Chapter 2

The basics of turbulence modelling

In this chapter, some basic concepts of turbulence modelling are discussed in order to
introduce the inherent hypotheses as well as the necessary terminology.

2.1 The Navier-Stokes equations

The basic equations describing fluid dynamics are the Navier-Stokes equations. They
express the conservation of mass, momentum and energy. These conservation laws
can easily be derived by considering the flow in a volume V, fixed to the coordinate
system in which all quantities are measured. Consider this volume to have a surface
Ay. The velocity in each point is represented by the vector @, the density by p. In
each point of the surface Ay, the unit outward normal is called 7.

2.1.1 Mass conservation: continuity equation

Mass conservation means that the net mass which enters the control volume V,
through the surface, can be found in the volume V:

9 / pdV + / puTdAy = 0
ot Jv Ay
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As this equation is valid in any control volume, the continuity equation can be rewrit-
ten using the divergence theorem as:

% +V.(pw) = 0 (2.1)

Equation (2.1) is the differential form of the mass-conservation law and is also known
as the continuity equation.

2.1.2 Momentum conservation

Following Newtons second law, the increase in momentum (both by unsteadyness and
transport) during a time unit is equal to the sum of the forces working on the volume.
Apart from the external forcefields (e.g. gravitational forces) summarized as the force
f per unit of mass, a second force appears as a stress T exerted on an elementary
surface dAy. This stress can be coupled to a stress tensor @ by expressing equilibrium
as: 1T = n.7. Because the local equilibrium implies 7 is symmetric, the stress tensor
can be written as the sum of a pressure-term and a symmetric and traceless viscous
shear stress tensor 7: & = —pl + 7.

This means that Newtons second law, applied on the volume V' results in:

9 / padV + / 0T TAdAy = / pFdV + / TdAy
ot Jv Ay v Ay

This can be transformed into a differential formulation:

p o
% +V.(puT) + Vp=pf+ V7 (2.2)

2.1.3 Energy conservation

The first law of thermodynamics states that the energy-increase (by both unsteadyness
and convection) in the volume V is equal to the sum of the work exerted on the volume
V and the supplied heat. Using the notation ) for the heat per unit of volume and
time generated by chemical and physical processes and the notation g for the heat
flux vector, this law can be translated into the equation:

% /V pEdV + [ pEumndAy =

Ay

/ pTadV + / TadAy — / gdAy + / Qdv
v Ay Ay v
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where F is the specific total mechanical energy (sum of internal and kinetic energy
E=e+ %HH) If only conservative mass forces (f = —VU) are present, their potential
energy can be included in the energy F which allows writing the differential form of
the energy equation as:

opE _
% + V.(pEu) + V.(pu) = V.(T.u) = V.g+ @

Using the definition of specific total enthalpy H = £ + %, this can be written in the
form:

9 _
g—f L V.(pHT) = V.(Fa) - V.g+ Q (2.3)

2.1.4 Introduction of shear and rotation concept

If the velocity in a certain point is given by @, the velocity in a point at a distance
dz of this point is: w4+ dZ.Vu. Vu can be seen as the sum of an anti-symmetric part
Q) and a symmetric part S.  is called the rotation rate tensor, as it has the form of
a rotation: dz.Q = %(V x ) x dT. The symmetric part S of Vu, called the strain
rate (or shear) tensor, can be written as the sum of a diagonal tensor and a traceless

tensor ¥ = S — %{?} 1. The components (5;; and ;) of the strain rate (or shear)

(?) and rotation (£2) tensors can be written as:

1 8u2 8uj
1 8u2 8uj
Qij N 5(81}] B 8:1;2) (24)

where u; are the components of the velocity vector @ and x; the components of the
position vector .

2.1.5 Constitutive relations

In order to transform the Navier-Stokes equations (2.1, 2.2, 2.3) into a closed system
of equations, some additional relations, called constitutive relations are necessary.
The constitutive relations for a Newtonian fluid are by definition:

T =25 Newtons law
qg=—kVT Fouriers law
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where 1 is the dynamic viscosity and & the heat transfer coefficient.

In cases where the fluid is a liquid, and no explicit heat transfer is present, the

temperature can be considered constant because of the large specific heat of a liquid.

This implies the energy-equation is not needed to obtain the flow-prediction.

If however, the fluid is an ideal gas, e = e(T") and p = pRT. For a polytropic gas, the
d dh

specific heat coefficients ¢, = 9= and ¢, = 7% are constants, which means the energy

can be written as: ¢ = ¢, 1 or h = ¢, T Using the definition v = 2, the velocity of
sound in such a gas is given by: ¢ = ,/%. Using the previous definitions, along with

the definition of the Prandtl number Pr = 22 the Fourier law for a gas is usually
written as

o
=——Vh
4 Pr

2.1.6 Non-dimensionalization of the Navier-Stokes equations

For practical calculations, the Navier-Stokes equations are written in their dimen-
sionless form. To obtain this form, a reference-length [,, -pressure p, and -density p,
are chosen. The reference-values for the remaining quantities are chosen such that
the Navier-Stokes equations remain unchanged: u? = p,/p,, ¢, = u? and ¢, = p,u’.
Using the definition of the Reynolds-number Re, = pr:—rlr, the constitutive relations

can then be rewritten as (the subscript d/ meaning the dimensionless value):

