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a b s t r a c t

Tension in the drawing process is determined via a new solution to the drawing problem

for dies of axisymmetric or symmetric sections. A free body equilibrium method is used to

obtain the equations that dictate the drawing phenomenon. As opposed to the classical slab

method, solution of these equations accounts for internal material distortion. An analytical

iterative equation is used to solve the problem of tensions. The new solution can be applied

to dies of either axisymmetric or symmetric sections by simply varying one of the constants
eywords:

rawing

orward tension

used in the model. The results afforded by this solution agree with data from experiments

and simulations performed using other methods; it correctly reproduces experimental data

and behavioural trends. There is also a high degree of similarity between the results obtained

with the analytical iterative equation and those obtained with the finite elements method

(FEM).

internal material distortion produced by surface friction into
lab method

. Introduction

he drawing process is a forming process for plastic deforma-
ion of industrial metals, and is especially used in the electric
ector. It consists of reducing (Ghaei et al., 2005; Avitzur, 1987)
r changing the shape of the cross-section, or a combination
f both (Kim et al., 1999), whereby the material is run through
die that defines its final shape. The main variables involved

n this process comprise the die angle ˛, the cross-section A,
he friction coefficient �, the area reduction r, and the yield
ension �x (see Fig. 1). It differs from other plastic forming
rocesses primarily in that the traction tension applied to
he working material is limited, and that the maximum ten-
ion allowed on the material section during drawing is equal
o the yield tension. The drawing process is characterised by

wo factors: a limit on the reduction that occurs during draw-
ng; consumption of a fraction of the process potential by the
rictional forces between the die wall and the material.
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Various analytical, empirical, numerical and experimental
methods have been developed to predict the drawing tension
and to determine the best combination of process parame-
ters. The most common analytical methods for evaluation and
simulation of drawing are homogenous deformation, the slab
method, and the upper bound technique (Hosford and Caddell,
1993).

We have developed a drawing tension model based on a free
body equilibrium approach, which entails force balance on a
slab metal of differential thickness. This technique yields ordi-
nary differential equations, in which the dependent variables
are a function of a unique spatial coordinate, among other,
independent variables. What distinguishes this method from
the classical slab method is the introduction of the effects of
the differential equation which governs the problem, and into
its solution. This distortion has an influence on the orientation
of the principal directions of the material. It is introduced into

mailto:hernan.gonzalez@upc.edu
dx.doi.org/10.1016/j.jmatprotec.2007.06.053
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(

Fig. 1 – Axisymmetric die and wire (not to scale).

the model via the shear tension �, which is considered size-
able in the von Mises equation, but is considered negligible in
the classical slab method.

Several research articles on the design of extrusion dies
have analysed this problem, focusing on optimisation of the
variable strain rate to obtain a die geometry that minimises
this variable (Joun and Hwang, 1993; Lu and Lo, 1999). Lo
and Lu (2002) obtained a partial differential equation which
is a function of the velocity field and the shear stress, and
which incorporates internal distortion of the material. To
solve their equation, they assumed that the velocity dis-
tributions are known, thereby reducing it into an ordinary
differential equation that can be solved numerically. In con-
trast to the model developed by Lo, which is a function of
the velocity field, our model is a function of the tension
field.

The following sections describe the mathematical model
formed by the differential equations that govern the drawing
process as well as the different yield criteria employed. The
third section outlines the algorithm for solution and simula-
tion. The first part of the fourth section describes validation of
the model by comparing the drawing force results with those
of other models, such as the classical slab and the finite ele-
ment methods. It also provides a comparison of the respective
solutions obtained from experimental data.

2. Mathematical model

The model to predict the forward tension in the drawing pro-
cess is obtained by balancing on a differential element, as
shown in Fig. 2. The differential equation associated with the
forces problem is linearised, and then solved analytically to
generate a function for the tension.

In obtaining the drawing process model, the following
assumptions are made:

(i) The die is considered a rigid body, and the drawing mate-
rial is considered a rigid-plastic material.

