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a b s t r a c t

In this paper a new upper-bound approach is used to analyze the tube extrusion process.

A kinematically admissible velocity field is developed to evaluate the internal power and

the power dissipated on frictional and velocity discontinuity surfaces. The total power is

optimized with respect to the die angle. The optimum die angle and the critical die angle at

which a dead zone is formed are determined. The effect of constant friction factor and reduc-

tion in area on the optimum die angle is predicted. In addition, the role of die angle on the

relative extrusion pressure is investigated. Comparison of the experimental and theoretical
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load–displacement curves shows a good agreement.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Extrusion is a bulk metal forming process in which the cross-
sectional area of a billet is reduced and changed to a desired
shape by forcing it through a die. One of the main applications
of the extrusion process is the manufacturing of seamless
tubes in a wide range of reductions and materials, known as
tube extrusion. Tube extrusion is extensively used for produc-
ing hollow complex shaped products (Moshksar and Ebrahimi,
1998, 1999; Bae and Yang, 1993a,b). It is also suitable for man-
ufacturing of composite tubes (Chitkara and Aleem, 2001a).
Several attempts have been made to analyze the tube extru-
sion process, using finite elements method (FEM) (Reddy et
al., 1996), slip line method (Chitkara and Butt, 1999), slab
method (Chitkara and Aleem, 2001b) and upper-bound the-

ory (Mehta et al., 1970; Chang and Choi, 1972; Hartley, 1973;
Altan, 1994). The upper-bound theory is the most important
analytical method that may be lead to individual equations in
metal forming analysis. Mehta et al. (1970) obtained a velocity
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field for tube extrusion and compared it to the experimen-
tal velocity fields using the viso-plasticity method. Chang and
Choi (1972) used the upper-bound solution for tube extrusion
through curved dies and studied the effect of die geometry and
friction. They also treated the tube extrusion process through
conical dies of small angle as an illustration. Hartley (1973)
proposed a kinematically admissible velocity field for tube
extrusion which reduces to a kinematically admissible veloc-
ity field for solid rods extrusion in the limit as the mandrel
diameter goes to zero. Altan (1994) assumed the straight flow
lines and proposed a deformation model for tube extrusion
through a flat die.

In this paper a new upper-bound analysis is used for tube
extrusion process. A kinematically admissible velocity field
is developed and the effect of process variables on the rela-

tive extrusion pressure is investigated. Based on this model,
the equation for optimum die angle, dead zone cone angle
and relative extrusion pressure are derived. For comparing
the theoretical results to that of experimental results, a tube
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Nomenclature

k shear yield stress of the material
Lf contact length of die at exit channel
L0 contact length of billet at entrance channel
m constant friction factor
Pext extrusion pressure
r, �, � spherical coordinates
rf spherical radius of exit velocity discontinuity

surface
r0 spherical radius of entrance velocity disconti-

nuity surface
Ri radius of mandrel (internal radius of tube)
Rf radius of exit channel (external radius of tube)
R0 radius of container
S area of frictional or velocity discontinuity sur-

face
�v amount of velocity discontinuity
Vf exit velocity
V0 entrance velocity
U̇r, U̇�, U̇� velocity components in spherical coordinates
ẇi power dissipated in the deformation zone
ẇS power dissipated on the frictional or disconti-

nuity surface

Greek symbols
˛crt critical angle at which a dead metal zone is

formed
˛opt optimum die angle
˛1 optimum dead zone formation angle
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ε̇ij strain rate tensor
�0 mean flow stress of the material

xtrusion die with an orthogonal semi-die angle and a man-
rel connected to the ram is designed and used for the
xperimental works.

. Analysis of deformation

ased on the upper-bound theory, for a rigid-plastic Von-
isses material and amongst all the kinematically admissible

elocity fields, the actual one that minimizes the power
equired for material deformation is expressed as

=2k

∫
V

√
1
2

ε̇ijε̇ijdV+
∫

Sv

k �v dS+
∫

Sf

mk �v dS−
∫

St

Tivi dS (1)

here k is the shear yield stress of the material, ε̇ij the strain
ate tensor, m the constant friction factor, V the volume of
lastic deformation zone, Sv and Sf the area of velocity discon-
inuity and frictional surfaces respectively, St the area where
he tractions may occur, �v the amount of velocity disconti-
uity on the frictional and discontinuity surfaces and vi and
i are the velocity and tractions applied on St, respectively.
Fig. 1 shows the deformation model considered for this

nalysis. As shown, the volume considered for analysis is
ivided into four regions. In regions I and III the material
h n o l o g y 1 9 9 ( 2 0 0 8 ) 214–220 215

moves rigidly with the velocity V0 and Vf, respectively. Region
II is the deformation zone in which the material undergoes
plastic deformation and region IV is a dead metal zone.
Regions I, II and III are separated by the velocity discontinu-
ity surfaces S1 and S2. In addition to these surfaces, there are
some frictional surfaces between mandrel surface, die walls
and material (S4–S7).

