
Chapter �

The basics of turbulence modelling

In this chapter� some basic concepts of turbulence modelling are discussed in order to
introduce the inherent hypotheses as well as the necessary terminology�

��� The Navier�Stokes equations

The basic equations describing �uid dynamics are the Navier�Stokes equations� They
express the conservation of mass� momentum and energy� These conservation laws
can easily be derived by considering the �ow in a volume V � �xed to the coordinate
system in which all quantities are measured� Consider this volume to have a surface
AV � The velocity in each point is represented by the vector u� the density by �� In
each point of the surface AV � the unit outward normal is called n�

����� Mass conservation� continuity equation

Mass conservation means that the net mass which enters the control volume V�
through the surface� can be found in the volume V �
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As this equation is valid in any control volume� the continuity equation can be rewrit�
ten using the divergence theorem as�

��

�t
�r���u � 	 ����

Equation ���� is the di�erential form of the mass�conservation law and is also known
as the continuity equation�

����� Momentum conservation

Following Newtons second law� the increase in momentum �both by unsteadyness and
transport during a time unit is equal to the sum of the forces working on the volume�
Apart from the external force�elds �e�g� gravitational forces summarized as the force
f per unit of mass� a second force appears as a stress T exerted on an elementary
surface dAV � This stress can be coupled to a stress tensor � by expressing equilibrium
as� T � n��� Because the local equilibrium implies � is symmetric� the stress tensor
can be written as the sum of a pressure�term and a symmetric and traceless viscous
shear stress tensor � � � � �pI � � �
This means that Newtons second law� applied on the volume V results in�
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This can be transformed into a di�erential formulation�
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����� Energy conservation

The �rst law of thermodynamics states that the energy�increase �by both unsteadyness
and convection in the volume V is equal to the sum of the work exerted on the volume
V and the supplied heat� Using the notation Q for the heat per unit of volume and
time generated by chemical and physical processes and the notation q for the heat
�ux vector� this law can be translated into the equation�

�

�t

Z
V
�EdV �

Z
AV

�Eu�ndAV �Z
V
�f �udV �

Z
AV

T �udAV �
Z
AV

q�ndAV �
Z
V
QdV



� �� The basics of turbulence modelling

where E is the speci�c total mechanical energy �sum of internal and kinetic energy
E � e� �

�u�u� If only conservative mass forces �f � �rU are present� their potential
energy can be included in the energy E which allows writing the di�erential form of
the energy equation as�

��E

�t
�r���Eu �r��pu � r����u�r�q�Q

Using the de�nition of speci�c total enthalpy H � E � p

�
� this can be written in the

form�

��E

�t
�r���Hu � r����u�r�q �Q ����

����� Introduction of shear and rotation concept

If the velocity in a certain point is given by u� the velocity in a point at a distance
dx of this point is� u� dx�ru� ru can be seen as the sum of an anti�symmetric part
� and a symmetric part S� � is called the rotation rate tensor� as it has the form of
a rotation� dx�� � �

��r� u � dx� The symmetric part S of ru� called the strain
rate �or shear tensor� can be written as the sum of a diagonal tensor and a traceless

tensor � � S � �
�

n
S
o
I� The components �Sij and �ij of the strain rate �or shear

�S and rotation �� tensors can be written as�
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 ����

where ui are the components of the velocity vector u and xi the components of the
position vector x�

����� Constitutive relations

In order to transform the Navier�Stokes equations ����� ���� ��� into a closed system
of equations� some additional relations� called constitutive relations are necessary�
The constitutive relations for a Newtonian �uid are by de�nition�

� � ��� Newtons law
q � ��rT Fouriers law
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where � is the dynamic viscosity and � the heat transfer coe�cient�
In cases where the �uid is a liquid� and no explicit heat transfer is present� the
temperature can be considered constant because of the large speci�c heat of a liquid�
This implies the energy�equation is not needed to obtain the �ow�prediction�
If however� the �uid is an ideal gas� e � e�T  and p � �RT � For a polytropic gas� the
speci�c heat coe�cients cv � de

dT
and cp � dh

dT
are constants� which means the energy

can be written as� e � cvT or h � cpT Using the de�nition � � cp

cv
� the velocity of

sound in such a gas is given by� c �
q

�p

�
� Using the previous de�nitions� along with

the de�nition of the Prandtl number Pr � �cp

�
� the Fourier law for a gas is usually

written as

q � � �

Pr
rh

����� Non	dimensionalization of the Navier	Stokes equations

For practical calculations� the Navier�Stokes equations are written in their dimen�
sionless form� To obtain this form� a reference�length lr� �pressure pr and �density �r
are chosen� The reference�values for the remaining quantities are chosen such that
the Navier�Stokes equations remain unchanged� u�r � pr	�r� er � u�r and qr � �ru

�
r�

Using the de�nition of the Reynolds�number Rer � �rvr lr
�r

� the constitutive relations

can then be rewritten as �the subscript dl meaning the dimensionless value�

� dl �
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�

�r
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If� for a gas� the reference temperature Tr � pr
R�r

