EM 824 - MÓDULO METROLOGIA

PROJETO DE METROLOGIA

A ser desenvolvido em duas aulas 2º Semestre de 2001

Prof.: Olívio Novaski

I – Local

Laboratório de Metrologia Didático, localizado nas dependências do Centro de Tecnologia (próximo ao Banco Real).

II - Objetivos

Para a peça proposta (ver desenho da peça, em Anexo), verificar, para as cotas indicadas no item VII:

- a) As tolerâncias dimensionais;
- b) Os desvios de forma e posição;
- c) A rugosidade;

Utilizar os equipamentos disponíveis, no Laboratório, tais como: máquina de medir por coordenadas Brown & Sharpe; microscópio de medição ZKM01 250C; rugosímetro Perthen, modelo M4P, portátil; etc.

De posse dos valores obtidos e em face das tolerâncias especificadas, discutir e emitir um Parecer sobre a aprovação ou não da peça.

Desenvolver o projeto nos dois dias propostos para as aulas.

III - Equipamentos Propostos

Poderão ser utilizados: rugosimetro Perthen, modelo M4P, portátil, máquina de medir por coordenadas, paquímetro, etc. (Figs. 1 e 2).

Figura 1- Rugosímetro Perthen, modelo M4P, portátil.

Figura 2 - Máquina de Medir por Coordenadas

IV - Peça Analisada

A peça, a ser analisada, pode ser visualizada na Fig. 3. Para verificar as dimensões, ver o desenho no Anexo.

Figura 3 – Visualização da peça a ser analisada

V - Alguns Procedimentos Sugeridos

5.1. Rugosímetro Perthen, modelo M4P, portátil

- 1. Colocar a peça sobre a mesa;
- 2. Deslocar o apalpador até que este toque a peça;
- 3. Utilizar o comprimento de amostragem le ("Cut-Off") (Fig. 4), compatível com o valor de Ra, segundo a Tabela 1;
- 4. Fazer o registro;

Figura 4 - Detalhes do rugosímetro portátil M4P

5.2. Máquina de Medir por Coordenadas

- 1. Colocar a peça sobre a mesa;
- 2. Qualificar o apalpador através da esfera (Fig. 5);
- 3. Deslocar o cabeçote manualmente até tocar a peça (Fig. 6);

Figura 5 – Detalhe do apalpador, tocando a esfera calibrada

Figura 6 – Detalhe do cabeçote apalpador, tocando a peça

VI - Determinação do Comprimento de Amostragem

Para a determinação do comprimento de amostragem $\,l_{e},\,$ utilizam-se os valores indicados na Tabela 1.

Tabela 1 - Determinação do comprimento de amostragem $\, l_e \,$

Rugosidade R _a (mm)	l _e (mm)	l_{m} (mm)
até 0.1	0.25	1.25
de 0.1 até 2	0.8	4
de 2 até 10	2.5	12.5
acima de 10	8	40

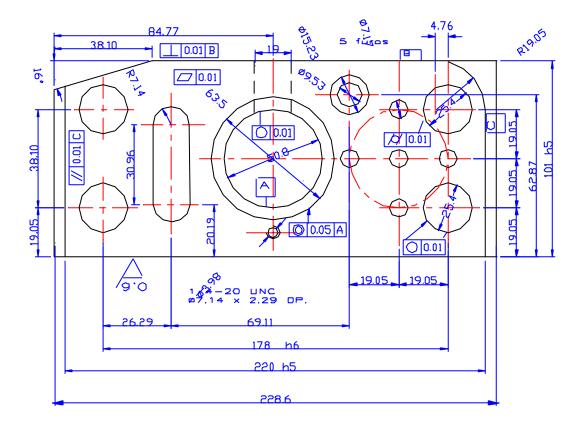
Obs:. l_{m} - comprimento de medição.

VII - Resultados:

Distancia P7-P8	Diâmetro C14	Paralelismo P6-P4	Circularidade C10
\overline{y}			
S			

Cilindricidade C9	Perpendicularidade	Planeza P1	Concentricidade
	P3/ Furo		C8-C4
\overline{y}			
S			

VIII - Relatório:


Apresentar os itens:

- I Introdução teórica (para rever e recordar os conceitos);
- II Metodologia experimental;
- III Resultados/ discussões;
- IV Conclusões;
- V Referência bibliográficas.

A ênfase deve ser dada aos itens III e IV do Relatório.

IX - Bibliografia:

- Novaski, O. Introdução à Engenharia de Fabricação Mecânica Editora Edgard Blücher, 1994;
- Agostinho, O.L. Tolerâncias, Desvios e Análise de Dimensões Editora Edgard Blücher, 1977;
- Norma ABNT NBR 6409
- Norma ABNT NBR 6173
- Norma ABNT NBR 6158
- Norma DIN DIN 7184
- Norma DIN DIN 7160
- Norma DIN DIN 7161
- Norma ABNT NBR 6405
- Norma ABNT NBR 8404
- Norma ISO ISO 4287/1
- Norma DIN DIN 4762

