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Abstract

In this work, a method for the estimation of friction coefficient is proposed based on the asymmetric rolling operation. Asymmetry is

produced by operating the lower and upper rolls at different speeds. A slab method based computer code is developed for estimating the

curvature of the rolled sheet under asymmetric rolling conditions. Strain-hardening behavior of the material has been incorporated and

Wanheim and Bay’s friction model is employed. The developed code is used for solving the inverse problem of estimating the coefficient

of friction by measuring the curvature of the rolled sheet under known operating conditions. The simulations show a good potential of

the method.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The friction between the roll and strip has a great
influence on the cold rolling process. The different methods
for the estimation of coefficient of friction in cold rolling
process have been summarized in the book by Roberts [1].
The direct measurement of coefficient of friction involves
measuring the roll pressure and/or interfacial shear stress
at all points along the arc of contact in the roll bite, which
is a difficult procedure. For measuring the roll pressure
and interfacial shear stress, a number of transducers are
inserted in one of the rolls. Seibel and Lueg [2] conducted
some experiments, in which they inserted two quartz
crystals in the holes drilled in an accurately made circular
segment which acted as the bottom roll. One end of a metal
pin was attached to the top crystal, whereas the other end
was made to fit flush with the circumferential surface of the
segment. During rolling, pressure was transmitted through
the pin to the quartz crystals, which developed electrical
e front matter r 2007 Elsevier Ltd. All rights reserved.

ecsci.2007.06.002

ing author. Tel.: +91361 2582657 (O), +91361 2584657/

x: +91361 2690762.

esses: uday@iitg.ernet.in, usd1008@yahoo.com
charges proportional to the pressure. This method requires
damaging of the surface of the rolls and is difficult to
employ. Whitton and Ford [3] developed a method for
measuring the friction under conditions of zero slip. In this
method, during rolling, the back tension is gradually
increased until the neutral point is brought to the exit
plane. However, this method of applying a high back
tension to the strip has the disadvantage of creating an
artificial situation in the roll gap. The method requires the
measurement of spindle torque, the rolling force and the
slip of the strip. Estimation of the coefficient of friction is
also possible under conditions of non-zero slip by
measuring rolling torque, roll force and forward slip [1].
Roberts [1] has also described a method of calculating the
coefficient of friction from roll force and strip material
data.
In the present work, possibility of estimating the

coefficient of friction by measuring the strip curvature in
an asymmetric rolling process is investigated. The asym-
metric situation is created by making the speeds of top
and bottom roll different. A slab method of rolling
analysis has been used to analyze the asymmetric rolling
process. The slab method has been used widely for
its simplicity and time efficient computation. Based on
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Nomenclature

b material hardening coefficient
c height of the curved strip
D a constant dependent on the roll material
Fu, Fl roll force at the upper and lower rolls,

respectively
f friction factor
h strip thickness at a distance x from the center of

the rolls
h1, h2 inlet and exit strip thicknesses of strip
hu, hl the vertical distance between the x-axis and a

point on the strip at the upper and the lower
surfaces, respectively

L the projected contact length
Ls distance between the curved ends of strip
l0, l1, l2 lengths of the neutral, upper and lower fibers of

a curved strip
m, mu, ml friction factor, friction factors for upper and

lower rolls
n material hardening coefficient
pu, pl normal contact pressures at the upper and the

lower surfaces in the roll gap
R radius of curvature of a strip
R0 radius of deformed arc of contact
Req equivalent contact length
Ru, Rl radius of the upper and lower roll, respectively
r percentage reduction
r1, r2 radius of curvature due to difference in normal

strains and shear strains, respectively

Sxx1, Syy1 deviatoric components of stress for upper
surface, in x and y directions, respectively

Sxx2, Syy2 deviatoric components of stress for lower
surface, in x and y directions, respectively

xnu, xnl the locations of the upper and the lower neutral
points, respectively

Ys flow stress of the strip material
(Ys)o yield stress of the strip material
d the draft, i.e. difference between the initial and

final thickness
dgxy1, dgxy2 incremental shear strains at a point on the

upper and the lower surfaces of the strip,
respectively

dl a constant in the flow rule
~� equivalent plastic strain
ex1, ex2 axial strains at the upper and lower surfaces of

the strip
dex1, dex2 incremental axial strains in x direction, for

upper and lower surfaces, respectively
m coefficient of friction
mu, ml the coefficient of friction at the upper and lower

surfaces
t average shear stress on the vertical side of the

element
tu, tl frictional shear stresses at the upper and lower

interfaces
su, sl normal axial stresses at the upper and the lower

rolls, respectively
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the slab method, Mischke [4] developed equations of
equilibrium in asymmetric flat rolling. He has considered
the entry angle of the strip in his formulation. Hawang and
Tzou [5] used slab method and proposed an analytical
model assuming constant friction factor between the roll
and sheet. They measured rolling force and forward slip
experimentally from which the friction factor was esti-
mated. Salimi and Sassani [6] used the slab method to
find the curvatures of the strip for different asymmetric
conditions. Salimi and Kadkhodaei [7] used slab method to
numerically calculate the rolling force and torque. Re-
cently, Kadkhodaei et al. [8] has presented a slab method
model of asymmetric rolling in which a genetic algorithm is
used to obtain the plate deflection at entry to ensure free
entry condition.