� �
R
er is chosen� the following

relations exist between the dimensionless quantities�

pdl � �dlTdl
 edl �
�
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��� Statistical approach of turbulence� RANS

As was mentionned in the introduction� turbulence is basically described by the
Navier�Stokes equations� However� directly solving these equation �DNS� as well as
solving the large scales and modelling the small scales �LES are no realistic options
for design purposes �estimations for the required computer storage and speed can be
found in ��
�� Moreover� from practical point of view� a mean value of the �ow is of�
ten su�cient for design purposes� This means that if DNS or LES are used� the result
is subsequently averaged statistically� In the Reynolds averaging of the Navier�Stokes
equations �RANS� the equations are averaged statistically before solving them� The
averaging time T needs to be su�ciently large compared to the turbulent time�scales�
and also su�ciently small compared to the time�scales of the mean �ow�

����� Averaging techniques

�����a Reynolds�averaging

The starting point is the averaging technique introduced by Reynolds ��	�� For en�
gineering purposes� the most appropriate form of Reynolds averaging is the time
averaging procedure� which can most clearly be explained for stationary turbulence�
For such a �ow� the instantaneous velocity� ui�x
 t can be written as the sum of a
mean part ui�x and a �uctuating part u�i�x
 t�

ui�x
 t � ui�x � u�i�x
 t

where the mean velocity is de�ned as the time�averaged value�

ui�x �
�

T

Z t�T

t
ui�x
 tdt

T is an averaging time� which satis�es the previously mentioned conditions� This form
of averaging is what is generally called Reynolds�averaging� A few usefull properties
can be written� the Reynolds�average of a Reynolds�averaged value is again the same
value

ui�x �
�

T

Z t�T

t
ui�xdt � ui�x
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and the Reynolds�averaged value of the �uctuating part is zero�

u�i �
�

T

Z t�T

t
�ui�x
 t� ui�x�dt � ui�x� ui�x � 	

Applying this kind of averaging to the compressible mass equation results in

	 �
��

�t
�
��ui
�xi

�
��

�t
�
��ui
�xi

�
���u�i
�xi

It can be seen that due to the type of averaging� a new variable ��u�i appears if a
compressible �ow is considered� In an analogeous way� triple correlations involving ���
u�i and u�j will appear in the momentum equations� When using this kind of averaging�
additional closure relations would be necessary for these correlations�

�����b Favre�averaging

The time�averaged equations can be simpli�ed signi�cantly by using the density�
weighted averaging procedure suggested by Favre �
��� The Favre�averaging technique
consists of introducing a mass�averaged velocity �ui� de�ned by

�ui �
�

�

�

T

Z t�T

t
��x
 tui�x
 tdt ����

where � is the conventional Reynolds�averaged density� The velocity can now be
written as

ui�x
 t � �ui � u��i

Thus� rewriting ���� in terms of Reynolds�averaging� ��ui � �ui � � ui � ��u�i� it can
be seen that in terms of Favre�averaging� conservation of mass can be rewritten as

	 �
��

�t
�
���ui
�xi

���


which formaly looks just the same as the laminar mass�conservation equation� Before
deriving the Favre�averaged equations� a few usefull relations concerning the Favre�
averaging� as well as the relation with Reynolds�averaging are summarized below�

�u��i � 	� u��i �� 	
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�ui � ui �
��u�i
�

u��i � ���u��i
�

� ���u�i
�

��� � ����� ���� �� � ���

� ���� �� � ��� �� � ����� � ������

� ��� �� � �������

����� The averaged equations

�����a Mass�equation

In section ������ the averaged form ���
 of the mass�conservation equation was ob�
tained by combining Reynolds�averaging �used for � and p and Favre�averaging �re�
maining quantities� This equation contains no extra terms compared to the initial
mass�equation� it is said the equation is of a closed form� Unfortunately� applying
Favre�averaging to the momentum� and energy equations does not result in a closed
formulation but in an open formulation� This means that compared to the original
equations� additional terms will appear in the averaged equations� These terms will
need to be modelled� This need for modelling is referred to as the closure problem�

�����b Momentum�equation

If no external forces are present� the original momentum�equation� as derived in �����
can be summarized as�

��ui
�t

�
��uiuj
�xj

�
��ij
�xj

The stresses acting on a surface can be de�ned as�

�ij � �pij � �ij � �pij � ���Sij � �

�
ijSii

where Sij is the shear tensor� which was de�ned by equation �����
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Applying the averaging techniques to the momentum�equation results in�
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The additional term ��u��i u��j appears as a consequence of the non�linearity of the con�
vective terms� As mentioned before� this term needs modelling �the closure problem�

�����c Energy equation

In the absence of external heat Q� the original energy�equation� as derived in �����
can be summarized as�

��E
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�xj

� �qj
�xj

while the averaged form of this equation can be written as �see for example ��
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�����d The RANS equations