(ii) The plastic deformation is plane strain.
iii) The averaged stresses are uniformly distributed within

the elements.
(iv) There is friction at the die–material interface, and the
dynamic friction coefficient is constant.
(v) The material flows into and out of the system horizon-

tally.
(vi) The die angle is small.
Fig. 2 – Material element.

The model obtained represents forward tension as a function
of the area reduction r, the friction coefficient �, the die angle
˛, the yield shear stress k, and the die length x.

2.1. Equilibrium equations for symmetric and
axisymmetric dies

The equilibrium equations for the differential element (see
Fig. 2) are obtained by balancing the forces in the horizontal
direction:

∑
Fx = 0 ⇒ ∂�x

∂x
+ n

R(x)

[
�x

∂R(x)
∂x

− P[tan(˛) + �]

]
= 0 (1)

In this equation, the shear stress resulting from the fric-
tion between the die and the material is considered to be
equal to the product of the dynamic friction coefficient � and
the pressure P. Thus it is also assumed that this shear stress
is proportional to the normal pressure to which the mate-
rial is subjected. The constant n allows generalization of the
equations for balancing forces: if n = 1, then the problem corre-
sponds to symmetric plane deformation; but if n = 2, then the
problem corresponds to an axisymmetric plane deformation.
The variables and constants that appear in (1) are: the tension
in the direction x, �x; the radius or thickness (depending on
the value chosen for n) R(x); the pressure P that the die places
on the material; the die angle �, which is treated as constant.
The die is assumed to be conical; hence the radius or thickness
of the material in the deformation zone is a linear function:

R(x) = R0 − x tan(˛) (2)

whereby R0 is the initial radius or thickness of the material.
A straightforward method for adimensionalisation is to set

the length of the die to one, for which the following equation
is used:
x = R0 · r

n tan(˛)
x∗ (3)

whereby x* is the adimensionalised position x.
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For conical dies, the slope defined by the contact zone
etween the die and the material is

∂R

∂x
= −tan(˛) (4)

The differential Eq. (1) then becomes

∂�x

∂x∗ + r

(1 − (r/n)x∗) tan(˛)
[−�x tan(˛) − P[tan(˛) + �]] = 0 (5)

hereby r is the area reduction (6), which is a function of the
ections of the material at the entrance and the exit of the die,
enoted by A0 and A1, respectively:

= A0 − A1

A0
(6)

Solving Eq. (5) requires a function that relates the pressure
to the drawing tension �x, and which is assumed to be linear:

= A − B�x (7)

hereby A and B are constants to be calculated.
Introducing (7) into (5) yields an ordinary differential equa-

ion, which is solved by using the border condition (8) in Eq.
9):

x|x∗=0 = 0 (8)

This equation relates the drawing tension to the indepen-
ent variables that govern wiredrawing: the die angle ˛; the
ynamic friction coefficient �; the area reduction r; the adi-
ensional position within the die x*.

x = A(1 + (�/ tan(˛))
B(1 + (�/ tan(˛)) − 1

[
1 −

(
1 − r

n
x∗

)n[B(1+(�/ tan(˛))−1]
]

(9)

.2. Yield criterion

ormal and shear tensions are related in a differential ele-
ent by using the von Mises yield criterion. Assuming that

he drawing problem is a plane strain problem, and that the
ncrease in plastic deformation depends on the deviatoric
tress (Oller, 2001), then the von Mises yield criterion (10)
an be used as a criterion for plastic fluidity or discontinuity
Kachanov, 2004):

�x − �y

∣∣ = 2k

√
1 − 4

(
�

2k

)2
(10)

hereby k is the yield limit for a pure shear.
The following sections describe three approaches to deter-

ine the yield criterion.