- 2 p
Ta = —
di Rer 1, Yai
L p
q —————Vh
Gt Re, Pr, u, Al
If, for a gas, the reference temperature 7, = Ig;;r = %er is chosen, the following

relations exist between the dimensionless quantities:

1
~v—1

par = pala, eq = Ty, ha = %lea i =Tur -
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2.2 Statistical approach of turbulence: RANS

As was mentionned in the introduction, turbulence is basically described by the
Navier-Stokes equations. However, directly solving these equation (DNS), as well as
solving the large scales and modelling the small scales (LES) are no realistic options
for design purposes (estimations for the required computer storage and speed can be
found in [16]). Moreover, from practical point of view, a mean value of the flow is of-
ten sufficient for design purposes. This means that if DNS or LES are used, the result
is subsequently averaged statistically. In the Reynolds averaging of the Navier-Stokes
equations (RANS), the equations are averaged statistically before solving them. The
averaging time T' needs to be sufficiently large compared to the turbulent time-scales,
and also sufficiently small compared to the time-scales of the mean flow.

2.2.1 Averaging techniques
2.2.1a Reynolds-averaging

The starting point is the averaging technique introduced by Reynolds [40]. For en-
gineering purposes, the most appropriate form of Reynolds averaging is the time
averaging procedure, which can most clearly be explained for stationary turbulence.
For such a flow, the instantaneous velocity, u;(T,t) can be written as the sum of a
mean part T;(T) and a fluctuating part u’(7,?):

u (T, 1) = W(T) + ul(T, 1)

where the mean velocity is defined as the time-averaged value:

1 4T
ui(T) = T/t ui(T, t)dt

T is an averaging time, which satisfies the previously mentioned conditions. This form
of averaging is what is generally called Reynolds-averaging. A few usefull properties
can be written: the Reynolds-average of a Reynolds-averaged value is again the same
value
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and the Reynolds-averaged value of the fluctuating part is zero:

1 T _
W= [ e ) w(@)dt = ()~ T() = 0
t
Applying this kind of averaging to the compressible mass equation results in

_Op  Opu _Op  Opm  dpd
N 8t 6:1;2 N 8t 6:1;2 6:1;2

0

It can be seen that due to the type of averaging, a new variable p'ul appears if a
compressible flow is considered. In an analogeous way, triple correlations involving p’,
u; and u’; will appear in the momentum equations. When using this kind of averaging,
additional closure relations would be necessary for these correlations.

2.2.1b Favre-averaging

The time-averaged equations can be simplified significantly by using the density-
weighted averaging procedure suggested by Favre [64]. The Favre-averaging technique
consists of introducing a mass-averaged velocity u;, defined by

11 47
W=7 | (T, 1)ui(T, 1)dt (2.5)

where p is the conventional Reynolds-averaged density. The velocity can now be
written as

ui(f, t) = ﬂZ + u;»'

Thus, rewriting (2.5) in terms of Reynolds-averaging, pu; = pu; = p @, + p'ul, it can
be seen that in terms of Favre-averaging, conservation of mass can be rewritten as

B 8_ﬁ Jpi;

0_8t+ 6:1;2

(2.6)

which formaly looks just the same as the laminar mass-conservation equation. Before
deriving the Favre-averaged equations, a few usefull relations concerning the Favre-
averaging, as well as the relation with Reynolds-averaging are summarized below.

pui =0y uf #0
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pob = p(é+ ")+ ")
= (O + ¢+ GU 4 @)
poY + pd'y”

2.2.2 The averaged equations
2.2.2a Mass-equation

In section 2.2.1, the averaged form (2.6) of the mass-conservation equation was ob-
tained by combining Reynolds-averaging (used for p and p) and Favre-averaging (re-
maining quantities). This equation contains no extra terms compared to the initial
mass-equation, it is said the equation is of a closed form. Unfortunately, applying
Favre-averaging to the momentum- and energy equations does not result in a closed
formulation but in an open formulation. This means that compared to the original
equations, additional terms will appear in the averaged equations. These terms will
need to be modelled. This need for modelling is referred to as the closure problem.

2.2.2b Momentum-equation

If no external forces are present, the original momentum-equation, as derived in 2.1.2
can be summarized as:

8,0ui 8puiuj B 80'2']‘
8t al']‘ N al']‘

The stresses acting on a surface can be defined as:

1
0y = —pdij + Tij = —pdi; + 2u(Si; — g%Sﬁ)

where S;; is the shear tensor, which was defined by equation (2.4).
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Applying the averaging techniques to the momentum-equation results in:

dpt; — Jpu,u,; apu” YoOp  02u(Si; — $6i;5:)
— 2.
ot + Ox; Ox; O + Ox; (2.7)

// "

The additional term —pui'u/ appears as a consequence of the non-linearity of the con-

vective terms. As mentloned before, this term needs modelling (the closure problem).