Region IV appears as a dead metal zone, when the semi-
cone angle, ˛, becomes larger than a critical value, ˛crt. In this
case surface S3 acts as a velocity discontinuity surface. For the
semi-cone die angle smaller than a critical value, ˛crt, surface,
S3, appears as a frictional die surface.

Using spherical coordinates (r, �, �), it is assumed that the
material in the deformation zone only has a radial compo-
nent of velocity field, U̇r, and the other two components of the
velocity field are zero (U̇� = U̇� = 0).

In order to determine the radial component of velocity field,
U̇r, a differential element moving in the radial direction is con-
sidered (Fig. 1). From volume constancy, the flow rate through
a differential area at any arbitrary radius r from the center O
must be equal to the flow rate through a differential area on
the surface S1. That is

2�(Ri + r sin �)r d�(−U̇r) = 2�(Ri + rf sin �)rf d�(Vf cos �) (2)

where rf is spherical radius of exit velocity discontinuity sur-
face. Then U̇r can be obtained as

U̇r = −Vf
rf(Ri + rf sin �)
r(Ri + r sin �)

cos � (3)

For small diameter of the mandrel, Eq. (3) is simplified as

U̇r ∼= −Vf
r2
f

r2
cos � (4)

Due to the assumed velocity field in the deformation zone, the
strain rate tensor in the spherical coordinates is determined
as

ε̇rr = ∂U̇r

∂r
∼= Vf

2r2
f

r3
cos � (5)

ε̇�� = ε̇�� = U̇r

r
∼= −Vf

r2
f

r3
cos � (6)

ε̇r� = 1
2

(
1
r

∂U̇r

∂�

)
∼= Vf

2

r2
f

r3
sin � (7)

The internal power dissipated in the deformation zone is
given by

ẇi = 2√
3

�0

∫
V

√
1
2

ε̇ijε̇ij dV (8)
where �0 is the mean flow stress of the material and dV is a
differential volume in the deformation zone:

dV = 2�(Ri + r sin �)r dr d� (9)
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side
Fig. 1 – Deformation model con

Substituting the strain rate tensor, from Eqs. (5)–(7), and
the differential volume, from Eq. (9), into Eq. (8), the internal
power becomes

ẇi = 4�√
3

�0

∫ r0

rf

∫ ˛

0

√(
3V2

f

r4
f

r6
cos2 � + V2

f

4

r4
f

r6
sin2 �

)

(Ri + r sin �)r dr d� (10)

From the geometry of deformation we have

r0 = R0 − Ri

sin ˛
(11)

rf = Rf − Ri

sin ˛
(12)

Vf = R2
0 − R2

i

R2
f − R2

i

V0 (13)

By integrating Eq. (10) and using Eqs. (11)–(13), the internal
power in the deformation zone is determined as

ẇi = 4��0V0
(R0 − Rf)(R0 + Ri)

(Rf + Ri)
Ri

+2��0V0
(R2

0 − R2
i )(Rf − Ri)

(Rf + Ri)
ln
(

R0 − Ri

Rf − Ri

)
f (˛) (14)

where

f (˛) = 1
sin2 ˛

(
1 − cos ˛

√
1 − 11

12
sin2 ˛ + 1√

11 × 12
ln

×
(

1 +
√

11/12√ √
))

(15)

11/12 cos ˛ + 1 − (11/12) sin2 ˛

It should be noted that for integration of the first term of Eq.
(10), the approximation of 11/12 ≈ 1 is assumed.
red for tube extrusion process.