The set of equations ���
� ���� and ���� is called the Reynolds averaged Navier
Stokes equations �RANS� These RANS�equations express the transport of the mean
quantities� In order to be able to solve these equations� additional equations are
needed for the six components ��D of the symmetric Reynolds�stress tensor ��u��i u��j
as well as for the three components of the turbulent heat�ux vector ��u��i h�
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����� Exact Reynolds	stress transport equations

In order to obtain the exact transport equations for the Reynolds�stresses� the Navier�
Stokes equations are multiplied by a �uctuating quantity� The resulting equations are
then combined to di�erential equations which result in equations for the Reynolds�
stresses after averaging� If the mass�equation is abbreviated as Ma�� � 	 and the
momentum�equation by Mo�ui � 	� the Reynolds�stress equations can be obtained
by the averaging u��iMo�uj � u��jMo�ui � u��iu

��

jMa�� � 	�
The equations resulting from this procedure can be written schematically as ��
� ����
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� �jk
�u��i
�xk

����	

The physical meaning of these terms can be described as follows�
Production Pij
Turbulent stresses are generated at the expense of mean �ow energy by mean �ow
deformation� This term does not need any closure�
Transport Jijk
This term consists of several parts�
First� there is the turbulent di�usion term �transport through velocity �uctuations
which is given by �u��i u

��

ju
��

k� A closure model is necessary for this term�

A second part of the transport term is the pressure transport ikp�u��j � jkp�u��i � This
term also needs closure�
The remaining term in the transport term is called the molecular di�usion term�
which� for low compressibility can be written as� �u��j �ik � u��i �jk � � �

�xk
� gu��i u��j 

Pressure�strain term �ij

Pressure �uctuations redistribute the turbulent stress among components to make
turbulence more isotropic� The pressure straining e�ects can be considered to exist
of four components� which appear when �ij is rewritten using the exact Poisson
equation for the pressure �uctuations �
��� The �rst is called the �slow term� and
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represents the return to isotropy of non�isotropic turbulence� in the absence of mean
rate of strain Sij and a body force� away from a solid wall� pressure �uctuations force
turbulence to approach an isotropic state� The second part of the pressure�strain term
is called the �rapid term�� This term represents the isotropization of the process of
stress production due to Sij� Pressure �uctuations slow down a preferential feeding
of turbulence by Sij into a selected direction� The third part of the pressure�strain
term is the isotropization of stress production due to a body force� while the last term
is the wall pressure re�ection term� the �splatting� e�ect� All of these parts of the
pressure�strain term need closure�
Stress dissipation �ij

The term �ij �
�
�

�
�ik

�u��

j

�xk
� �jk

�u��

i

�xk

�
� ��

�u��

i

�xk

�u��

j

�xk
represents the stress dissipation which

mainly occurs at the smallest scales�

����� Di
erential Reynolds	stress models �RSM�

In section ������ the exact equations for the Reynolds�stresses were discussed� In order
to be able to solve these equations� closure is necessary for the transport� pressure�
strain and dissipation terms� One could again apply the same technique as the one
which led to the Reynolds�stress equations in order to obtain the equations for the
necessary higher order correlations� however this would not be very usefull as new
correlations would appear which would again need closure�
In di�erential Reynolds�stress models �RSM� the closure of the RANS equations
is achieved by introducing models for the transport� pressure�strain and dissipation
terms in the Reynolds�stress equations� This means that from now on� the exact
RANS will not be used anymore� but a turbulence model� which approximates these
equations is introduced�
In the following� some examples of the modelling used for the terms which need
closure are given� For the more advanced modelling� the appropriate literature should
be consulted �some examples can be found in �
�� 

�

�����a Transport term Jijk

The simplest approach consists of applying the gradient di�usion hypothesis �Daly �
Harlow �
�� to model the turbulent velocity di�usion as�

�
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�
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	A

where cs � 	��� is a common value�
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The pressure transport has a di�erent nature �propagation of disturbances and the
gradient di�usion hypothesis is not applicable for this term� Yet� it is common to
�lump� this transport with the turbulent velocity di�usion �cs should account for
this�

�����b Pressure�strain term �ij

Various models have been proposed for this term since the �rst attempt by Rotta �����
No expressions are given here� examples are the models of Lumley �
��� Hanjalic �

��
Launder � Tselipidakis �
�� and Launder � Li ��	��

�����c Dissipation term �ij

At high Reynolds numbers� the large scale motion is una�ected by viscosity� while
the �ne�scale structure is locally isotropic �unaware of the large eddies� orientations�
Consequently� the correlation for �ij which is associated with the smallest eddies�
should reduce to zero if i �� j� while for i � j� all three components should be equal�
Hence� a common way to model the viscous destruction of stresses for high�Reynolds
number �ows is�

�ij �
�

�
ij� �����

where � � �
�u��

l

�xk

�u��

l

�xk
� In order to determine the value of �� an additional transport

equation is used� Just as the Reynolds�stress transport equations� the exact ��equation
can be derived by manipulation of the RANS equations� After elaborate manipulation�
the following transport equation for the dissipation rate � can be written �the averaging
signs  and � are omitted for simplicity�
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where the various terms have been grouped in the standard way�
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The physical interpretation of the terms is mean �ow related production �P ����� P ����

and P ����� turbulence related production through vortex stretching �T �� viscous de�
struction �D�� turbulent transport �ux �J �

m and viscous di�usive �ux� All terms in
this equation� except for the viscous di�usive �ux term� need to be modelled�

����� Algebraic Stress Models �ASM�

A considerable simpli�cation compared to RSM can be obtained if instead of writ�
ing six transport equations for the turbulent stresses� only one transport equation is
written for the kinetic energy of the turbulence k � �

�
gu��i u��i � The exact equation for

k can be obtained by determining the trace of the equations which determine the
Reynolds�stress tensor� The resulting equation can look like�

��k
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h
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In a turbulence modelling context� the standard way of grouping the terms in this
equation is as follows�
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Jk � �
�

�
u��i u

��

i u
��

k � u��kp
�

Pk represents production of turbulent kinetic energy� i�e� transfer of energy from the
mean �ow to the turbulent �uctuations� The production term is positive in most
cases� but can� under some conditions� temporarily and locally become negative�
Just as in the RSM modelling� closure of this set of equations �RANS and k�equation
necessitates modelling� in this case of �� Jk and the Reynolds�stresses� An additional
transport equation is used for �� while Jk is usually related to strains and Reynolds�
stresses� This means that� in order to obtain a closed formulation� the Reynolds�
stresses remain to be modelled�
The algebraic stress modelling �ASM approach of Rodi ���� consists of removing the
Reynolds�stress advection and di�usion terms in the Reynolds�stress equations�
First� the anisotropy�tensor components need to be de�ned as

bij �
u�iu

�

j

�k
� �

�
ij �����

If an equilibrium can be considered for which convective and transport terms can be
neglected �as e�g� homogeneous shear �ow and the logarithmic region of an equilib�
rium boundary layer� the following constraint for the anisotropy components can be
written�

Dbij
Dt

� 	

Using the de�nition of the anisotropy�components� this can be reformulated as�

D

Dt
�u�iu

�

j �
u�iu

�

j

k

Dk

Dt
�����

Neglecting convective and transport terms in the k�equation ����� leads to the rela�
tion�

Dk

Dt
� Pk � �� ����


Relations ����� and ����
 can be combined to

D
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�u�iu
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k
�Pk � �� �����
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Finally� introducing ����� into the RSM equations ����� where the same assump�
tions �neglecting advection and di�usion have been made and where ����� has been
introduced leads to�

�Pk � ��
u�iu

�

j

k
� Pij � �

�
�ij ��ij �����

This last relation represents the general form of an algebraic Reynolds�stress model�
The di�erential equations for the Reynolds�stresses appearing in a RSM model have
been reduced to the algebraic relation ������ The algebraic equivalent of a certain
RSM model can be obtained by introducing the model for the pressure�strain term
occuring in this RSM�model into relation ������ The resulting algebraic equation
is implicit� This can be seen if the general form of the common models for �ij is
considered�

�ij � �Aij�b � kMijkl�b
�uk
�xl

The most commonly used models are based upon a linear model of the form �Launder
et al� �����

�

�
� �c�b� c��S � c���b S � S b� �

�
fb Sg � c���b � � � b

The algebraic system ����� can then be rewritten in the form

b � ��S � ��b S � S b� �

�
fb Sg� ���b � � � b �����

which is clearly an implicit equation�
The algebraic relation describing the Reynolds�stresses is combined with a modelled
form of the k�equation ������ and a modelled form of the ��equation� This kind of
modelling can be classi�ed as two�equation turbulence modelling� as apart from the
RANS equations� only two additional di�erential equations �for k and � appear�
A main drawback of the implicit ARSM approach is the fact that a strongly coupled
non�linear set of algebraic equations has to be solved numerically� at each time�step�
One feature of algebraic relations is the lack of damping or di�usion� For general
complex �ow situations� this often causes numerical problems in terms of stability
and slow convergence� The computational e�ort sometimes becomes even larger than
that for a full RSM�
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����� Explicit algebraic Reynolds	stress models �EARSM�
and non	linear eddy	viscosity turbulence models

The numerical di�culties associated with implicit ASM have motivated e�orts to �nd
explicit forms of the relation between the Reynolds�stress anisotropy�tensor and the
mean �ow quantities� The explicit form of this relation is then used together with a
two�equation model like e�g� the k�� model�

�����a Explicit algebraic Reynolds�stress models �EARSM�

The idea of generating an explicit algebraic Reynolds�stress model �EARSM from an
implicit ASM was �rst described by Pope ��	�� and later further developed by Gatski
and Speziale ���� It starts from the observation that the solution of equation ����� is
of the general form

b � f�S
� ����	

It can be shown that imposing invariance under an orthogonal coordinate transfor�

mation leads to the following required form for b�

b �
X
i

G�i�T �i� �����

where T �i� is the integrity basis for functions of a symmetric and asymmetric tensor
and G�i� are scalar functions of the irreducible invariants of these tensors� For the
case under consideration� the integrity basis consists of terms like e�g� T ��� � S�

T ��� � S ��� S� ��� while �� � fS�g is an example of an invariant �see Spencer �����
Pope ��	��
By substitution of ����� into ������ Gatski and Speziale ��� obtained an explicit

�exact solution of an algebraic stress model in terms of S and �� However� in the
resulting relation� the denominator of the coe�cients G�i� contains a sum of positive
and negative terms which has the potential to become zero� rendering singular be�
haviour� which could occur in complex non�equilibrium �ows �whenever large strains
occur� Hence the need to regularize these explicit algebraic stress models is clear�
The regularization procedure proposed in ��� consisted of a Pade approximation� lead�
ing to a non�singular behaviour�
A somewhat di�erent approach was recently proposed by Apsley and Leschziner �����
Instead of attempting to solve the algebraic system exactly� they applied a repeated
iterative approximation� which can be shortly described as follows� A �rst approxi�

mation for ����� is given by b
���

� ��S� Introducing b
���

into the right�hand side of
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������ leads to a new approximation b
���

which is quadratic� while a cubic approxi�

mation b
���

is obtained by introducing b
���

into the right�hand side of������
In the resulting EARSM� the coe�cients resulting from the initial RSM could be used�
however� this was not done in ����� instead� the relations between the coe�cients were
maintained� while the values for the coe�cients were calibrated to return the correct
behaviour of all stresses in a shear �ow�

�����b Non�linear eddy�viscosity turbulence models

From the above explanation� it is seen that the model developed by Apsley and
Leschziner ����� although it was developed using some concept of EARSM� is not
directly linked to an existing RSM as some coe�cients in the resulting constitutive
relation were calibrated independently� This means that this model should be classi�
�ed as a non�linear eddy�viscosity model instead of a EARSM�
When applying non�linear eddy�viscosity turbulence modelling� a relation of the form
����� is written� but instead of introducing this relation into an ASM� as in the
EARSM approach� attempts are made to propose a form for the scalar functions G�i�

which allow good anisotropy�predictions for a few simple �ows�
The general form of a constitutive relation of third order can be shown to have the
form �see appendix A

�bij �
u�iu

�

j

k
� �

�
ij

� ��c�� �Sij � �

�
ij �Sll

�c�� �Sik �Skj � �

�
ij �Slk �Skl � c����ik

�Skj � �Sik ��kj

�c����ik
��kj � �

�
ij ��lk

��kl

�c����ik
�Skl �Slj � �Sik �Skl��lj

�c	���ik
��kl

�Slj � �Sik ��kl
��lj � ��lk

��kl
�Sij � �

�
��kl

�Slm��mkij

�c
� �Slk �Skl �Sij � c����lk
��kl

�Sij �����

where the coe�cients ci are functions of the invariants� �Sij and ��ij are the dimension�
less shear and rotation components� �Sij � �Sij and ��ij � ��ij where � is a turbulent
time�scale�
Examples of this kind of modelling include the quadratic models of Shih et al� ��� 
�
��� ���� Khodak and Hirsch ��� and the cubic models of Craft et al� ��	� �Lien et al�

���� and Apsley and Leschziner �����
It is this kind of approach �non�linear eddy�viscosity modelling which is used in this
work�
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���� Linear two	equation turbulence models

Two�equation models discussed here are based on the Boussinesq hypothesis� which is
similar to the Newtonian �uid hypothesis� In this hypothesis� a turbulent viscosity �t�
depending on �ow related features� connects the shear components to the Reynolds�
stresses in the same way as the molecular viscosity� which is a material property�
connects the shear components to the stress in Newtons hypothesis� The Boussinesq
hypothesis can thus be written as�

�Rij � ��u��i u��j � ��t

�
Sij � �

�
ijSll


� �

�
�kij �����

A closer look at this relation shows us that the Boussinesq hypothesis is of the same
form as the �rst order term in a non�linear relation �see equation ������ The last
term in ����� is guaranteeing that the trace of �Rij is ���k�
For two�equation models� the modelled form of the k�equation can be written as