2.2.2¢ Energy equation

In the absence of external heat (), the original energy-equation, as derived in 2.1.3
can be summarized as:

OpE N IpHu; _ dmju; g
ot dz; — da; Oz

while the averaged form of this equation can be written as (see for example [16, 33]):

opk  opu;H 0 . 1
— - 4h" T ulul!
at —I_ 8:1;] 8:1;] QJ pu] —I_ T uz pu]2 zuz

5 i — ) (23)

2.2.2d The RANS equations

The set of equations (2.6), (2.7) and (2.8) is called the Reynolds averaged Navier
Stokes equations (RANS). These RANS-equations express the transport of the mean
quantities. In order to be able to solve these equations, additional equations are
needed for the six components (3D) of the symmetric Reynolds-stress tensor —pufu/

as well as for the three components of the turbulent heatflux vector —pu/h.
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2.2.3 Exact Reynolds-stress transport equations

In order to obtain the exact transport equations for the Reynolds-stresses, the Navier-
Stokes equations are multiplied by a fluctuating quantity. The resulting equations are
then combined to differential equations which result in equations for the Reynolds-
stresses after averaging. If the mass-equation is abbreviated as Ma(p) = 0 and the
momentum-equation by Mo(u;) = 0, the Reynolds-stress equations can be obtained
by the averaging u!Mo(u;) + uMo(u;) + ufu/Ma(p) = 0.

The equations resulting from this procedure can be written schematically as [16, 33]:

T aka 8}‘7 ap

8/);7 + 8Zk {Ww} = Pij — peij — Dy + 1L — ;/8:1;2 8:1;] (2.9)
where

P; = [pu”uggN N Wga ]

Jiiw = puluul 4+ Sl + Sipplul — ullTiy — ulT

w8

pei = ”’“gu” ik gf (2.10)

The physical meaning of these terms can be described as follows.

Production F;;

Turbulent stresses are generated at the expense of mean flow energy by mean flow
deformation. This term does not need any closure.

Transport J;;;

This term consists of several parts.

First, there is the turbulent diffusion term (transport through velocity fluctuations)

Wthh is given by pufuuj. A closure model is necessary for this term.

A second part of the transport term is the pressure transport 5ikp’—u;’ + §ipp/ul’. This
term also needs closure.

The remaining term in the transport term is called the molecular diffusion term,
which, for low compressibility can be written as: —u—nk —ul'tj, = /,Lal,k (u”u”)
Pressure-strain term I,

Pressure fluctuations redistribute the turbulent stress among components to make
turbulence more isotropic. The pressure straining effects can be considered to exist
of four components, which appear when II;; is rewritten using the exact Poisson

equation for the pressure fluctuations [65]. The first is called the ”slow term” and
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represents the return to isotropy of non-isotropic turbulence: in the absence of mean
rate of strain 5;; and a body force, away from a solid wall, pressure fluctuations force
turbulence to approach an isotropic state. The second part of the pressure-strain term
is called the "rapid term”. This term represents the isotropization of the process of
stress production due to 5;;. Pressure fluctuations slow down a preferential feeding
of turbulence by 95;; into a selected direction. The third part of the pressure-strain
term is the isotropization of stress production due to a body force, while the last term
is the wall pressure reflection term, the "splatting” effect. All of these parts of the
pressure-strain term need closure.

Stress dissipation ¢;;

1 ! B !t Ou’! .. . .
= R L | — I J
| Tik g T Tik 5o | = 205,55, represents the stress dissipation which

mainly occurs at the smallest scales.

The term ¢;; =

2.2.4 Differential Reynolds-stress models (RSM)

In section 2.2.3, the exact equations for the Reynolds-stresses were discussed. In order
to be able to solve these equations, closure is necessary for the transport, pressure-
strain and dissipation terms. One could again apply the same technique as the one
which led to the Reynolds-stress equations in order to obtain the equations for the
necessary higher order correlations, however this would not be very usefull as new
correlations would appear which would again need closure.

In differential Reynolds-stress models (RSM), the closure of the RANS equations
is achieved by introducing models for the transport, pressure-strain and dissipation
terms in the Reynolds-stress equations. This means that from now on, the exact
RANS will not be used anymore, but a turbulence model, which approximates these
equations is introduced.

In the following, some examples of the modelling used for the terms which need
closure are given. For the more advanced modelling, the appropriate literature should
be consulted (some examples can be found in [63, 66])

2.2.4a Transport term J;;;

The simplest approach consists of applying the gradient diffusion hypothesis (Daly &
Harlow [67]) to model the turbulent velocity diffusion as:

7 6kmaxm

T
d Wl = J c Euﬁg” auz Uy
k/) Uy = 35— | Cs

where ¢, = 0.22 1s a common value.
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The pressure transport has a different nature (propagation of disturbances) and the
gradient diffusion hypothesis is not applicable for this term. Yet, it is common to
"lump” this transport with the turbulent velocity diffusion (¢, should account for

this).

2.2.4b Pressure-strain term II;;

Various models have been proposed for this term since the first attempt by Rotta [49].
No expressions are given here, examples are the models of Lumley [68], Hanjalic [66],

Launder & Tselipidakis [69] and Launder & Li [70].