The power dissipated on the velocity discontinuity surfaces
S1 and S2 is given by

ẇS =
∫

S

k �v dS (16)

where for velocity discontinuity surface S1:

�v1 = Vf sin � (17)

dS1 = 2�(Ri + rf sin �)rf d� (18)

For velocity discontinuity surface S2:

�v2 = V0 sin � (19)

dS2 = 2�(Ri + r0 sin �)r0 d� (20)

By using Eqs. (11)–(13) and inserting (17)–(20) in Eq. (16), the
power dissipated on the velocity discontinuity surfaces S1 and
S2 are determined as

ẇS1 = 2�
�0√

3

(
R2

0 − R2
i

Rf + Ri

)
V0

×
(

2 sin ˛ − cos ˛ sin ˛ − ˛

2 sin2 ˛
Ri + ˛ − cos ˛ sin ˛

2 sin2 ˛
Rf

)
(21)

ẇS2 = 2�
�0√

3
(R0 − Ri)V0

×
(

2 sin ˛ − cos ˛ sin ˛ − ˛

2 sin2 ˛
Ri + ˛ − cos ˛ sin ˛

2 sin2 ˛
R0

)
(22)
The power dissipated on the surface S3 depends on whether
the semi-cone angle, ˛, is larger or smaller than the critical
semi-cone angle, ˛crt. When ˛ is smaller than ˛crt, surface
S3 acts as a frictional surface and the power dissipated on it
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ecomes

˙ S =
∫

S

mk �v dS (23)

here m is the constant friction factor. For frictional surface

3:

v3 = |U̇r|�=˛ = Vf
rf(Ri + rf sin ˛)
r(Ri + r sin ˛)

cos ˛ (24)

S3 = 2�(Ri + r sin ˛) dr (25)

hus:

˙ S3 = 2�
m�0√

3
Vf cos ˛(Ri + rf sin ˛)rf

∫ r0

rf

dr

r
(26)

y integrating Eq. (26) and using Eqs. (11)–(13), the power dis-
ipated on the frictional surface S3 is obtained as

˙ S3 = 2�
m�0√

3
V0

(R2
0 − R2

i )Rf

(Rf + Ri)
(cot ˛) ln

(
R0 − Ri

Rf − Ri

)
(27)

hen ˛ is larger than ˛crt, a dead-zone forms and surface S3

cts as a discontinuity surface and Eq. (27) is replaced by

˙ S3 = 2�
�0√

3
V0

(R2
0 − R2

i )Rf

(Rf + Ri)
(cot ˛) ln

(
R0 − Ri

Rf − Ri

)
(28)

he power dissipated on the frictional surfaces S4–S7 is also
btained by Eq. (23). Because the mandrel moves with a veloc-

ty of V0, the velocity discontinuity on surface S4 and its area
ecomes

v4 = |U̇r|�=0 − V0 = rf

r
Vf − V0 (29)

S4 = 2�Ri dr (30)

or frictional surface S5:

v5 = Vf (31)

˛opt =
√√√√√ (mRf + mRi)((R2

0 − R2
i )/(Rf + Ri)

((R2
0 − R2

i )/(Rf + Ri))((Ri/6) + (Rf/3)) + (R0 − Ri)((Ri/

−Ri)) − (m/2)Ri(R0 − Rf)

˛1 =
√√√√√ (Rf + mRi)((R2

0 − R2
i )/(Rf + Ri)) ln

((R2
0 − R2

i )/(Rf + Ri))((Ri/6) + (Rf/3)) + (R0 − Ri)((Ri/6
S5 = 2�RfLf (32)

−Ri)) − (m/2)Ri(R0 − Rf)
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For frictional surface S6:

�v6 = Vf − V0 (33)

�S6 = 2�Rirf = 2�Ri

(
Rf − Ri

sin ˛

)
(34)

Finally for frictional surface S7:

�v7 = V0 (35)

�S7 = 2�

(
L0 − R0 − Rf

tan ˛

)
R0 (36)

Then by replacing Eqs. (29)–(36) into Eq. (23) and using Eqs.
(11)–(13), the power dissipated on the frictional surfaces S4–S7

can be determined as

ẇS4 = 2�
m�0√

3
V0Ri

(
R2

0 − R2
i

(Rf + Ri) sin ˛
ln
(

R0 − Ri

Rf − Ri

)
− R0 − Rf

sin ˛

)
(37)

ẇS5 = 2�
m�0√

3
V0

(
R2

0 − R2
i

R2
f − R2

i

)
RfLf (38)

ẇS6 = 2�
m�0√

3
V0

(
R2

0 − R2
f

Rf + Ri
− 1

)
Ri (39)