Apart from slab method, some other methods have also
been used for analyzing the asymmetric rolling process.
Pan and Sansome [9] have carried out some experiments on
asymmetric rolling, in which asymmetry was created due to
speed mismatch. The experimental results were compared
with the upper and lower bound models. Kiuchi and
Hsiang [10] used an upper bound technique for calculating
the curvatures in the rolled plates. Hwang and Chen [11]
have analyzed asymmetric sheet rolling process using an
upper bound method, which makes use of a stream
function. They predicted curvature of the rolled product
and roll force and found them to be in good agreement
with the experimental results. Dewhurst et al. [12]
developed a simplified slip-line field solution for asym-
metric hot rolling and predicted the curvature of the roll
strip. They conducted some experiments on a two-high
laboratory rolling mill and found some qualitative agree-
ment between the experimental results and slip-line field
model. Finite element method has also been used for the
analysis of the asymmetric rolling process. Shivpuri et al.
[13] studied the influence of the roll speed mismatch on the
curvature of the plate using explicit time-integration
elastic–plastic finite element method. They found that the
strip always curls towards the roll with the lower speed.
Richelsen [14] used elastic–viscoplastic finite element
method to study the effect of different interfacial friction
conditions on the curvature of the strip. The curvature of
the plate was found to be towards the roll with highest
friction. Lu et al. [15] performed a finite element simulation
to study the influence of different diameters of the working
rolls on the strip curvature.
As the main objective of this paper is to show the

possibility of estimating the coefficient of friction by
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asymmetric rolling, a slab method model of Salimi and
Kadkhodaei [7] has been used instead of a rigorous finite
element model. However, Salimi and Kadkhodaei [7] did
not consider roll flattening and strain hardening which
have been considered in the present work. At the same time
in place of Coulomb’s friction model or constant shear
friction model, a more realistic Wanheim and Bay’s friction
model [16] has been incorporated in the present model.

2. Modeling of asymmetric rolling

Fig. 1 shows the schematic diagram of the asymmetric
rolling process. In the general case, roll diameters, speeds
and friction conditions at upper and lower rolls will be
different. The inlet and outlet thicknesses of the strip are
denoted by h1 and h2, respectively. The subscripts u and l

represent upper and lower interfaces, respectively. Thus, Ru

and Rl denote the radii of the upper and lower rolls
whereas Vu and Vl represent the speeds of the upper and
the lower roll. Without any loss of generality, assume that
the speed of the lower roll is higher than that of the upper
roll. In Fig. 1, the roll gap is divided into three zones. In
zone I, the strip velocity is lower than the speeds of both
the rolls and the frictional stresses on the upper and the
lower surfaces are in the forward direction. In zone II, the
strip velocity is more than the speed of the upper roll
and less than the speed of the lower roll. Hence, the
frictional stresses on the upper surface act in the backward
direction and that on the lower surface act in the forward
direction. In zone III, as the speeds of both the rolls are
lower than the strip velocity, the frictional stresses at both
the surfaces are in the backward direction. The contact
length L and the thickness h of the strip at a distance x

from the center of the rolls can be obtained from the
following relationships [7]:

L ¼
fðh1 � h2Þð2Ru þ h2 � h1Þð2Rl þ h2 � h1Þ½2ðRu þ RlÞ þ ðh2 � h1Þ�g

1=2

2ðRu þ Rl þ h2 � h1Þ
,

(1)

h ¼ h2 þ
x2

Req

, (2)
Fig. 1. The schematic diagram of asymmetric rolling.
where the equivalent radius, Req, is given by

Req ¼
2RuRl

Ru þ Rl

. (3)

2.1. Governing equations and solution procedure

A small slab element of length dx and thickness h

at a distance x from the center of the rolls is shown in
Fig. 2. The normal and shear stresses are assumed to
be distributed linearly across the thickness. O is the mid-
point of the right-hand side face of the element. For the
equilibrium of this element, the net forces along the rolling
direction, the net forces along the normal direction and the
net moments of the forces about any chosen point (say O)
should be equated to zero. This leads to the following set of
equations:X

Fx ¼
pu

Ru

þ
pl

Rl

� �
x�

x

Req

ðsu þ slÞ

� ðtu þ tlÞ �
h

2

dsu

dx
þ

dsl

dx

� �
¼ 0, ð4Þ

X
Fy ¼

2x

Req

tþ ðpl � puÞ þ
tl

Rl

�
tu

Ru

� �
xþ h

dt
dx
¼ 0, (5)