.2.1. The first approach to yield criterion: the classical

lab method
n this method, the pressure P produced by the die is related
o the normal tension �x through Eq. (11). This implies the
ssumption that the tension �y is approximately equal to −P
Fig. 3 – Stress state for infinitesimal triangular elements.

and that the shear tension is negligible:

P = 2k − �x (11)

Therefore A is made equal to 2k (the yield limit for tension),
and B is made equal to 1. Substituting these constants into
the general Eq. (9) affords the classical equation for drawing
tension:

�x = 2k(� + tan(˛))
�

[
1 −

(
1 − r

n
x∗

)n�/ tan(˛)
]

(12)

2.2.2. The second approach to yield criterion
In this method, the pressure P produced by the die is related to
the normal tension �x through a force balance equation calcu-
lated over the differential triangular elements shown in Fig. 3.
The force balance on the highest of these elements yields the
following equations:

∑
Fx = 0 ⇒ �xy1 + (�x1 + P1) tan(˛) + �P1 = 0 (13)

∑
Fy = 0 ⇒ −�y + (�P1 − �xy1) tan(˛) − P1 = 0 (14)

Eliminating � with (13) and (14), gives
xy1

−(�y1 + P1) + (�x1 + P1) tan2(˛) + 2�P1 tan(˛) = 0 (15)
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Likewise, the force balance on the lowest of these elements
yields the following equation:

−(�y2 + P2) + (�x2 + P2) tan2(˛) + 2�P2 tan(˛) = 0 (16)

Taking the sum of (15) and (16), and assuming that �y is
equal to one half the sum of �y1 and �y2, and likewise for �x

and P, gives

�x − �y = (�x + P)(1 − tan2(˛)) − 2�P tan(˛) (17)

By substituting (17) in (10), and assuming that the shear
tension � is negligible, the second yield criterion is obtained:

P = 2k

1 − tan2(˛) − 2� tan(˛)
− 1 − tan2(˛)

1 − tan2(˛) − 2� tan(˛)
�x (18)

whereby the first term of the Eq. (18) corresponds to A, and the
multiplier factor for �x corresponds to B.

Substituting these constants into the general solution (9)
yields a new approximation of the drawing tension.

2.2.3. The third approach to yield criterion
This method is characterised above all by the fact that the
shear stress has a non-zero value in Eq. (10). This is achieved by
calculating the shear tension �xy1 from (13) and (14) to obtain
the following equation:

�xy1(1+tan(˛)) = −�x1 tan(˛)−�y1+P1(tan(˛) − � − 1 + � tan(˛))

(19)

�xy2 is calculated the same way. Assuming that �xy is equal to
one half the sum of �xy1 and �xy2, gives the following equation
for shear stress:

�xy = P tan(˛)
1 + tan(˛)

(20)

The von Mises equation with non-zero � (10) is strongly
non-linear. However, provided that � is less than 2k, then a
good linear approximation of (10) can be obtained. Assuming
that this premise is true, then calculation of the Taylor series
yields the following linear approximation of (10):

|�x − �y| = 2k

[
1 − 2

(
�

2k

)2
]

(21)

Substituting (17) and (20) into (21), and linearising the equa-
tion via Picard’s method, provides the third yield criterion
(22). In agreement with approximation (22), the pressure P is
determined by estimating the pressure Pi−1. Therefore Pi is the
solution to the problem:

Pi = 2k

1 − tan2(˛) − 2� tan(˛) + 2(Pi−1/2k)(tan2(˛)/(1 + tan(˛))2)

− 1−tan2(˛)
2 i−1 2 2

�i
x

1−tan (˛)−2� tan(˛)+2(P /2k)(tan (˛)/(1+tan(˛)) )
(22)

whereby Pi−1 is the pressure at the iteration (i − 1). Again, the
first term of Eq. (22) corresponds to A, and the multiplier factor
t e c h n o l o g y 1 9 8 ( 2 0 0 8 ) 93–98

for �i
x corresponds to B. Substituting these constants into the

general solution (9) provides the new approach to determining
the drawing tension.