ẇS7 = 2�
m�0√

3
V0

(
L0 − R0 − Rf

tan ˛

)
R0 (40)

Based on the model, the total power needed for tube extrusion
process can be obtained by summing the internal power and
the power dissipated on all frictional and velocity discontinu-
ity surfaces. Then

ẇtotal = ẇi + ẇS1 + ẇS2 + ẇS3 + ẇS4 + ẇS5 + ẇS6 + ẇS7 (41)

The total power in equation above is a function of semi-cone
angle ˛. The optimum semi-cone angle, ˛opt, that minimizes
the total power, can be determined by differentiating the total
power with respect to ˛ and set the derivative equal to zero:

∂ẇtotal

∂˛
= 0 (42)

which yields:

0 − Ri)/(Rf − Ri)) − mRi(R0 − Rf)

(Rf/3)) + (m/2)Ri((R2
0 − R2

i )/(Rf + Ri)) ln((R0 − Ri)/(Rf

(43)

In the case that a dead zone is formed, the dead zone cone
angle, ˛1, is determined by

− Ri)/(Rf − Ri)) − mRi(R0 − Rf)

f/3)) + (m/2)Ri((R2
0 − R2

i )/(Rf + Ri)) ln((R0 − Ri)/(Rf

(44)
where it is assumed that ∂f(˛)/∂˛ ≈ 0 (Avitzur, 1968),
cos ˛ ≈ 1 − ˛2/2 and ˛ cot ˛ ≈ 1 − ˛2/3.The external power
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is shown in Fig. 3. Both solutions predict that the constant
friction factor has no significant effect on the dead zone cone
angle; so that with increasing the constant friction factor, dead
zone cone angle increases only about 4%. It is a reasonable
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for deformation of the material in tube extrusion process is
given by

J∗ = �(R2
0 − R2

i )V0Pext (45)

where Pext is the extrusion pressure. By equating this power
to the total power derived in Eq. (41), the relative extrusion
pressure is determined as

Pext

�0
= 4(R0 − Rf)Ri

(R0 − Ri)(Rf + Ri)
+ 2(Rf − Ri)

(Rf + Ri)
ln
(

R0 − Ri

Rf − Ri

)
f (˛)

+ 2√
3(Rf + Ri)

(
2 sin ˛ − cos ˛ sin ˛ − ˛

2 sin2 ˛
Ri

+˛ − cos ˛ sin ˛

2 sin2 ˛
Rf

)
+ 2√

3(R0 + Ri)

(
2 sin ˛ − cos ˛ sin ˛ − ˛

2 sin2 ˛
Ri

+˛ − cos ˛ sin ˛

2 sin2 ˛
R0

)
+ 2mRf√

3(Rf − Ri)
(cot ˛) ln

(
R0 − Ri

Rf − Ri

)

+ 2m√
3 sin ˛

(
Ri

Rf + Ri
ln
(

R0 − Ri

Rf − Ri

)
− Ri(R0 − Rf)

R2
0 − R2

i

)

+ 2mRf√
3(R2

f − R2
i )

Lf +
2mRi

(
R2

0 − R2
f

)
√

3(R2
f − R2

i )(R2
0 − R2

i )
Lf

+2m√
3

(
L0 − R0 − Rf

sin ˛

)
R0

R2
0 − R2

i

(46)

3. Experimental procedures

A load–displacement curve was obtained experimentally to
evaluate the theoretical results. To obtain the experimental
load–displacement curve, an extrusion die with a die angle
of 90◦ and a mandrel connecting to the ram was designed.
Sample material used in this work was commercially pure
Al, with inside and outside diameter of 6 and 20 mm, respec-
tively, and length of 40 mm. The samples were machined from
a rod and annealed at 420 ◦C for 3 h. Shaving foam was used
for lubrication. The constant friction factor, m, appropriate for
forming process was estimated by the “Barrel Compression
Test” (Ebrahimi and Najafizadeh, 2004). Tests were carried out
at the same temperatures and using the same lubricants as for
tube extrusion process. A constant friction factor of about 0.1
was estimated. To determine the mean flow stress, the com-
pression tests incorporating the Cook and Larke technique
were used and a work hardening equation of the form below
was obtained:

0.316
� (MPa) = 195ε (47)

Based on Eq. (47) a mean flow stress of 175 MPa was estimated
for the material used.
Fig. 2 – Effect of constant friction factor on the optimum
semi-cone angle, ˛.

4. Results and discussion

In order to verify the validity of the approximations used in the
analytical solutions, the problem was also solved numerically
without any approximation by using the Simpson method.

The effect of constant friction factor, m, on the optimum
semi-cone angle, ˛opt, obtained from both analytical and
numerical solutions is shown in Fig. 2. Good agreement is
observed between the two solutions. The agreement between
the numerical solution and the analytical solution indicates
that the approximations used in the analytical method are
quite reasonable. As shown in Fig. 2, with increasing the con-
stant friction factor, m, the optimum die angle, ˛opt, increases
significantly. This arises from the fact that with increasing the
constant friction factor, the area of some frictional surfaces
decreases to minimize the power. This occurs by increasing
the optimum semi-cone angle.

The effect of constant friction factor on the dead zone cone
angle, ˛1, obtained from analytical and numerical solutions,
Fig. 3 – Effect of constant friction factor on the dead zone
cone angle, ˛1.



j o u r n a l o f m a t e r i a l s p r o c e s s i n g t e c h n o l o g y 1 9 9 ( 2 0 0 8 ) 214–220 219

F
a

r
o
f

s
r
s
s
t
e

s
g
p
a

f
fi
s
R
t
m
l
w

f
b
T
e
a

F

Fig. 6 – Determination of the critical die angle for dead zone
formation.

Fig. 7 – Comparison of the theoretical and experimental
ig. 4 – Effect of reduction in area on the optimum die
ngle, ˛opt.

esult, because in case of the dead zone formation, the area
f frictional surfaces is decreased and the effect of constant
riction factor is reduced.

Fig. 4 shows the effect of reduction in area on the optimum
emi-cone angle for different values of m. With increasing the
eduction in area, the optimum semi-cone angle increases. It
hould be noted that the effect of reduction in area is only
ignificant at high values of m, because at low values of m,
he area of frictional surfaces has no significant effect on the
xtrusion power.

The effect of die angle on the relative extrusion pressure is
hown in Fig. 5 for different values of m. As it is expected, for a
iven value of m, there is an optimum die angle, at which the
ower is minimized. Also as discussed above, the optimum die
ngle increases with increasing the constant friction factor.

The critical die angle, ˛crt, at which a dead metal zone is
ormed, can be easily determined by considering Fig. 6. This
gure shows the effect of die angle on the relative extru-
ion pressure for the case of m = 0.1, R0 = 10 mm, Ri = 3 mm and

f = 5 mm. Based on Eq. (44), the dead zone cone angle, ˛1, for
his condition is 67.83◦. If the total extrusion power is deter-

ined at this angle and superimposed on Fig. 6 (horizontal
ine), it will intersect with the curved line at an angle of 85.7◦,

hich is the critical die angle for the dead zone formation.
In Fig. 7, the theoretical load–displacement curves obtained

rom the analytical and numerical solutions of the upper-

ound approach are compared with the experimental results.
he results show very good agreement between the theory and
xperiment. From these results, it can be concluded that the
pproximations used in the analytical solutions are construc-

ig. 5 – Effect of die angle on the relative extrusion pressure.
load–displacement curves.

tive. The gradual decrease in the load–displacement curves is
because of decreasing the frictional surface area in the con-
tainer as the punch is advanced. The theoretically predicted
load is about 10% higher than the experimental results, which
is due to the nature of the upper-bound theory.

5. Conclusions

A new upper-bound model is used to analysis the tube extru-
sion process and the following results are obtained:

(1) Comparison between the optimum semi-cone angle
obtained by the numerical and analytical solutions
confirms the validity of the analytical solutions.
Also, the results of the theoretical and experimental
load–displacement curves show very good agreement
between the theory and experiment.

(2) For a given value of constant friction factor, there is an

optimum die angle, ˛opt, in which the power is minimized.
The optimum die angle is derived as an individual equa-
tion.
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(3) With increasing the constant friction factor, the opti-
mum cone angle increases. However, the constant friction
factor has no significant effect on the dead zone cone
angle.

(4) With increasing the reduction in area, the optimum semi-
cone angle increases. The effect of the reduction in area is
much more significant at high values of constant friction
factor.

(5) For die angles larger than a critical value, ˛crt, a dead metal
zone with a cone angle of ˛1 is formed on the corner of the
die.
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