X
Mo ¼ htþ

xh

2

pl

Rl

�
pu

Ru

� �
þ

xh

2Ru

ðsu þ slÞ

þ
h

2
ðtu � tlÞ �

xh

6Req

ðsu þ 5slÞ

þ
h2

12

dsu

dx
�

dsl

dx

� �
¼ 0, ð6Þ

where pu and pl are the normal pressures at the upper and
the lower rolls, su and sl are the longitudinal compressive
stresses on the top and bottom of the vertical surfaces of
the element, tu and tl are the interfacial shear stresses at
the upper and the lower interfaces, respectively, and t is the
average shear stress acting on the vertical surface of the
Fig. 2. A small slab element in equilibrium.
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material. The interfacial shear stresses tu and tl are
calculated by using Wanheim and Bay’s friction model
(see the appendix). Rearranging the terms in Eqs. (4) and
(6), we get

dsu

dx
þ

dsl

dx

� �
¼

2x

h

pu

Ru

þ
pl

Rl

� �

�
2x

hReq

ðsu þ slÞ �
2

h
ðtu þ tlÞ ¼ A, ð7Þ

dsl

dx
�

dsu

dx

� �
¼

12

h
tþ

6x

h

pl

Rl

�
pu

Ru

� �

þ
6x

hRu

ðsu þ slÞ þ
6

h
ðtu � tlÞ

�
2x

hReq

ðsu þ 5slÞ ¼ B. ð8Þ

Assuming that the strip is in plane-strain condition and
following Levy–Mises flow rule [17],

txz ¼ tyz ¼ 0; sz ¼
1
2
ðsx þ syÞ. (9)

Substituting these in the von Mises criterion, we get

sx � sy

2

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

s

3
� t2xy

s
. (10)

For small bite angle, one can write [7]

su ¼ pu � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

s

3
� t2u

s
(11)

and

sl ¼ pl � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y 2

s

3
� t2l

s
. (12)

For most of the strain-hardening materials, the flow stress
Ys can be given by

Y s ¼ ðY sÞ0 1þ
~�

b

� �n

, (13)

where b and n are hardening parameters which are material
dependant and ~� is the equivalent plastic strain. Assump-
tions of volume constancy, plain strain and across the
thickness uniform plastic strain in the thickness direction
allow us to write the equivalent strain as

~� ¼
2ffiffiffi
3
p ln

h

h1

� �
. (14)

It is to be noted that although the present model
accounts for an internal shear stress, yet in Eq. (14), the
shear strain is neglected in the computation of overall
strain. It was found that for the cases studied in this paper,
the shear strain was limited to a maximum of 20% of
overall equivalent strain in the most severe cases. This
introduces less than 5% error in the estimation of flow
stress because of the low value of exponent n. Hence, for
the estimation of flow stress, the approximate equivalent
strain expression given by Eq. (14) is justified. Thus, the
equation for the flow stress becomes

Y s ¼ ðY sÞ0 1þ
2ffiffiffi
3
p

lnðh1=hÞ

b

� �n

. (15)

As the strip thickness is a function of x, the above
expression of flow stress is also a function of x.
Differentiating Eq. (15) we obtain

dY s

dx
¼ C

dh

dx
, (16)

where

C ¼ �ðY sÞ0
2=

ffiffiffi
3
p

n

bh
1þ

2ffiffiffi
3
p

lnðh1=hÞ

b

� �n�1

. (17)

Differentiating Eqs. (11) and (12) with respect to x,
substituting these derivatives as well as Eq. (16) in Eqs. (5),
(7) and (8), the following system of equations is obtained:

dpu

dx
¼

A� B

2
�

tu

Ru

�
x

Ru

dtu

dx

þ
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y 2
s � 3t2u

q 4Y sC

3Req

x� 2tu

dtu

dx

� �
, ð18Þ

dpl

dx
¼

Aþ B

2
�

tl

Rl

�
x

Rl

dtl

dx

þ
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y 2
s � 3t2l

q 4Y sC

3Req

x � 2tl

dtl

dx

� �
, ð19Þ

dt
dx
¼

x

h

tu

Ru

�
tl

Rl

� �
þ

pu � pl

h

� �
�

2x

Req

t
h
, (20)

where A, B and C are defined as per Eqs. (7), (8) and (17),
respectively. These are system of three first-order ordinary
differential equations in pu, pl and t. To solve this system,
three initial conditions are necessary. These can be
obtained from the loading conditions at the exit. Using
volume constancy, the positions of the two neutral points
can be related by the following relationship:

xnu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V Ax2

nl þ Reqh2ðV A � 1Þ
q

, (21)

where VA is the ratio of the surface velocities of the lower
roll to that of the upper roll, xnu and xnl are the distances of
the upper and the lower neutral points from the centers of
the rolls, respectively. Thus, if the location of one of the
neutral points is known, from the above relation the
location of the other point can be calculated easily. It is
assumed that the frictional stresses between the strip and
the guide rollers that are provided for the horizontal
entrance of the strip are negligible and no back tension or
compression to the plate is applied. Hence, no axial forces
at the entry section to the plastic region exist.
In order to solve the above-mentioned initial value

problem, a MATLAB function ODE45 is used in the code
developed. The function ODE45 is based on fourth-order
explicit Runge–Kutta method, which consists of dividing
the time interval into appropriate parts called steps. It is
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a one-step solver which means in computing the dependant
variables at time tn, it needs only the solution at time tn�1,
i.e. the values of variables at one time step before. As the
roll gap gets divided into three zones as a consequence of
the asymmetric rolling. Hence, the locations of the neutral
points are crucial in determining the extent of each zone.
The solution process consists of adjusting the location of
one of the neutral points (say, lower neutral point) and
solving the above mentioned initial value problem in
an iterative manner. Each zone is divided into 100 equal
parts. The differentials dtu/dx and dtl/dx in Eqs. (18) and
(19) at ith point are calculated by using finite difference
approximations:

dtu

dx
¼
ðtuÞi�1 � ðtuÞi�2

Dx
and

dtl

dx
¼
ðtlÞi�1 � ðtlÞi�2

Dx
.

