and Boron on Thermomechanically Processed HSLA Steels; HSLA Steels: Metallurgy and Applications - Proceedings of an International Conference on HSLA Steels 85; Beijing, China; p. 325-333; novembro 1985

17. SERIN, B.; DESALOS, Y.; MAITRE PIERRE, PH.; VERNON-ROES, J.; Caractéristiques de Transformation et Propretés D'Acier à bas Carboné au Nb-B; Mémoires Scientifiques de la Revue de Métallurgie, 75, p. 355-369; 1978