2.2.4c Dissipation term ¢;;

At high Reynolds numbers, the large scale motion is unaffected by viscosity, while
the fine-scale structure is locally isotropic (unaware of the large eddies’ orientations).
Consequently, the correlation for ¢;; which is associated with the smallest eddies,
should reduce to zero if ¢ # j, while for ¢ = 7, all three components should be equal.
Hence, a common way to model the viscous destruction of stresses for high-Reynolds
number flows is:

2

€5 = —(Sijé (211)
3
where ¢ = VZZZ Z;Z. In order to determine the value of ¢, an additional transport

equation is used. Just as the Reynolds-stress transport equations, the exact e-equation
can be derived by manipulation of the RANS equations. After elaborate manipulation,
the following transport equation for the dissipation rate € can be written (the averaging
signs ~ and ~ are omitted for simplicity):

D d d
Zl o pW g p@ oy p® e _pe o © (JE — ) (2.12)

where the various terms have been grouped in the standard way:

ou’ ou'.

P = o5t
Y ]al’kaxk

PE(Q) _ _21/5 auz auz

* 8:1;2 al']'
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0%u; ou'
PE(-?)) — _9 % ’ 7
V@x@xkufaxk
e - 8u ou; o
8:1;] 8:1;k 6:1;k
2,1 2,1
De — 21/2 a U a U

_— oul ou, ,  20p oul,
I = V{@x] ax]u + p Ox; Ox; }

The physical interpretation of the terms is mean flow related production (PE(I), pe?)
and P<®), turbulence related production through vortex stretching (7°), viscous de-
struction (D€), turbulent transport flux (J¢ ) and viscous diffusive flux. All terms in
this equation, except for the viscous diffusive flux term, need to be modelled.

2.2.5 Algebraic Stress Models (ASM)

A considerable simplification compared to RSM can be obtained if instead of writ-

ing six transport equations for the turbulent stresses, only one transport equation is

written for the kinetic energy of the turbulence k = ;u;’u;’. The exact equation for

k can be obtained by determining the trace of the equations which determine the
Reynolds-stress tensor. The resulting equation can look like:

Opk 0
%—I—% pukk—l—pku —I—puk—unk
ot ou?’  — Jp oul!
// "n_-"r / Lo g I 2

In a turbulence modelling context, the standard way of grouping the terms in this
equation is as follows:

Jdpk 0 0 ok
—— 4+ —(purk) = P, — pe — — o 2.1
o1 + 6:z;k(’0uk ) kP o, (Jk ’“‘axk) (2.13)
where
Pk = _pu” %a T
ou?  out oul
€ — le T K3 K3

al‘k N 8xk 8xk
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1 -
— - ", 1, 1 "o
NS Pty + ugp

Py represents production of turbulent kinetic energy, i.e. transfer of energy from the
mean flow to the turbulent fluctuations. The production term is positive in most
cases, but can, under some conditions, temporarily and locally become negative.
Just as in the RSM modelling, closure of this set of equations (RANS and k-equation)
necessitates modelling, in this case of €, J; and the Reynolds-stresses. An additional
transport equation is used for e, while Ji is usually related to strains and Reynolds-
stresses. This means that, in order to obtain a closed formulation, the Reynolds-
stresses remain to be modelled.

The algebraic stress modelling (ASM) approach of Rodi [71] consists of removing the
Reynolds-stress advection and diffusion terms in the Reynolds-stress equations.
First, the anisotropy-tensor components need to be defined as

w1

by = — =5
9k 37

(2.14)

If an equilibrium can be considered for which convective and transport terms can be
neglected (as e.g. homogeneous shear flow and the logarithmic region of an equilib-
rium boundary layer), the following constraint for the anisotropy components can be
written:

Dbi]‘

=0
Dt

Using the definition of the anisotropy-components, this can be reformulated as:

D —— _u;u; Dk
D7) = =y

(2.15)

Neglecting convective and transport terms in the k-equation (2.13) leads to the rela-
tion:

DEk
— =P — 2.1
D1 k — pe (2.16)

Relations (2.15) and (2.16) can be combined to

Dy = 5, — po (2.17)
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Finally, introducing (2.17) into the RSM equations (2.9), where the same assump-
tions (neglecting advection and diffusion) have been made and where (2.11) has been
introduced leads to:

T 2
L e Pij — —652']‘ + Hij (218)

(£ — pe) 3

This last relation represents the general form of an algebraic Reynolds-stress model.
The differential equations for the Reynolds-stresses appearing in a RSM model have
been reduced to the algebraic relation (2.18). The algebraic equivalent of a certain
RSM model can be obtained by introducing the model for the pressure-strain term
occuring in this RSM-model into relation (2.18). The resulting algebraic equation
is implicit. This can be seen if the general form of the common models for II;; is
considered:

= = Jduy
IL; = Ay (b) + k%jki(b)a—;

The most commonly used models are based upon a linear model of the form (Launder

et al. [72]):
= = == == 2 == == ==
% = —ab+ S +en(b S+ 50— b5} +en(b 0+ QD)
The algebraic system (2.18) can then be rewritten in the form

:—a?—ﬁ(3§+§

iyl

+0

S
S
=
=
=

51 —((

[OVR N W)

{ ) (2.19)

which is clearly an implicit equation.