(22)

The difficulty of getting the values of the differentials for
the first two points by the above formula is tackled by
expressing dtu/dx and dtl/dx as dtu/dx ¼ mdpu/dx and
dtl/mdpl/dx, where m corresponds to equivalent Coulomb’s
coefficient of friction. This is a valid assumption as the
pressure at these two points is low for which the Wanheim
and Bay’s model reduces to Coulomb’s model [16]. The
neutral point position is adjusted in such a way that the
mean axial normal stress (su+sl)/2 at the entry section
becomes equal to zero. This task is carried out by
employing bisection method [18]. The first step consists
of assuming lower neutral point xnl to be placed at two
extreme positions, one near the entry section and other
near the exit section. The position of the upper neutral
point xnu can be calculated by Eq. (21) and the roll gap gets
divided into three zones. For each case, the value of the
mean axial stress at inlet section is calculated. If xnl is near
the exit section, we get a negative value for the mean axial
stress, corresponding to the presence of a back tension. If
xnl is near the inlet section, we get a positive value. Thus, if
we search in between these two extreme values, we can get
the true locations of the neutral points corresponding to
zero mean axial stress. The next step consists of halving the
search interval and solving the problem by placing the
lower neutral point xnl exactly at the middle of the initial
interval and calculating mean normal stress for this case.
Depending on its value, one of the two intervals is
eliminated. Again, the remaining interval is divided into
two equal parts and the procedure is repeated in an
iterative manner till almost zero value of the mean axial
normal stress at the inlet section is obtained. The solution
at this stage will be the solution of our problem. Thus, the
values of pu, pl, and t at all the points are obtained. If the
contact angle of the rolls and that of the plate is small,
the roll force per unit width can be calculated as [7]

Fu ¼

Z L

0

pu þ
x

Ru

tu

� �
dx and Fl ¼

Z L

0

pl þ
x

Rl

tl

� �
dx.

(23)
During rolling process the rolls get elastically deformed.
This roll flattening effect is taken into consideration using
Hitchcock’s formula [19] in which the ratio of the radius of
the deformed arc of contact to the roll radius is given by

R0

R
¼ 1þ

F

Dd

� �
, (24)

where F is the roll force and d ¼ h1�h2 is the ‘‘draft’’. The
constant D depends on the material of the rolls, its value
for steel rolls being 4.62� 104MN/m2. The radius of the
deformed arc of contact is found in an iterative manner. In
the first iteration, no roll deformation is assumed and the
governing differential equations (18)–(20) are solved. The
roll forces on both the roll are obtained using Eq. (23).
Knowing the force values, radii of deformed portion of the
rolls are obtained from Eq. (24). Treating these values as
undeformed radii, Eqs. (18)–(20) are solved to get new
force values. Putting these force values in Eq. (24), new
radii of deformed arc of contact are obtained. This
procedure is repeated in an iterative manner till the
roll-radii converge. The converged solution is used for
calculating the strip curvature. Taking moment about the
center of roll, the rolling torque per unit width is given by,

Tu ¼

Z L

0

xpu dx and Tl ¼

Z L

0

xpl dx. (25)

It is to be mentioned that Hitchcock’s formula is
incapable of estimating roll deformation for rolling of thin
and hard strips particularly at low reduction. However, for
the cases examined in this paper, Hitchcock’s formula is
appropriate. This is supported by the work of Chandra and
Dixit [20], who have estimated the roll deformation by
treating the roll as an elastic half space and using a theory
of elasticity solution. They found that for moderate strip
thickness, reduction, flow stress of the material and
friction, their model provides almost same results as the
model of Dixit and Dixit [21], which uses Hitchcock’s
model. A more accurate roll deformation model will be
needed for the studying the rolling of thin and hard strips
at low reduction.

2.2. Calculation of strip curvature

The asymmetry in the rolling process imparts an
undesirable curvature to the outgoing strip. There are
two different types of effects that contribute to this
curvature. The first is due to the difference in the axial
strains at the upper and the lower surfaces and the second
is due to the difference in the shear strains at the upper and
the lower surfaces. The total curvature will be equal to the
summation of the curvatures due to these two effects. The
analysis procedure is somewhat similar to that of Salimi
and Sassani [6].

2.2.1. Strip curvature due to difference in axial strains

Consider that the strip undergoes a curvature as shown
in Fig. 3. This type of curvature (convex upward) is
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Fig. 3. The strip curvature due to difference in axial strains.

Fig. 4. Strip curvature due to difference in shear strains.

P.P. Gudur et al. / International Journal of Mechanical Sciences 50 (2008) 315–327320
considered negative in the sign convention adopted. Let l1,
l2, and l0 be the lengths of the upper, lower and the neutral
fibers.

From the geometry of the figure we can write

1

r1
¼ �

1

h2

l1 � l2

l0

� �
¼ �

1

h2
ð�x1 � �x2Þ, (26)

where r1 is the radius of curvature due to difference in axial
strains and ex1 and ex2 are the axial strains at the upper and
lower surfaces, respectively. The incremental strain in the y

direction is given by

d�y ¼ �
dh

h
¼ �

2x

hReq

. (27)

According to the flow rule, the incremental strain in the
x direction for the upper surface can be given by

d�x1 ¼ sxx1
d�y

syy1
¼ sxx1 dl, (28)

where dl is a constant and sxx1 and syy1 are the deviatoric
components of stress in x and y directions on the upper
surface. Assuming the incremental strain in y direction to
be uniform the constant dl can be calculated as

dl ¼
d�y
syy

, (29)

where syy is the average value of the deviatoric component
in y direction. Substituting dl in Eq. (28), the incremental
strain dex1 can be obtained. The axial strain ex1 can be
calculated by integrating dex1 from 0 to L. Similarly, ex2

can be found and using Eq. (26) the curvature due to
difference in axial strains can be found.

2.2.2. Strip curvature due to difference in shear strains

As the material undergoes deformation in the roll gap,
the strip adopts a curvature due to the differential shear
strains also. Employing the flow rule, the incremental
shear strain at any point for the upper and lower surfaces is
given by

d�xy1 ¼ sxy1
d�y1
syy1
¼ tu

d�y1
syy1

, (30)
d�xy2 ¼ sxy2
d�y2

syy2
¼ tl

d�y2

syy2
. (31)

Fig. 4 shows the distortion of a vertical plane of strip due
to shear strains in highly exaggerated manner. Let the
points A and C of a vertical element get displaced to A0 and
C0, respectively. The small rotation dy2 caused due to the
difference in these incremental strains can be given as

dy2 ¼
h2 d�xy1 � h2 d�xy2

h2
¼ d�xy1 � d�xy2. (32)

The total angle subtended by the strip due to the
differential shear strain can be calculated as

y2 ¼
Z L

0

ðd�xy1 � d�xy2Þ. (33)

Therefore the strip curvature due to difference in the shear
strains is given by

1

r2
¼ �

R L

0
ðd�xy1 � d�xy2Þ

L
. (34)

The total curvature to the strip will be the summation of
the curvature due to the difference in the axial strains and
curvature due to the difference in the shear strains. Thus,
the resultant radius of curvature (R) is given by

R ¼
r1r2

r1 þ r2
. (35)

3. Results of the model

The present model is compared for the roll force and roll
torque values with the experimental results of Hwang and
Tzou [5] as well as analytical results obtained by Salimi and
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Kadkhodaei [7]. In the case of curvature, results are
compared with the experimental results of Buxton and
Browning [22], Kennedy and Slammer [23] and finite
element analysis results of Shivpuri et al. [13].

3.1. Rolling force and rolling torque

The roll force calculated by present model for both
asymmetric and symmetric cases are shown in Fig. 5. In
Fig. 5(a), the roll deformation is taken into consideration
according to the Hitchcock’s formula and Wanheim and
Bay’s friction model is used. For the present model, the
coefficients of friction values correspond to equivalent
Coulomb’s coefficient values, i.e. the ratio of normal traction
to shear traction at low values of roll pressure. It can be seen
that the roll force calculated from the present model is higher
than that given by Salimi and Kadkhodaei [7]. This is mainly
due to the roll flattening effect. It was observed that for the
roll pressure values observed for the cases studied, the
Coulomb’s model and Wanheim and Bay’s model differ only
slightly. Also, it is clear that the roll force in asymmetrical
rolling is slightly lower than that of symmetrical rolling.
Fig. 5(b) shows the effect of input thickness on the roll force
Fig. 5. Effect of input thickness on roll force: (a)

Fig. 6. Comparison of experimental and analytical roll forc
when the strain-hardening behavior of the material is
incorporated in the present model. Comparing Fig. 5(a)
and (b), it is clear that strain hardening of material has a
significant effect on the rolling force.
The experimental values of roll force [5] have been

compared with the results of the present model in Fig. 6(a)
and (b) for different inlet strip thicknesses. In Fig. 6,
asymmetry is caused due to speed mismatch only whereas
in Fig. 7, the asymmetry is caused due to speed mismatch
as well as due to different roll radii. It is seen that in all
cases, the predictions by the present model are in a close
agreement with the experimental results. It is to be
mentioned that for the sake of comparison, a constant
friction factor model was incorporated in the present
model. In the constant friction factor model, the shear
stresses at the roll–strip interface is given by

t ¼ m
Y sffiffiffi
3
p , (36)

where m is the friction factor.
Fig. 8 shows the roll force values for the case in which

asymmetry is created due to different friction coefficients at
the upper and lower rolls as well as roll speed mismatch.
non-hardening and (b) with strain hardening.

e for speed mismatch: (a) hi ¼ 2mm and (b) hi ¼ 6mm.
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Fig. 7. Comparison of experimental and analytical roll force for different

roll radii.