3. Solution algorithm

We developed a simple programme to solve the drawing
equation which employs a Picard-type (Kelley, 1995) iterative
algorithm. The zero iteration of this algorithm corresponds
to a problem in which the shear stress � is zero in the von
Mises criterion (10). In contrast, the subsequent iterations
incorporate the shear tension in the criterion (10), evaluating
it as a function of the pressure Pi−1, which is the pres-
sure calculated in the preceding iteration. The algorithm is
shown below:

The convergence is verified by applying the Euclidean
discrete norm, calculating the difference in absolute value
between the unknown drawing tension �i

x and the known
tension �i−1

x . The value of the Euclidean discrete norm must
be less than a given ε. Empirically, we have found that
after the fifth iteration, the value of ε is less than 1%. The
graphs shown later in this work were all based on five
iterations.

4. Results

In this section, results obtained from different simulations are
reported, and validated against different analytical, numeri-
cal and experimental solutions. Specifically, the new solution
(the third approximation of the yield criterion) is compared
with the classical slab method (the first approximation), the
second approximation, and the finite element method (FEM).
Lastly, the model results are compared with experimental data
reported by Wistreich (1955).

Fig. 4 shows the dimensionless drawing tension in function
of the die angle, for symmetric geometry (n = 1), a reduction r
of 0.2, and a friction coefficient � equal to 0.1 and to 0.2. The

figure reveals four distinct curves which correspond to the four
solutions obtained via the different methods: the continuous
thick line corresponds to the third yield criterion; the dashed
thick line, to the numerical solution obtained with the FEM
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Fig. 6 – Comparison of experimental and simulation values
for dimensionless drawing tension, for axisymmetric dies.
ig. 4 – Dimensionless drawing tension for symmetric dies.

Rubio et al., 2005); the continuous thin line, to the second yield
riterion; the dashed thin line, to the first yield criterion. As
bserved, the solution from the third yield criterion behaves
ather similarly to that from the FEM. In contrast, for ˛ values
reater than 8◦, prediction of drawing tension with the first
nd the second yield criteria differ markedly from that with
he FEM.

Minimum drawing tension generally occurs between 3.5◦

nd 14◦ (Avitzur, 1997). The solutions with the third yield crite-
ion and with the FEM both have a point of minimum drawing
ension within the range of 8–14◦. The former can be thus used
o determine the die angle that which minimises the drawing
ension, as the prediction in said range is good.

Fig. 5 shows the percent error between the drawing ten-
ion values obtained with the third yield criterion and with
he FEM, for two different friction coefficients �. As observed
n both cases, at die angles less than 17◦, the error is less than

%.

Fig. 6 shows the dimensionless drawing tension in func-
ion of the die angle for axisymmetric geometry, whereby
he dimensionless drawing tension is defined as the draw-

ig. 5 – Percent error in the dimensionless drawing tension
or values obtained from the FEM and from the third yield
riterion, for symmetric dies.

Fig. 7 – Percent error in the dimensionless drawing tension
for values obtained experimentally and from the third yield

criterion, for axisymmetric dies.

ing tension divided by the yield limit for the tension. As
observed in the figure, for r values of 0.2, 0.3 and 0.4, the
results obtained with the third yield criterion are much closer
to the experimental data reported by Wistreich (1955) than are
those obtained with the first yield criterion (the classical slab
method). Thus the prediction with the third yield criterion is
better than that made with the first yield criterion, for which
the error increases with the die angle.

Fig. 7 shows plots of percent error versus die angle for
the three aforementioned reductions. The error shown in the
graph is calculated as the difference in absolute value of the
data predicted with the third yield criterion, and the experi-

mental data of Weistrich, divided by the experimental values.
For the three reductions studied, at die angles between 2.3◦

and 11.5◦, the error is less than 9%.
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5. Conclusions

We have developed a new model for predicting drawing
tension. It is an analytical iterative model that offers straight-
forward numerical implementation. Notably, it incorporates
the shear tension in the von Mises criterion, thereby improving
upon conventional predictions of drawing tension.
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