The algebraic relation describing the Reynolds-stresses is combined with a modelled
form of the k-equation (2.13), and a modelled form of the e-equation. This kind of
modelling can be classified as two-equation turbulence modelling, as apart from the
RANS equations, only two additional differential equations (for k and ¢€) appear.

A main drawback of the implicit ARSM approach is the fact that a strongly coupled
non-linear set of algebraic equations has to be solved numerically, at each time-step.
One feature of algebraic relations is the lack of damping or diffusion. For general
complex flow situations, this often causes numerical problems in terms of stability
and slow convergence. The computational effort sometimes becomes even larger than

that for a full RSM.
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2.2.6 Explicit algebraic Reynolds-stress models (EARSM)
and non-linear eddy-viscosity turbulence models

The numerical difficulties associated with implicit ASM have motivated efforts to find
explicit forms of the relation between the Reynolds-stress anisotropy-tensor and the
mean flow quantities. The explicit form of this relation is then used together with a
two-equation model like e.g. the k-e model.

2.2.6a Explicit algebraic Reynolds-stress models (EARSM)

The idea of generating an explicit algebraic Reynolds-stress model (EARSM) from an
implicit ASM was first described by Pope [20], and later further developed by Gatski
and Speziale [4]. It starts from the observation that the solution of equation (2.19) is
of the general form

= f(5,9) (2.20)

<

It can be shown that imposing invariance under an orthogonal coordinate transfor-
mation leads to the following required form for b:

b=> GO (2.21)

where T') is the integrity basis for functions of a symmetric and asymmetric tensor
and G are scalar functions of the irreducible invariants of these tensors. For the
case under consideration, the integrity basis consists of terms like e.g. T = S,
T =50-07F, .. whilen, = {?2} is an example of an invariant (see Spencer [73];
Pope [20]).

By substitution of (2.21) into (2.19), Gatski and Speziale [4] obtained an explicit
(exact) solution of an algebraic stress model in terms of S and Q. However, in the
resulting relation, the denominator of the coefficients G contains a sum of positive
and negative terms which has the potential to become zero, rendering singular be-
haviour, which could occur in complex non-equilibrium flows (whenever large strains
occur). Hence the need to regularize these explicit algebraic stress models is clear.
The regularization procedure proposed in [4] consisted of a Pade approximation, lead-
ing to a non-singular behaviour.

A somewhat different approach was recently proposed by Apsley and Leschziner [13].
Instead of attempting to solve the algebraic system exactly, they applied a repeated
iterative approximation, which can be shortly described as follows. A first approxi-

mation for (2.19) is given by 3(1) = —as. Introducing 3(1) into the right-hand side of
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=(2
(2.19), leads to a new approximation b( ) which is quadratic, while a cubic approxi-

mation 5(3) is obtained by introducing 5(2) into the right-hand side of(2.19).

In the resulting EARSM, the coefficients resulting from the initial RSM could be used,
however, this was not done in [13], instead, the relations between the coefficients were
maintained, while the values for the coefficients were calibrated to return the correct
behaviour of all stresses in a shear flow.

2.2.6b Non-linear eddy-viscosity turbulence models

From the above explanation, it is seen that the model developed by Apsley and
Leschziner [13], although it was developed using some concept of EARSM, is not
directly linked to an existing RSM as some coefficients in the resulting constitutive
relation were calibrated independently. This means that this model should be classi-
fied as a non-linear eddy-viscosity model instead of a EARSM.

When applying non-linear eddy-viscosity turbulence modelling, a relation of the form
(2.21) is written, but instead of introducing this relation into an ASM, as in the
EARSM approach, attempts are made to propose a form for the scalar functions G)
which allow good anisotropy-predictions for a few simple flows.

The general form of a constitutive relation of third order can be shown to have the
form (see appendix A)

1o
w9
Qbij = UZkU] — g(sw

= —QCM(S (Sijgu)

L. 1 . . . .
+c1 (S Sk — g(sz’jSlkSkl) + o (Qip Sk — Sikly)

1~
zkﬂk] - _5ileka1)

—I-c3(

—I—C4(Q kSlel] — szlel])

+C5(sz0klsl] + Sy — Qe Siy — 3le§lm0mk5ij)

—|—c6( ) + C7(Qlkﬂk15”) (2.22)

where the coeflicients ¢; are functions of the invariants. SNYM and sz are the dimension-
less shear and rotation components: SNYM = 1.5;; and sz = 7();; where 7 is a turbulent
time-scale.

Examples of this kind of modelling include the quadratic models of Shih et al. [5, 6,
51, 55], Khodak and Hirsch [1] and the cubic models of Craft et al. [10] ,Lien et al.
[12] and Apsley and Leschziner [13].

It is this kind of approach (non-linear eddy-viscosity modelling) which is used in this
work.
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2.2.7 Linear two-equation turbulence models

Two-equation models discussed here are based on the Boussinesq hypothesis, which is
similar to the Newtonian fluid hypothesis. In this hypothesis, a turbulent viscosity 14,
depending on flow related features, connects the shear components to the Reynolds-
stresses in the same way as the molecular viscosity, which is a material property,
connects the shear components to the stress in Newtons hypothesis. The Boussinesq
hypothesis can thus be written as:

2

- 1
T = —pulu] = 2 (5 - §5z’j5u) -
A closer look at this relation shows us that the Boussinesq hypothesis is of the same
form as the first order term in a non-linear relation (see equation (2.22)). The last
term in (2.23) is guaranteeing that the trace of 7 is —2pk.
For two-equation models, the modelled form of the k-equation can be written as

DEk 0 v\ Ok
E == 21/7552']‘52']‘ — ¢+ axZ [(I/ + O'_k) ax2‘| (224)

The modelled form of the production term is simply a consequence of the Boussinesq
hypothesis, while the flux term is modelled by a gradient diffusion expression (o} is a
modelling coefficient).