Dk

Dt
� ��tSijSij � ��

�

�xi

��
� �

�t
�k


�k

�xi

�
�����

The modelled form of the production term is simply a consequence of the Boussinesq
hypothesis� while the �ux term is modelled by a gradient di�usion expression ��k is a
modelling coe�cient�
The length scale� characterizing the size of the large� energy�containing eddies is
subject to transport processes in a manner similar to the energy k� Therefore� this
length scale is determined by introducing an additional di�erential equation� If � is
chosen as the second quantity which is determined by a di�erential equation� no further
modelling is necessary� If� as in some models� an alternative quantity is determined
by a di�erential equation� the dissipation term needs to be modelled in terms of this
quantity and k�
A length scale equation does not necessarily need the length scale itself as dependent
variable� Any combination like Z � kmln can be used� because k is known by solving
the k�equation� Most equations so far do not use l as a variable� The most frequently
used variables are the dissipation � � k���

l
� and the speci�c dissipation rate � �

�

k
� k���

l
� The standard structure of the transport equation for Z �at high Reynolds

number is�

DZ

Dt
� cZ�

Z

k
Pk � cZ�

Z

k
��

�

�xi

�
�t
�Z

�Z

�xi

�
� Source

where Pk denotes the production term in the k�equation� cZ� and cZ� are constants and
the form of the possible source term depends on the choice of Z� The Z�equation can
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be the result of two possible approaches� The �rst approach consists of constructing
a Z�equation in an ad�hoc manner� trying to mimic some of the physics believed to
be essential� The second approach consists of deriving the exact transport equation
for Z� and subsequently trying to model the speci�c terms� Both approaches usually
lead to similar results� The modelling of the Z�equation is still one of the major
weaknesses in both two�equation and Reynolds�stress models�

����	a The k�� model

The choice Z � � is by far the most popular choice for the length scale determining
parameter� The model which is nowadays called the standard k�� turbulence model�
was developed in ���� by Jones and Launder ����� In this model� the RANS�equations
are used together with the k�equation ����� and the following modelled form of the
� equation�

D�

Dt
� c��

�

k
Pk � c��

��

k
�

�

�xi

�
�t
��

��

�xi

�
�����

The eddy�viscosity in this model is taken to be

�t � c�
k�

�

The standard values for the model parameters are�

c� � 	�	�
 �k � ��	
 �� � ���
 c�� � ����
 c�� � ����

A traditional way of deducing the above value for c� is to consider a thin shear �ow
with approximate balance between production and dissipation� With y as cross�stream
coordinate� this results in

c� � �t
�

k�
� �t

�t�
�u

�y
�

k�
�

��u�v�
k

��

For thin shear �ows
�
�u�v�

k

�
� 	��� resulting in c� � 	�	�� The deduction of the other

parameters� values follows in chapter ��
At this point� it should be emphasized that the standard k�� model is a high�Reynolds
model� near�wall treatment� low�Reynolds number formulation and boundary condi�
tions will be discussed later�
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����	b The k�� model

Although the choice Z � � can be traced back to Kolmogorov ����� the present
popularity of the k�� model is mainly due to the work done by Wilcox and co�workers
�extensively presented in ����� The proponents of the k�� model claim that the main
advantage of this model as compared to the k��model� lies in a more natural treatment
of the near�wall region�
The quantity � can be seen as an inverse time�scale of the large eddies� The dissipation
is modelled as

� � c��k ����


In the model described by Wilcox ���� ���� the RANS equations are used together
with the k�equation ����� and the following ��equation�

D�

Dt
� ��SijSij � ��� �

�

�xi

��
� �

�t
��


��

�xi

�
�����

together with the eddy�viscosity relation

�t �
k

�

The model parameter values are �Wilcox �����

c� � 	�	�
 �k � ��	
 �� � ��	
 � �
�

�

 � �

�

�	

����� One	equation and algebraic models

During the development of turbulence modelling� less complex� but less accurate mod�
els have been used� Examples include one�equation models� where only the modelled
kinetic energy equation was added to the RANS�equations� while the length scale was
de�ned geometrically� An even further approximation consists of algebraic modelling�
where the RANS�equations were used with an algebraic prescription for the turbulent
viscosity �and thus no additional transport equations� These models are not dicussed
here�
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��� Near�wall aspects

����� Near	wall asymptotics
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Figure ���� Velocity pro�le for a turbulent boundary layer�

Figure ��� shows a typical velocity pro�le for a turbulent boundary layer� The quantity
y� is a dimensionless distance from the wall� while U� is a dimensionless velocity� Both
quantities are de�ned by�

U� �
u

u�

y� �
yu�
�

�����

where u� is the friction velocity� de�ned by �w � �u�� � where �w is the wall shear stress�
On �gure ���� distinct regions in the velocity pro�le are denoted as the viscous sub�
layer� the bu�er�layer� the log�layer and the defect layer�
The log�layer is by de�nition the part of the boundary layer su�ciently close to the
surface so that inertial terms can be neglected� yet su�ciently distant so that the
molecular� or viscous� stress is negligible compared to the Reynolds�stress� This re�
gion� where the law of the wall applies �logarithmic velocity pro�les� see later� typ�
ically lies between y� � �	 and y	 � 	�� �� boundary layer thickness� where the
upper boundary is dependent upon Reynolds number�
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The viscous sublayer is the region near the surface� In this region the velocity varies
approximately linearly with y��
In the bu�er�layer� the velocity�pro�le gradually asymptotes to the law of the wall for
large values of y��
The defect layer lies between the log�layer and the edge of the boundary layer� a no�
ticeable departure from the law of the wall occurs while approaching the freestream�

Viscous sublayer
The limiting behaviour of a turbulent �ow in immediate vicinity of a wall �viscous
sublayer is considered� If y is the wall normal coordinate� the Taylor expansions of
velocity and pressure are

u � a�y � a�y
� � a�y

� � ���

v � b�y
� � b�y

� � ���

w � c�y � c�y
� � c�y

� � ���

p � p� � p�y � p�y
� � p�y

� � ��� �����

The velocity components in ����� satisfy the no�slip boundary conditions at the wall�
Applying the Navier�Stokes equations� using ������ produces relations between the
coe�cients an etc�� From ������ it can be seen that in very�near�wall�region� where
a�y �� a�y

� �� a�y
� �� ���� the relation between u and y is linear �viscous sublayer�

The expansion ����� also holds for the �uctuating parts of a Reynolds�decomposition�
which means the asymptotic behaviour of the Reynolds�stresses is�

u��u
�

� � a��a
�

�y
� � ���

u��u
�

� � b��b
�

�y
� � ���

u��u
�

� � c��c
�

�y
� � ���

u��u
�

� � a��b
�

�y
� � ��� ����	

Resulting in the following asymptotic behaviour for kinetic energy and dissipation
rate�

k �
�

�

�
�a��a

�

� � c��c
�

�y
� � ��a��a

�

� � c��c
�

�y
� � ���

�
�

�
� �

�u�i
�xk

�u�i
�xk

� �a��a
�

� � c��c
�

� � ��a��a
�

� � c��c
�

�y � ��� �����

Two important conclusions result from equations ������ Firstly� it can be seen that
the wall�value �y � 	 of the dissipation is non�zero� but more important is the remark
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that both expressions in ����� can be combined to give the limiting value for ��

� � ��

�
�
p
k

�y

��

for y� 	 �����

Log�layer
The law of the wall� which determines the velocity�pro�le in the log�layer� can be
derived as described in the following� Consider a constant�pressure boundary layer
�incompressible� where the relevant Navier�Stokes equations reduce to�

�u

�x
�
�v

�y
� 	

�u
�u

�x
� �v

�u

�y
�

�

�y

�
�
�u

�y
� �Rxy

�

In the log�layer� the convective terms are negligable� which means the sum of the
viscous and Reynolds shear stress must be constant� Hence

�
�u

�y
� �Rxy � �

�
�u

�y

�
w

� �w � �u�� �����

where w denotes the wall�value�
In the log�layer� the velocity pro�le should be determined by the wall situation� which
means the velocity pro�le can be written as

u

u�
� f�

yu�
�



Derivation of this equation results in

du

dy
� u�

df

dy�
u�
�

�����

Consider equation ����� in the log�layer� In this region� the molecular viscosity should
have no in�uence on the velocity�pro�le� if a turbulent viscosity is introduced which
is independent of the molecular viscosity� because the Reynolds�stress is much larger
than the viscous stress� This means that �u

�y
should be independent of �� The only

possible way of satisfying this constraint is by using a function f which satis�es

df

dy�
�

�

�y�
�

�

�yu�
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Substitution of this relation into ����� results in

du

dy
�

u�
�y

which can be integrated to what is called the law of the wall�

u� � �

�
lny� �B �����

where the most common values for the contants are ������ � � 	��� and B � ��	� �
is known as the Von Karman constant� The reason for this name is that when using
the mixing�length model �t � l�M

�u

�y
� �Rxy � �t

�u

�y
� relation ����� reduces to

l�M

�
�u

�y

��

� u�� ����


If the mixing length is given by the Von Karman relation lM � �y� equation ����

can be integrated to yield ������

����� High	Reynolds modelling� boundary conditions in the
log	layer

The standard k�� model is only valid in regions where the turbulent Reynolds number
Rt is su�ciently high �Rt � ��	� This means that when moving away from the
wall� these equations can only be applied starting from the log�layer� Practically� this
means that in such calculations� the �rst grid�point does not lie on the wall as usual�
but this �rst point has to be located in the log�layer� �	 � y�� � �		� In order to
be able to perform computations� boundary conditions are necessary in this �rst grid
point for velocity� k and �� As the �rst grid point is assumed to be located in the
log�layer� the law of the wall can be used to prescribe the velocity in the �rst grid
point�

u�y� � u�

�
�

�
lny�� �B


�����

In order to determine the boundary conditions for the turbulent quantities� production
is assumed to be equal to dissipation� i�e� assuming that transport of turbulent kinetic
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energy is negligible� and that the turbulent shear stress equals the wall stress�

�� � Pk 
 � u�v� � �u��

These assumptions can be translated into�

�� � �u�v��u
�y

� �u��
u�
�y�

and� using the Boussinesq hypothesis�

u�� � �u�v� � c�
k�

�

�u

�y
� c�

k�

u��

Thus� the boundary conditions for the turbulent quantities in the �rst grid�point are�

k�y� �
u��p
c�


 ��y� �
u��
�y�

�����

����� Low	Reynolds k	� modelling

In �ows where the existence of universal wall functions is not established� for instance�
turbulent boundary layer �ows at low Reynolds numbers� unsteady �ows and �ows
where separation occurs� low Reynolds�versions of the turbulence model equations
should be formulated� It will also be illustrated in a later chapter that the choice of
the position of the �rst grid point in high�Reynolds modelling can have a signi�cant
in�uence on the calculation results� which also illustrates the need for low�Reynolds
modelling�
The aim of low�Reynolds modelling is being able to integrate the modelled k�� equa�
tions up to the wall� In order to achieve this� modi�cations are introduced in the k��
model in order to model the viscous interaction� The modi�cations usually consist
of introducing damping functions� while trying to reproduce the correct asymptotic
near�wall behaviour�
The general form for low�Reynolds k�� turbulence models can be written as�

��k
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�
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with

�t � c�f�k� ����	

The example discussed here is the Yang and Shih model ���� which will be used
further on� The main reason why this model was chosen� is the fact that it produces
predictions of high quality in turbulent boundary layers �see for example ��
�� mainly
due to the fact that the tuning of the model was done using DNS�data instead of
experimental data�
Considering the standard k�� model is valid in the high�Reynolds region� the basic
constants in ����� are the same as in the standard k�� model� c� � 	�	�� c�� � �����
c�� � ����� �k � ��	 and �� � ����
The low�Reynolds modi�cations in the Yang�Shih model ��� consist of�

� The function f�
Due to the presence of a wall� the turbulent length�scale is smaller in wall�
region� which should be re�ected in the turbulent viscosity� This is done by
the introduction of a damping function f� which decreases from unity towards
zero when approaching the wall� The asymptotic behaviour of f� in wall region
should be such that the asymptotic limiting behaviour of the turbulent shear
stress ��u�v� � ��y�� see equation ����	 is satis�ed� This is the case for the
function proposed by Yang and Shih ����

f� �
q
� � exp�������	��Ry � ���	��R�

y � ���	���R	
y


Ry �

p
ky

�
�

where Ry is a parameter expressing the wall�distance� As Ry � ��y�� and thus
f� � ��y� �t � ��y� �because k � ��y� and � � ���� the correct limiting
behaviour is obtained for �u�v� � �t

�u
�y
� ��y��

� The function f�
This function expresses the in�uence of the Reynolds number on the decay�law
k � x�n� In the Yang�Shih model�

f� � � � 	���e���
k�
��

���

� The function f� and the term ES

The pro�le of the turbulent dissipation shows a local maximum in the bu�er�
layer� which causes a lower peak value of the turbulent kinetic energy in this
region� This behaviour is mimicked by the use of f� and ES� In the Yang�Shih
model�

f� � � 
 ES � ��t�
��ui

�xk�xj
�

��ui
�xk�xj

 �
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� The turbulent time�scale �
In the high�Reynolds model� this time�scale has the value �t �

k
�
� In wall region�

this time�scale has a zero limit� rendering a singular behaviour in the equation for
�� Considering the fact that both the length� and velocity�scales in wall�region
are ��y� the physical time�scale in wall�region has a non�zero value� Yang and

Shih have assumed this value is the Kolmogorov time�scale �k �
q

	

�
and have

introduced a timescale

� �
k

�
�

r
�

�

which evoluates from the Kolmogorov time�scale in wall vicinity to the high�
Reynolds turbulent time�scale far from the wall�

� The boundary conditions
When low�Reynolds k�� models are used� the equations are integrated directly
up to the wall� This means boundary conditions need to be imposed on this wall�
The boundary values of velocity and turbulent kinetic energy are of course zero
�no�slip condition� while� in the Yang�Shih model� the boundary condition for
the turbulent dissipation is taken in accordance with the wall limiting behaviour�

u�	 � 	 
 k�	 � 	 


��	 � ��

�
�
p
k

�y

��

The elaborate discussion of the development of the standard k�� constants follows in
chapter ��

��� Model development and validation using DNS

Although using DNS is at this time not feasible for general application� some DNS
calculations have been performed for a variety of basic �ows during the last decade
�for example channel �ow by Kim et al� ����� These data are very valuable for turbu�
lence modellers� Major advantages� compared to experimental data� are that all �ow
variables are accessible and uncertainties related to the in�uence of the experimen�
tal probe disappear� It is even possible to provide the budgets of Reynolds�stresses�
turbulent kinetic energy and dissipation rate� as was done by Mansour et al� ��
� for
channel �ow� These budgets can be a very valuable tool for modelling purposes�
DNS�data can not only be usefull for modelling purposes� but also for validation pur�
poses� Recently� Le and Moin ��	� have provided a DNS�database for a backward
facing step �ow at a low Reynolds number �Reh � ��		� This forms an excellent
test�case for testing the ability of turbulence models to predict this type of �ow�


