
Computational Fluid Dynamics IPPPPIIIIWWWW

Numerical Methods for
the Navier-Stokes 

Equations

Instructor: Hong G. Im
University of Michigan 

Fall 2001



Computational Fluid Dynamics IPPPPIIIIWWWW

• Summary of solution methods
- Incompressible Navier-Stokes equations
- Compressible Navier-Stokes equations

• High accuracy methods
- Spatial accuracy improvement 
- Time integration methods

Outline

What will be covered

What will not be covered
• Non-finite difference approaches such as

- Finite element methods (unstructured grid)
- Spectral methods
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Incompressible 
Navier-Stokes Equations
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Incompressible Navier-Stokes Equations
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The (hydrodynamic) pressure is decoupled from the 
rest of the solution variables.  Physically, it is the pressure
that drives the flow, but in practice pressure is solved such
that the incompressibility condition is satisfied.

The system of ordinary differential equations (ODE’s) 
are changed to a system of differential-algebraic equations 
(DAE’s), where algebraic equations acts like a constraint.
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Vorticity-stream function formulation

Advantages:
- Pressure does not appear explicitly (can be obtained later)
- Incompressibility is automatically satisfied 
(by definition of stream function)

Drawbacks:
- Limited to 2-D applications
(Revised 3-D approaches are available)
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Solution Methods for Incompressible N-S Equations in
Primitive Formulation:

• Artificial compressibility (Chorin, 1967) – mostly steady
• Pressure correction approach – time-accurate

- MAC (Harlow and Welch, 1965)
- Projection method (Chorin and Temam, 1968)
- Fractional step method (Kim and Moin, 1975)
- SIMPLE, SIMPLER (Patankar, 1981)
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Back to a system of ODE by

• With properly-chosen      , solve until
• Originally developed for steady problems
• The term “artificial compressibility” is coined from 
equation of state

• Possible numerical difficulties for large 

Artificial Compressibility - 1
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The concept can be applied to a time-accurate method
by using “pseudo-time stepping” at every sub-steps.

Artificial Compressibility - 2
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At every “real” time step, take “pseudo-time stepping”
using explicit time integration until  
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Since the pseudo time scale is not physical, we can
accelerate the integration however we want.
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Marker-and-Cell (MAC) Method – Harlow and Welch (1965)

• Originally derived for free surface flows with staggered grid

Pressure Correction Method - 1
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Projection Method – Chorin (1968), Temam (1969)

• Originally derived on a colocated grid 
• Identical to MAC except for the Poisson equation

Pressure Correction Method - 2
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MAC          vs. Projection

1. Integration without pressure

Pressure Correction Method - 3
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2. Poisson equation

3. Projection into incompressible field
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SIMPLE Algorithm – Patankar (1981)

(Semi-Implicit Method for Pressure Linked Equations)

- Iterative procedure with pressure correction

Pressure Correction Method - 4
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1. Guess the pressure field
2. Solve the momentum equation (implicitly)

3. Solve the pressure correction equation
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Pressure Correction Method - 5

4. Correct the pressure and velocity

5. Go to 2. Repeat the process until the solution converges.

ppp ′+= 0
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Notes:
- Originally developed for the staggered grid system. 
- The corrected velocity field satisfies the continuity equation
even if the pressure correction is only approximate.

- Sometimes      tends to be overestimatedp′
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SIMPLER (SIMPLE Revised)

- Incorporating the projection method (fractional step)

Pressure Correction Method - 6

1. Guess the velocity field
2. Solve momentum equation (implicitly) without pressure

3. Solve the pressure Poisson equation
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Pressure Correction Method - 7

5. Solve the momentum equation with 

6. Pressure correction equation

7. Correct the velocity, but not the pressure

8. Go to 2. Repeat the process until solution is converged.
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Stability Consideration

Explicit time integration in 2-D requires the stability condition:
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High-Re flow: advection-controlled
Low-Re flow: diffusion-controlled

Use implicit schemes for 
appropriate terms!
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Accuracy Improvement – Spatial 1

Spatial Accuracy

• Explicit differencing - use larger stencils
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Accuracy Improvement – Spatial 2

Ref: Kennedy, C. A. and Carpenter, M. H., 
Applied Numerical Mathematics, 14, pp. 397-433 (1994) .
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Accuracy Improvement – Temporal 1

Temporal Accuracy

• Implicit – Crank-Nicolson
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Nonlinear advection term requires iteration.
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Accuracy Improvement – Temporal 2

Linearization of Advection Terms

• For example, a 2-D equation

can be linearized as
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Accuracy Improvement – Temporal 3

Fractional Step Method – Kim & Moin (1985)

• Projection method extended to higher accuracy
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Accuracy Improvement – Temporal 4

Treatment of implicit viscous terms
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Accuracy Improvement – Temporal 5

Notes on Fractional Step Method

• Originally implemented into a staggered grid system
• Later improved with 3rd-order Runge-Kutta method

Ref: Le & Moin, J. Comp. Phys., 92:369 (1991)
• The method can be applied to a variable-density problem
(e.g. subsonic combustion, two-phase flow) where
Poisson equation becomes

Ref: Rutland, Ph. D. Thesis, Stanford University (1989)
Bell, Collela and Glaz, JCP, 85:257 (1989)
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Boundary Conditions

Boundary Conditions for Incompressible Flows

• In general, boundary condition treatment is easier
than for the compressible flow formulation due to the
absence of acoustics

• Typical boundary conditions:
- Periodic:                               etc. 
- Inflow conditions: 
- Outflow conditions: convective outflow condition
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Compressible 
Navier-Stokes Equations
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Solution methods for compressible N-S equations 

follows the same techniques used for hyperbolic equations
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For smooth solutions with viscous terms, central differencing 
usually works.  
⇒ No need to worry about upwind method, flux-splitting,

TVD, FCT (flux-corrected transport), etc.
In general, upwind-like methods introduces numerical
dissipation, hence provides stability, but accuracy
becomes a concern.
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- MacCormack method
- Leap frog/DuFort-Frankel method
- Lax-Wendroff method
- Runge-Kutta method

Explicit Methods

Implicit Methods
- Beam-Warming scheme
- Runge-Kutta method

Most methods are 2nd order.  
The Runge-Kutta method can be easily tailored to higher
order method (both explicit and implicit).
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Most of the time, an implicit integration method involves
nonlinear advection terms 

which are linearized as
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Ultimately, compressible Navier-Stokes equations 
can be written as a system of ODE’s
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Solution techniques for a system of ODE applies.
- Explicit vs. Implicit (Nonstiff vs. Stiff)
- Multi-stage vs. Multi-step
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Boundary Conditions

Boundary Conditions for Compressible Flows

• In general, boundary condition for the compressible flow 
is trickier because all the acoustic waves must be
properly taken care of at the boundaries.

• Typical boundary conditions:
- Periodic: still easy to implement 
- Both inflow and outflow conditions require treatment of
characteristic waves
(hard-wall, nonreflecting, sponge, etc). 