The length scale, characterizing the size of the large, energy-containing eddies is
subject to transport processes in a manner similar to the energy k. Therefore, this
length scale is determined by introducing an additional differential equation. If € is
chosen as the second quantity which is determined by a differential equation, no further
modelling is necessary. If, as in some models, an alternative quantity is determined
by a differential equation, the dissipation term needs to be modelled in terms of this
quantity and k.

A length scale equation does not necessarily need the length scale itself as dependent
variable. Any combination like Z = k™" can be used, because k is known by solving
the k-equation. Most equations so far do not use [ as a variable. The most frequently

used variables are the dissipation ¢ ~ B2 and the specific dissipation rate w ~

I
£~ kll/2. The standard structure of the transport equation for Z (at high Reynolds
number) is:

=cyn—FPr—cz—ec+

Dt k ko Ox;

(o4 6:1;2

D7 7 7z G, rqazl
+ Source

where P, denotes the production term in the k-equation, c¢z; and ¢z, are constants and
the form of the possible source term depends on the choice of Z. The Z-equation can
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be the result of two possible approaches. The first approach consists of constructing
a Z-equation in an ad-hoc manner, trying to mimic some of the physics believed to
be essential. The second approach consists of deriving the exact transport equation
for Z, and subsequently trying to model the specific terms. Both approaches usually
lead to similar results. The modelling of the Z-equation is still one of the major
weaknesses in both two-equation and Reynolds-stress models.

2.2.7a The k-¢ model

The choice Z = € is by far the most popular choice for the length scale determining
parameter. The model which is nowadays called the standard k-¢ turbulence model,
was developed in 1972 by Jones and Launder [74]. In this model, the RANS-equations
are used together with the k-equation (2.24) and the following modelled form of the
€ equation:

De € €2 J | Oe
= cel_Pk - 052? + al'l [l

o p ] (2.25)

o, Oz,
The eddy-viscosity in this model is taken to be

L2
vy = ¢, —
" e

The standard values for the model parameters are:
¢, =0.09, 0, =1.0, 0. =13, ¢ =144, ¢, =1.92

A traditional way of deducing the above value for ¢, is to consider a thin shear flow
with approximate balance between production and dissipation. With y as cross-stream
coordinate, this results in

du\2 —\ 2
€ Vt(a_y) —u'v’
CM = Vtﬁ = U =

For thin shear flows (%/”/) ~ 0.3, resulting in ¢, = 0.09. The deduction of the other
parameters’ values follows in chapter 5.

At this point, it should be emphasized that the standard k-e model is a high-Reynolds
model: near-wall treatment, low-Reynolds number formulation and boundary condi-
tions will be discussed later.
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2.2.7b The k-w model

Although the choice Z = w can be traced back to Kolmogorov [48], the present
popularity of the k-w model is mainly due to the work done by Wilcox and co-workers
(extensively presented in [33]). The proponents of the k-w model claim that the main
advantage of this model as compared to the k-e model, lies in a more natural treatment
of the near-wall region.

The quantity w can be seen as an inverse time-scale of the large eddies. The dissipation
is modelled as

€ = c,wk (2.26)

In the model described by Wilcox [75, 33], the RANS equations are used together
with the k-equation (2.24) and the following w-equation:

Dw , 0 v\ Ow

together with the eddy-viscosity relation

Vy =

k
w
The model parameter values are (Wilcox [33]):

5
cu =009, 03 =20, 0, =20, a =5, =5

2.2.8 One-equation and algebraic models

During the development of turbulence modelling, less complex, but less accurate mod-
els have been used. Examples include one-equation models, where only the modelled
kinetic energy equation was added to the RANS-equations, while the length scale was
defined geometrically. An even further approximation consists of algebraic modelling,
where the RANS-equations were used with an algebraic prescription for the turbulent
viscosity (and thus no additional transport equations). These models are not dicussed
here.
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2.3 Near-wall aspects

2.3.1 Near-wall asymptotics

30

Viscous Buffer-layer Log-layer Defect-layer
sublayer H

1 10 + 100 1000

Figure 2.1: Velocity profile for a turbulent boundary layer.

Figure 2.1 shows a typical velocity profile for a turbulent boundary layer. The quantity
y™T is a dimensionless distance from the wall, while U™ is a dimensionless velocity. Both
quantities are defined by:

Ut =2

Uy
+ o YU 9.98
y » (2.28)

where w, is the friction velocity, defined by 7,, = pu?, where 7, is the wall shear stress.
On figure 2.1, distinct regions in the velocity profile are denoted as the viscous sub-
layer, the buffer-layer, the log-layer and the defect layer.

