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This article focused on the microstructure characterization and residual stress measurements of the flange
from classes D and C railway wheels (called 7D and 7C steel, respectively) to contribute with the residual
stress level on new forged wheels flange area. A correlation with the hardness was conducted. The residual
stress was measured in three points of the flange using the x-ray diffraction technique, and the
microstructure characterization on SEM microscopy. We found the 7C steel has fine pearlite and ferrite
microstructures, and 7D steel has degenerated pearlite and bainite microstructures. In the 7D steel, the
compressive residual stress in the flange region was higher than in the 7C steel, which is related to the
presence of bainite on the microstructure. There was a correlation between the hardness and residual stress
value. The knowledge of the residual compression stress level is important for safety train wheels operation.
The traction stress generated by the brake system on the wheel is attenuated by residual compression stress.
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1. Introduction

Railroad transportation has been widely used to move
people and the economy of the countries over the years and has
supported the development of many regions in the world (Ref
1). To increase the economic viability of the transport,
researchers work to improve the transport safety, the weight
capacity, and the train velocity (Ref 2, 3). In countries like
Australia for example, the weight transported achieves 40 tons/
axle (Ref 4). To support this weight increase, the development
of new railway wheels is required. The Heavy Haul category
(class D by Association of American Railroad-AAR) is the
recent class of the railway wheels that have been developed to
meet this demand. In these wheels, niobium, vanadium, and
molybdenum are added in usual medium carbon steel, attaining
higher toughness, mechanical, and wear resistance (Ref 5).

The high load on heavy haul operation induces high brake
stress on the wheel, for this reason is so important to know and
evaluate the residual compressive stress on class D wheels, in
order to guarantee the safety operation for these wheels (Ref 6,
7). Besides, the flange supports the weight when the train
passes by a curve stretch, and in this situation, higher tangential
forces and contact stresses are detected (Ref 8). Residual stress
is resulting from wheels manufacturing, and with control, it is
beneficial to the wheel rolling contact fatigue (Ref 9). The

techniques to measure the residual stresses in materials can be
divided into destructive and nondestructive methods.

The advantage of nondestructive methods as x-ray diffrac-
tion is to be an effective and nondestructive process (Ref 10). In
the technique, it is estimated the distortion in the crystal lattice
by x-ray, and the residual stress is calculated assuming a linear
elastic deformation of the crystal lattice (Ref 11). As a
disadvantage, the waves penetrate a certain distance in the
sample (on average over a few microns under the surface) and
depend on the anode, material, and angle of incidence (Ref 12).
Besides, complete measurements of residual stress by x-ray
diffraction are restricted in the literature for railway wheels in
the function of the measured restrictions.

The residual stress distribution in the forged railway wheels
is influenced by the manufacturing process because of the last
thermal treatment of quenching (Ref 13). This heat treatment
provides compressive residual stress below the tread (Ref 14)
and the depth of the heat treatment is a function of the
hardenability of the steel. According to Rezende et al. (Ref 15),
the addition of some alloy elements acts to decrease the start
temperature of martensite formation and may influence the
results of the quenching process.

We propose in this research a microstructure characteriza-
tion and the measurement of residual stress using the x-ray
diffraction method in flange from a new class D wheel and
comparing with commercial class C wheel.

2. Materials and Methods

2.1 Samples

The specimens were obtained from the class C and new
class D forged railroad wheels (denominated 7C and 7D steel,
respectively). The chemical composition measured by optical
spectrometry (ARL 3460 OES, Thermo Scientific) is presented
in Table 1. The main difference between the chemical elements
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of 7C and 7D steels is the addition of the percentual of
chromium, molybdenum, and niobium. The final heat treatment
for the two wheels was austenitization at 890 �C, quenching
and, tempering at 500 �C.

The two original wheel samples were transversely cut in the
flange region of the wheel (Fig. 1). It is worth mentioning that
stress relaxation occurs due to the cutting process. However,
due to the impossibility of measuring large parts by x-ray
diffraction, the measurement in small pieces can comprise a
good approximation to the real residual stress according to
Prevey (Ref 16) and Takahashi et al. (Ref 9). The surface
preparation of the specimens was grinding and electro-polish-
ing.

2.2 Microstructure Characterization

The microstructure characterization was carried out from
scanning electron microscopy (SEM) (EVO MA 15, Zeiss-
UNICAMP). Microhardness was measured with a durometer
(FV 800, Future Tech.), applying 0.5 kgf for 15 s five times in
the same locations of the residual stress measurements. The x-
ray diffraction measurements were performed in Brazilian
Nanotechnology National Laboratory (CNPEM/LNNano)
installations using a diffractometer ‘‘Panalitical X�pert Pro’’
with the following parameters: Co Ka radiation, tube voltage,
and current 40 (kV) and 45 (mA), respectively, 2h range from
40� to 130�.

2.3 Residual Stress X-ray Diffraction

The residual stress measurements by x-ray diffraction are
based on the distortion of the crystal lattice. The presence of
residual stress changes the interplanar distances of the material
due to the deformation in the crystal lattice and modifies the
diffraction peak normally found in the material free of stress
(Ref 11, 12).

The sin2w method was used on residual stress measure-
ments. Assuming the low penetration (a few microns) of x-rays,
the plane stress state is considered zero (Ref 17). The equation
that governing the method is given in Eq 1 (Ref 11, 16).
Rotation phi (u) and tilt psi (w) angle of the x-ray diffrac-
tometer goniometer governing the biaxial stress tensor ru. So,
for each angle w (psi) is achieved a respective interplanar

distance dw. It is recommended to use 2h angle greater than
120� to higher precision (Ref 16)

ru ¼ dw � d0
d0

� �
1þ m
E

� �
1

sin2 w

� �
ðEq 1Þ

The lattice spacing dw is a linear function of sin2w, and to
multiples w tilts. From the d-spacing values and w tilts, the
least-square line is obtained. Supposing the unstressed do is
known and using material constants from the literature E
(Young module) and m (poison coefficient), the residual stress is
calculated by the slope of the least-squares line (Ref 16-18).
The software ‘‘Panalitical X�Pert Stress’’ was used to fit the
least-square line concerning the sin2 w method and the
parameters of Table 2.

The measurements were performed in Brazilian Nanotech-
nology National Laboratory (LNNanno/CNPEM) installations
using the same diffractometer previously mentioned. Three
points equally spaced at transversal cutting samples of the
flange (Fig. 1) were measured in each sample (7C and 7D
steel). These points were selected in function of the flange
geometry and the size of the irradiated area promoted by the
diffractometer. On account of the symmetry between the three
components directions, the measurements were performed in a
hoop direction (Ref 19).

3. Results and Discussion

The microstructure of the 7C and 7D steel was obtained
from SEM analysis and are illustrated in Fig. 2 and 3. In the 7C
steel, the hardness was 357 ± 7 HVand the microstructure was
mostly composed of fine pearlite and some sites of grain
boundary ferrite. The microstructure is coherent due to the
manufactured process and the elements present in its compo-
sition, likewise the study by Fonseca et al. (Ref 5). The
microstructure in the 7D steel presented hardness of 400 ± 20
HV, being mostly composed of degenerated pearlite, some sites
of grain boundary ferrite, and bainite (Ref 20). The microstruc-
ture was similar to railway wheel material studied by Minicucci
et al. (Ref 4). These authors used steel with similar content of
molybdenum and niobium in the chemical composition.
According to Rezende et al. (Ref 15), the addition of these
alloy elements in steel changes the kinetics of the transforma-
tion during the steel cooling. Thus, in the same position for 7C
and 7D steel, we observe different microstructure.

The 2h x-ray measurement confirmed the phases that
compose the two steel. The diffraction peaks collected represent
the crystalline planes for ferrite crystalline structure, and
austenite phase was not detected (Ref 21). The austenitic phase

Table 1 Chemical composition of the samples (wt.%)

Sample C Si Mn Cr Cu + V Mo + Nb Nb

7C Steel 0.778 0.342 0.809 0.200 0.207 0.041
7D Steel 0.725 0.274 0.880 0.352 0.200 0.142

Fig. 1 Representation of a sample in the railway wheel and measure points in the flange region indicating hoop direction
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present in the wheel would be transformed to martensite under
operation due to the high contact pressure between the rail and
wheel. This martensite transformation is no desirable because
of the possibility of cracks nucleation by Rolling Contact
Fatigue (Ref 22, 23).

In residual measurements, each point returned 11 diffraction
curves from 152.2 to 159.1� diffraction angles (h) as exempli-
fied in Fig. 4. Using software X�Pert Stress, the proprieties of
the material were inserted and the profile shape function
(Pearson II) was used to fit the least-square line. The residual
stress value was obtained applying the sin2w method for each
psi (w) angle.

In Fig. 5, we present the residual stress medium value for
7C and 7D steel. The residual stresses for both steels were
compressive (negative value), and the higher medium values
were 237 and 415 MPa to 7C and 7D steel, respectively. The
results for 7C steel are within the range of residual stress
presented by Brunel et al., (Ref 24). The 7D steel presented
compressive residual stress values higher than the literature and
could be associated with the difference in the chemical
composition that changed the characteristics of the microstruc-
ture.

The difference between the residual stress module values of
7D and 7C steel was related to the alloy elements addition in
7D steel (molybdenum, niobium, and chromium) that changed
the kinetic of material transformation (Ref 25, 26). The impact
was the change in the microstructure of fine pearlite into
degenerated pearlite and bainite which increased the hardness
as illustrated in Fig. 6. The presence of bainite on microstruc-
ture in 7D steel increases the number of dislocations (Ref 27)
which increment the value of compressive residual stress (Ref
28).

Figure 6 presents a decrease in the compressive residual
stress as the analyzed depth is increased, following the
tendency exhibited in studies such as Goo and Seo (Ref 29),
Brunel et al. (Ref 24). As the depth increase, the hardness also
reduces evidencing a correlation between the residual stress and
the hardness. This behavior is verified because the region near
the surface suffered more influence of the heat treatment in
previous cycles (Ref 7, 30).

On the reported of Fig. 7, there was a correlation between
the hardness and the residual stress value. This correlation
followed the tendency found by Frankel et al. (Ref 31) and
Takakuwa et al. (Ref 32) in measurements of hardness and
residual stress. Bocciarelli and Maier (Ref 33) affirmed that
compressive residual stress difficult the penetration of indenter
which collaborate to increase the hardness value.

Table 2 Parameters of x-ray measurements to residual
stress calculation

Method Convergent beam method

X-ray characteristic Cr-Ka
K-b filter Vanadium
Diffraction angle 2h (deg) 152.2 to 159.1
Sin2 w (Steps) 11
Sin2 w (Range) � 0.175 to 0.175
Counting time (s) 5.35
Generator tension (kV) 30
Generator current (mA) 55
Irradiated area (mm2) 4.8
E (Young Module) 207 GPa
m (Poisson Coefficient) 0.3
Fitting method Profile shape function-Pearson II

Fig. 2 Scanning Electrons Microscopic (SEM) analysis of 7C steel.
(P-pearlite), (F-grain boundary ferrite). (Etching Nital 2%)

Fig. 3 Scanning Electrons Microscopic (SEM) analysis of 7D steel
(F-grain boundary ferrite), (Dp-degenerated pearlite), (B-bainite).
(Etching Nital 2%)

Fig. 4 Example of diffraction curves obtained for each point in the
sample
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According to the literature, the compressive residual stress is
favorable to prolong the appearance of the rolling contact
fatigue cracks on wheels being a factor to extend their life cycle
(Ref 34, 35). As the class D wheels operate with a higher load
applied, the increase of residual stress will be beneficial and
will prolong the life in service (Ref 7). Besides, the higher
residual stress would be beneficial to prevent problems with the
high load induced by high brake stress on the wheels. There
was not observed martensite in the microstructure either
unusual inclusions.

Concerning the correlation between hardness and residual
stress, these results support the possibility of estimate the
residual stress in other wheels by hardness measurements.
However, it is worth mentioning that the estimative must
carefully be done only for forged wheels with heat treatment
temperatures like those used in this work.

4. Conclusion

The microstructure characterization and the measurement of
residual stress using the x-ray diffraction method for classes C
and D of railway wheels in the flange region were proposed.

Based on the experimental results and analysis, the following
conclusion can be defined.

We verified that both studied steels presented compressive
residual stress. The residual stress module values of 7D steel
were higher than the 7C steel values and the data achieved in
the literature for class C forged railway wheels.

On microstructural characterization, 7C steel featured fine
pearlite as the main microstructure and sites of ferrite. On the
other hand, 7D steel featured degenerated pearlite as the
dominant microstructure with sites of ferrite and bainite. The
changes in the microstructure provided a higher hardness for
7D steel.

The residual stress presented a correlation with the hardness
for 7C and 7D steel. As the depth increase the hardness and the
residual stress value decrease. This correlation was a novelty
because there was no similar investigation in the literature yet.
As the hardness measures are more accessible than residual
stress measures, checking this measure can be easier.
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25. A. Fadel and D. Glǐ, Influence of Cr, Mn and Mo Addition on Structure
and Properties of V Microalloyed Medium Carbon Steels, J. Mater. Sci.
Technol., 2012, 28(11), p 1053–1058

26. D. Gallina, Finite Element Prediction of Crack Formation Induced by
Quenching in a Forged Valve, Eng. Fail. Anal., 2011, 18(8), p 2250–
2259

27. C. Goulas, A. Kumar, M.-G. Mecozzi, F.M. Castro-Cerda, M. Herbig,
R.H. Petrov, and J. Sietsma, Atomic-Scale Investigations of Isother-
mally Formed Bainite Microstructures in 51CrV4 Spring Steel, Mater.
Charact., 2019, 152, p 67–75

28. S. Chang, Y.S. Pyun, and A. Amanov, Wear Enhancement of Wheel-
Rail Interaction by Ultrasonic Nanocrystalline Surface Modification
Technique, Materials (Basel)., 2017, 10(2), p 12

29. B.C. Goo and J.W. Seo, Finite Element Analysis of the Rolling Contact
Fatigue Life of Railcar Wheels, Mater. Sci. Forum, 2008, 575–578, p
1461–1466
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