Fig. 8. Variation of roll force with reduction for different and same

frictions on upper and lower rolls.
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These roll forces are compared with the roll force values
obtained by taking the average value of friction coefficient.
It is observed that there is no significant difference in the
roll force values when an average value of coefficient of
friction is used. Thus, the lowering of roll force is mainly
due to roll speed mismatch. It is to be noted that the
present method assumes the constancy of volume across
any section. The neutral points in the upper and lower rolls
are related to the velocity ratio. For the velocity ratio of 1,
the present model provides same location of neutral point
irrespective of the asymmetry due to friction. However, a
rigid plastic finite element model of asymmetric rolling [24]
indicates only slight difference in the location of neutral
points due to friction mismatch.
The roll force and roll torque of the present model has
also been compared with the results of the finite element
analysis of asymmetric rolling [24]. Roll force and roll
torque of the present method are in fairly good agreement
with the finite element analysis. For a typical case of speed
mismatch, the results have been shown in Fig. 9.
Fig. 10 shows the effect of friction on the roll torque. In

Fig. 10(a), the roll flattening along with Wanheim and
Bay’s friction model is incorporated. In addition to it, the
strain-hardening effect has been incorporated in Fig. 10(b).
It is observed that in Fig. 10, the asymmetry due to
roll speed mismatch reduces not only the roll force but
also roll torque. Although the internal power dissipation
due to plastic deformation increases due to increased
shear strains in asymmetric rolling, the friction power
dissipation reduces drastically. As a result, total power
gets reduced, leading to reduced torque requirement.
For the case of Ru ¼ Rl ¼ 350mm, mu ¼ ml ¼ 0.14,
Ys ¼ 169.9MPa, hi ¼ 4mm, r ¼ 10%, Table 1 shows the
total power dissipations with corresponding frictional
power dissipation and plastic deformation power dissipa-
tion. The power dissipation due to friction is computed as

Pf ¼

Z
Gu

tu

1

hn

���� � 1

h

����V2h2 dGu

þ

Z
Gl

tl

1

hn

���� � 1

h

����V 2h2 dGl , ð37Þ

where hn is the strip thickness at the neutral point and Gu and
Gl are the upper and lower roll–strip interface, respectively.
The total power is calculated by multiplying the roll torque
by the angular velocity of the roll. The plastic deformation
power dissipation is obtained by subtracting the frictional
power dissipation from the total power. It is observed that as
the asymmetry due to roll speed mismatch increases,
the frictional power dissipation reduces rapidly, whereas
plastic deformation power dissipation increases with slightly
slower rate. The net effect is that with increasing roll
speed mismatch, the total power keeps reducing. When the
asymmetry is due to friction mismatch, there seems to be no
significant reduction in frictional power dissipation.

3.2. The roll pressure distribution

Fig. 11 shows the pressure distribution on the two roll
surfaces as well as the mean pressure distribution for both
symmetric and asymmetric cases. Similar to that obtained
by Salimi and Kadkhodaei [7], for a asymmetry of
VA ¼ 1.05, the pressure distribution on the work rolls
have more than one relative maximum and the global
maximum position is not located at any of neutral points.

3.3. Prediction of the strip curvature

Fig. 12 shows that the effect of roll speed ratio upon the
strip curvature index. The strip curvature index is the ratio
of length of the top surface of the sheet to the length of the
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Fig. 10. Effect of coefficient of friction on roll torque: (a) non-hardening and (b) with strain hardening.

Fig. 9. Comparison of slab method with FEM analysis for speed mismatch: (a) roll force and (b) roll torque.

Table 1

Comparison of plastic deformation and frictional power for symmetric

and asymmetric rolling

VA Total power

(kW)

Plastic deformation

power (kW)

Frictional

power (kW)

1.0 145.4206 79.0926 65.7816

1.01 131.5268 89.9389 41.5886

1.02 129.7112 96.1934 33.5953

1.05 126.0392 112.6071 13.4365
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bottom surface of the sheet. It is denoted as K