The log-layer is by definition the part of the boundary layer sufficiently close to the
surface so that inertial terms can be neglected, yet sufficiently distant so that the
molecular, or viscous, stress is negligible compared to the Reynolds-stress. This re-
gion, where the law of the wall applies (logarithmic velocity profiles, see later), typ-
ically lies between y* = 30 and y/é = 0.1 (6= boundary layer thickness), where the
upper boundary is dependent upon Reynolds number.
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The viscous sublayer is the region near the surface. In this region the velocity varies
approximately linearly with y*.

In the buffer-layer, the velocity-profile gradually asymptotes to the law of the wall for
large values of yt.

The defect layer lies between the log-layer and the edge of the boundary layer: a no-
ticeable departure from the law of the wall occurs while approaching the freestream.

Viscous sublayer
The limiting behaviour of a turbulent flow in immediate vicinity of a wall (viscous
sublayer) is considered. If y is the wall normal coordinate, the Taylor expansions of
velocity and pressure are

u = ary + a2y2 + a3y3 + ...
v o= bng + bgy3 + ...
w = a1y + c2y2 + 03y3 + ...
p = potpiytpy’+psy (2.29)

The velocity components in (2.29) satisfy the no-slip boundary conditions at the wall.
Applying the Navier-Stokes equations, using (2.29), produces relations between the
coefficients a,, etc.. From (2.29), it can be seen that in very-near-wall-region, where
ayy >> ay® >> azy® >> ..., the relation between u and y is linear (viscous sublayer).
The expansion (2.29) also holds for the fluctuating parts of a Reynolds-decomposition,
which means the asymptotic behaviour of the Reynolds-stresses is:

uhy = dayt + ...
uhuy = bibhy + ..
uhuhy = eyt +
whulh, = aibhy® + ... (2.30)

Resulting in the following asymptotic behaviour for kinetic energy and dissipation
rate:

1 - -
b= 5 (@ + ey + 2 + Ay + )

27

c 28u§ ou!

v Qxp Oz
= (dha} + cic)) + 4(aiay + ey + ... (2.31)

Two important conclusions result from equations (2.31). Firstly, it can be seen that
the wall-value (y = 0) of the dissipation is non-zero, but more important is the remark
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that both expressions in (2.31) can be combined to give the limiting value for e:

2
€ =2v (—) for y — 0 (2.32)

Log-layer

The law of the wall, which determines the velocity-profile in the log-layer, can be
derived as described in the following. Consider a constant-pressure boundary layer
(incompressible), where the relevant Navier-Stokes equations reduce to:

ou v
a—x+a—y—0
ou ou 0 ou R
Cras)

P TPy T oy

In the log-layer, the convective terms are negligable, which means the sum of the
viscous and Reynolds shear stress must be constant. Hence

Ju Ju
Ma_y + Tg/ R~ (a_y) = 7, = pu’ (2.33)

where w denotes the wall-value.
In the log-layer, the velocity profile should be determined by the wall situation, which
means the velocity profile can be written as

u YU,

L

U, v

)

Derivation of this equation results in

du df u,
L=y 2T 2.34
dy " dyt v ( )

Consider equation (2.34) in the log-layer. In this region, the molecular viscosity should
have no influence on the velocity-profile, if a turbulent viscosity is introduced which

is independent of the molecular viscosity, because the Reynolds-stress is much larger

than the viscous stress. This means that g—;‘ should be independent of v. The only

possible way of satisfying this constraint is by using a function f which satisfies

df 1 v

dyt  kyt  kyu,
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Substitution of this relation into (2.34) results in

du  u,

dy  ry
which can be integrated to what is called the law of the wall:
1
ut ~ —InyT + B (2.35)
K

where the most common values for the contants are ([33]): k = 0.41 and B =5.0. &
is known as the Von Karman constant. The reason for this name is that when using
2 du R ou

the mixing-length model vy = {3,5¢, 7, = 115, relation (2.33) reduces to

ou\’

If the mixing length is given by the Von Karman relation [y = Ky, equation (2.36)
can be integrated to yield (2.35).

2.3.2 High-Reynolds modelling: boundary conditions in the
log-layer

The standard k-e model is only valid in regions where the turbulent Reynolds number
R; is sufficiently high (R; > 150). This means that when moving away from the
wall, these equations can only be applied starting from the log-layer. Practically, this
means that in such calculations, the first grid-point does not lie on the wall as usual,
but this first point has to be located in the log-layer, 30 < yi < 100. In order to
be able to perform computations, boundary conditions are necessary in this first grid
point for velocity, k and e. As the first grid point is assumed to be located in the
log-layer, the law of the wall can be used to prescribe the velocity in the first grid
point:

u(yr) = u, (%lnyf’ + B) (2.37)

In order to determine the boundary conditions for the turbulent quantities, production
is assumed to be equal to dissipation, i.e. assuming that transport of turbulent kinetic
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energy is negligible, and that the turbulent shear stress equals the wall stress:

These assumptions can be translated into:

2 Ur

u
pe = —u’v’a— R pul
Yy kY1

and, using the Boussinesq hypothesis:

k? Ou k?

Cp—"m = Cu—
n n
7 e Jy u?