K ¼
R� h2=2

Rþ h2=2
, (38)

where R is the resultant radius of curvature described in
Eq. (35). The experimental results of Buxton and Browning
[22], Kennedy and Slammer [23] and finite element analysis
results of Shivpuri et al. [13] are compared with the present
analysis. It is observed that results of the present model are
in good agreement with the FEM results of Shivpuri et al.
There is a good qualitative agreement with the experimental
results too. The variation with the experimental results may
be due to statistical variation in material parameters, error
in the measurement of speed ratio and due to the use of
constant friction factor model. Moreover, the experimental
results pertain to hot rolling, whereas the results of present
model as well as FEM model of Shivpuri et al. have been
obtained without considering the thermal effects.
The effect of the asymmetry on the curvature of the strip

is studied in this section. Fig. 13 shows the effect of input
thickness on the curvature of the strip for different speed
ratios. In the simulations, the lower roll was operated at
higher speed as compared to the upper roll. The radius of
curvature is always positive which indicates that the strip
curls towards the upper roll, according to the adopted sign
convention. It can be seen that the speed ratio has a
significant effect on the curvature of the strip. Even for a
small speed mismatch, the noticeable curvature can be
seen. Shivpuri et al. [13] also observed the same trend in
their study. As expected, the curvature goes on decreasing
as the initial strip thickness is increased. It has also been
observed that for an asymmetry due to friction differential,
the strip always curls towards the roll having higher
friction, which is in agreement with the observation of
Richelsen [14].
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Fig. 12. Comparison of experimental, finite element analysis and present

method for strip curvature index.

Fig. 11. The roll pressure distribution considering strain hardening.

Fig. 13. Effect of input thickness on the radius of curvature for different

speed ratio.

Fig. 14. Effect of coefficient of friction on the radius of curvature.

Fig. 15. Effect of VA on the radius of curvature for different reductions.
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Fig. 14 shows the effect of the coefficient of friction
on the radius of curvature for different initial thicknesses.
The speed ratio considered is 1.05 and the asymmetry
is due to speed mismatch only. It can be seen that as
the coefficient of friction increases the curvature also
goes on increasing. It is this observation, on which the
present method to estimate the coefficient of friction
is based.

Fig. 15 shows the effect of speed ratio on the radius of
curvature of the strip for different degrees of reduction. It
can be seen that the curvature goes on increasing when the
speed ratio is increased. The curvature for a reduction of
20% is slightly greater than that of 10% but at 30%
reduction the curvature is less than that of 10%. The
curvature is always found to be positive and hence towards
the slower rotating upper roll.
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Fig. 16. Effect of percentage reduction on the radius of curvature.

Table 2

Effect of roll flattening on the strip curvature for a case of

Ru ¼ Rl ¼ 350mm, mu ¼ ml ¼ 0.127, Ys ¼ 169.9MPa, hi ¼ 4mm,

r ¼ 20%

Speed ratio, VA Radius of curvature (m)

With roll flattening Without roll flattening

1.01 1.9807 1.8397

1.03 0.6647 0.6176

1.05 0.4648 0.4327

Fig. 17. Geometry of a curved strip.
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Fig. 16 shows the effect of percentage reduction on the
radius of curvature for different initial strip thicknesses. It
can be seen that the curvature behavior is different for
different input thicknesses. At the higher reductions, the
curvature is seen to decrease.

Lastly, the effect of roll flattening on the curvature of the
rolled product is studied. For a few typical cases, Table 2
shows that without considering roll flattening, curvature is
overestimated. Thus, roll deformation plays a significant
role on the curvature.
4. Inverse problem: determination of coefficient of friction

This section describes the inverse problem of estimating
the coefficient of friction. The curvature of the strip in the
asymmetric rolling depends on the coefficient of friction for
a given set of rolling conditions. This fact can be used to
estimate the coefficient of friction between the rolls and
the strip in symmetric rolling situation. This consists of
creating an asymmetry due to speed mismatch and
measuring the curvature of the emerging strip. Employing
a reverse procedure, the obtained curvature is then
searched by using bisection method [18] between the upper
and lower estimates to obtain the value of the coefficient of
friction.

Let R be the measured radius of curvature, m* be the
coefficient of friction to be estimated, R1 and R2 be the
radii of curvature corresponding to the lower (m1) and
upper estimates (m2) of friction, respectively. The radius of
curvature is found to decrease with increasing coefficient
of friction. The procedure consists of calculating the radius
of curvature for a coefficient of friction, mm ¼ (m1+m2)/2.
Let this value of radius of curvature be equal to Rm. If
Rm4R, then m* must be lying between mm and m2, otherwise
m* lies between mm and m1. Again, the new limits are set and
the procedure is repeated in iterative manner till the
required accuracy is obtained.
The value of the radius of curvature can be calculated by

using the following relation [25]:

R ¼
4c2 þ L2

s

8c
, (39)

where Ls and c are defined as shown in Fig. 17. It is obvious
that the value of radius of curvature depends on the
accuracy to which c and Ls are calculated. Assuming that
typically the value of Ls will be less than 0.3m to
accommodate the strip in a measuring table, and c to be
more than 2mm for ensuring proper accuracy in its
measurement the radius of curvature should be less than
5.6m. The speed mismatch should be decided accordingly.
A few computer simulations were carried out for this

method. The upper and lower roll radii are fixed at
350mm. The material for the sheet to be rolled is assumed
to be aluminum. An asymmetry in speed mismatch, of the
order of VA ¼ 1.01–1.02 is created. The parameters varied
are coefficient of friction and percentage reduction. The
lower and upper estimates used for the coefficient of
friction are m1 ¼ 0.02 and m2 ¼ 0.15, respectively. Table 3
shows the results of the simulation.
The sixth column of Table 3 shows the estimated values

of the coefficient of friction from the inverse problem.
Generally, 8–10 iterations of the bisection method are
required to get the coefficient of friction with an accuracy
of 5� 10�4. There may be some difficulty in estimating the
lower values of coefficient of friction. At these values, a
very less amount of curvature is obtained that may be
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Table 3

Results of computer simulation (Ys ¼ 169.9MPa, b ¼ 0.05, n ¼ 0.26)

hi (mm) r (%) VA Assumed coefficient of

friction

Radius of curvature, R

(m)

Estimated coefficient of

friction, m

4 10 1.02 0.04 3.692 0.03999

4 20 1.01 0.08 1.481 0.08001

4 20 1.01 0.12 0.868 0.12002

Table 4

Radius of curvature prediction for different friction and speed ratio

(Ru ¼ Rl ¼ 350mm, Ys ¼ 169.9MPa, hi ¼ 7mm)

mu ml Radius of curvature, R (m)

VA ¼ 1.04 VA ¼ 1.02
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difficult to measure accurately. By increasing the speed
mismatch, a higher value of curvature can be obtained.
However, this may take the lower neutral point out of the
contact length for lower values of friction. This problem
may be solved by increasing Ls that in turn will yield a
higher value of c.
0.10 0.10 0.9165 1.1996

0.04 0.121 0.9162 0.9239
5. A comment on the sensitivity and accuracy of the

proposed method

The method proposed in the previous section assumes
that the coefficient of friction is same for both the upper
and lower rolls. Also, the required parameters can be
measured accurately. In practice, there are two major
problems. First, the accurate estimation of material
parameters may be difficult; second, the friction coefficient
at the upper and lower rolls may be different. The initial
and final thicknesses of the strip can be measured
accurately. Thus, the actual obtained reduction can always
be found out.

In order to study the sensitivity of curvature, a neural
network model was fitted to obtain the functional relation-
ship between the curvature and rolling parameters. The
details of neural network model are not presented here for
the sake of brevity. However, it was observed that the
curvature of the rolled product is insensitive to flow stress
and material hardening constants. This is because the
curvature mainly depends on the plastic strains, which are
almost independent on material parameters. This is
supported by the finite element analyses of rolling and
wire-drawing [26,27], where it is observed that strain-
distribution patterns practically remains unaffected by
material parameters. Thus, the first problem mentioned
in the previous paragraph gets resolved.

There may be the situation that one gets the same
curvature as obtained by a particular friction coefficient in
the case when the friction coefficients are different for
upper and lower rolls. However, it will happen at a
particular speed ratio VA. If the speed ratio is changed,
both the situations will provide different curvature. For
example, Table 4 shows a typical case of this type. Here, at
VA ¼ 1.04, the two different friction situations are provid-
ing same curvature, however, they provide different
curvatures at VA ¼ 1.02. Thus, the second problem
mentioned in the first paragraph of this section may be
resolved by carrying out the experiments at two or more
speed ratios. Similarly, it may also be possible to measure
the friction coefficients for the cases of different friction
coefficients on the lower and upper roll. Development of a
robust friction identification for this purpose and fine
tuning with the experimental data is left for future work.

6. Conclusion

This work presents a methodology to estimate the
coefficient of friction from the asymmetric rolling process.
A code based on slab method formulation has been
developed for estimating the curvature of the rolled sheet
under asymmetric rolling conditions. The strain-hardening
behavior of the material and the roll flattening effect are
incorporated along with Wanheim and Bay’s friction
model. It has been found that strain hardening and roll
flattening have significant effect on the overall rolling
process. When the asymmetry due to speed mismatch is
considered it has been found that the strip curls towards
the slower rotating roll, the magnitude of the curvature
being dependant on the value of friction. The inverse
problem of finding out the coefficient of friction given the
radius of curvature is solved using the bisection method.
Simulation results indicate a good potential of the method.
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Appendix. Wanheim and Bay’s friction model

In a non-sticking zone, the general relationship between
interfacial shear stress and roll pressure can be expressed as

t ¼ mp. (A.1)

In the case of Coulomb model, the coefficient of friction, m
is assumed to be constant. However, in the case of
Wanheim and Bay’s model, m depends on the normal
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pressure. The Wanheim and Bay’s model is as follows [16]:

t ¼

mp for ppp0;

t0 þ ðfY s=
ffiffiffi
3
p
� t0Þ 1� exp

ðp0 � pÞt0

ðfY s=
ffiffiffi
3
p
� t0Þp0

 ! !
for p4p0;

8>><
>>:

(A.2)

where t0 and p0 are the tangential and the normal stresses at
the limit of proportionality given by [28]

t0

Y s

¼
1�

ffiffiffiffiffiffiffiffiffiffiffi
1� f

p
ffiffiffi
3
p , (A.3)

p0

Y s

¼
1þ ðp=2Þ þ cos�1 f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

q
ffiffiffi
3
p

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� f

p� 	 (A.4)

and f is the friction factor related to the coefficient of
friction by the relation

m ¼
f

1þ ðp=2Þ þ cos�1f þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

q , (A.5)

where Ys is the flow stress of the strip material.
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