Thus, the boundary conditions for the turbulent quantities in the first grid-point are:

ey1) = — (2.38)

2.3.3 Low-Reynolds k-¢ modelling

In flows where the existence of universal wall functions is not established, for instance,
turbulent boundary layer flows at low Reynolds numbers, unsteady flows and flows
where separation occurs, low Reynolds-versions of the turbulence model equations
should be formulated. It will also be illustrated in a later chapter that the choice of
the position of the first grid point in high-Reynolds modelling can have a significant
influence on the calculation results, which also illustrates the need for low-Reynolds
modelling.

The aim of low-Reynolds modelling is being able to integrate the modelled k-e equa-
tions up to the wall. In order to achieve this, modifications are introduced in the k-¢
model in order to model the viscous interaction. The modifications usually consist
of introducing damping functions, while trying to reproduce the correct asymptotic
near-wall behaviour.

The general form for low-Reynolds k-e turbulence models can be written as:

Ok

ol al‘k axk

% i — i Ft % ca JiPr — cafope
5 + 6xk('0uk6) = o (<M+ UE) 8:1;k) + - + FEs  (2.39)

dpk 0 9, ok
L—I——(,ouxgk) = 87(<M+Mt)—)+Pk—pc—D
k
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with
pe = e fukt (2.40)

The example discussed here is the Yang and Shih model [2], which will be used
further on. The main reason why this model was chosen, is the fact that it produces
predictions of high quality in turbulent boundary layers (see for example [16]), mainly
due to the fact that the tuning of the model was done using DNS-data instead of
experimental data.

Considering the standard k-e model is valid in the high-Reynolds region, the basic
constants in (2.39) are the same as in the standard k-¢ model: ¢, = 0.09, ¢, = 1.44,
€2 =1.92, 0p = 1.0 and 0. = 1.3.

The low-Reynolds modifications in the Yang-Shih model [2] consist of:

e The function f,

Due to the presence of a wall, the turbulent length-scale is smaller in wall-
region, which should be reflected in the turbulent viscosity. This is done by
the introduction of a damping function f, which decreases from unity towards
zero when approaching the wall. The asymptotic behaviour of f, in wall region
should be such that the asymptotic limiting behaviour of the turbulent shear
stress (—u'v’ ~ J(y?), see equation (2.30)) is satisfied. This is the case for the
function proposed by Yang and Shih [2]:

fu = /1 —exp(—=1510-*R, — 5107 RS — 1.10-1°R}),
Vhky

14

R, =

where R, is a parameter expressing the wall-distance. As R, ~ 9J(y?), and thus
fu ~9(y), vi ~ I(y?) (because k ~ J(y?) and 7 ~ J(1)), the correct limiting
behaviour is obtained for —u/v’ ~ /,Ltg—;‘ ~ I(y?).

e The function f;
This function expresses the influence of the Reynolds number on the decay-law

k ~ 27" In the Yang-Shih model,
fo=1— 022

e The function f; and the term Eg
The profile of the turbulent dissipation shows a local maximum in the buffer-
layer, which causes a lower peak value of the turbulent kinetic energy in this
region. This behaviour is mimicked by the use of f; and Fgs. In the Yang-Shih
model:
82ui 82ui

al‘kal‘]‘ 8:1;k8:1;]) '

fi=1, FEs=wvu
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e The turbulent time-scale 7
In the high-Reynolds model, this time-scale has the value 7, = % In wall region,
this time-scale has a zero limit, rendering a singular behaviour in the equation for
e. Considering the fact that both the length- and velocity-scales in wall-region
are Y(y), the physical time-scale in wall-region has a non-zero value. Yang and
Shih have assumed this value is the Kolmogorov time-scale 7, = \/g and have
introduced a timescale

k v
T=—44/—
€ €

which evoluates from the Kolmogorov time-scale in wall vicinity to the high-
Reynolds turbulent time-scale far from the wall.

e The boundary conditions
When low-Reynolds k-¢ models are used, the equations are integrated directly
up to the wall. This means boundary conditions need to be imposed on this wall.
The boundary values of velocity and turbulent kinetic energy are of course zero
(no-slip condition), while, in the Yang-Shih model, the boundary condition for
the turbulent dissipation is taken in accordance with the wall limiting behaviour:

The elaborate discussion of the development of the standard k-¢ constants follows in
chapter 5.

2.4 Model development and validation using DNS

Although using DNS is at this time not feasible for general application, some DNS
calculations have been performed for a variety of basic flows during the last decade
(for example channel flow by Kim et al. [22]). These data are very valuable for turbu-
lence modellers. Major advantages, compared to experimental data, are that all flow
variables are accessible and uncertainties related to the influence of the experimen-
tal probe disappear. It is even possible to provide the budgets of Reynolds-stresses,
turbulent kinetic energy and dissipation rate, as was done by Mansour et al. [76] for
channel flow. These budgets can be a very valuable tool for modelling purposes.

DNS-data can not only be usefull for modelling purposes, but also for validation pur-
poses. Recently, Le and Moin [30] have provided a DNS-database for a backward
facing step flow at a low Reynolds number (Re;, = 5100). This forms an excellent
test-case for testing the ability of turbulence models to predict this type of flow.



