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What will be covered

o Summary of solution methods
- Incompressible Navier-Stokes equations
- Compressible Navier-Stokes equations
e High accuracy methods
- Spatial accuracy improvement
- Time integration methods

What will not be covered

* Non-finite difference approaches such as
- Finite element methods (unstructured grid)
- Spectral methods



WPI Computational Fluid Dynamics |

Incompressible
Navier-Stokes Equations
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Incompressible Navier-Stokes Equations
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The (hydrodynamic) pressure is decoupled from the

rest of the solution variables. Physically, it is the pressure
that drives the flow, but in practice pressure is solved such
that the incompressibility condition is satisfied.

The system of ordinary differential equations (ODE’S)
are changed to a system of differential-algebraic equations
(DAE’s), where algebraic equations acts like a constraint.
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Vorticity-stream function formulation

Advantages:
- Pressure does not appear explicitly (can be obtained later)
- Incompressibility is automatically satisfied
(by definition of stream function)

Drawbacks:
- Limited to 2-D applications
(Revised 3-D approaches are available)
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Solution Methods for Incompressible N-S Equations in
Primitive Formulation:

o Artificial compressibility (Chorin, 1967) — mostly steady
e Pressure correction approach — time-accurate

- MAC (Harlow and Welch, 1965)

- Projection method (Chorin and Temam, 1968)

- Fractional step method (Kim and Moin, 1975)

- SIMPLE, SIMPLER (Patankar, 1981)
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Artificial Compressibility - 1

Back to a system of ODE by

ou _ —u [Hu +a%u P
ot P
op ., . _ 2 -
Y +c UW=0 C”: arbitrary constant

« With properly-chosen ¢?, solve until % -0 (p=px))

 Originally developed for steady problems

e The term “artificial compressibility” is coined from
equation of state p=c°p

« Possible numerical difficulties for large ¢*



WPI Computational Fluid Dynamics |
Artificial Compressibility - 2

The concept can be applied to a time-accurate method
by using “pseudo-time stepping” at every sub-steps.

,Ba—u+a—u:—u u+an2u-—=P
0or ot Jo,
9P 4 20m =0

or

At every “real” time step, take “pseudo-time stepping”
using explicit time integration until  gu 0 op

or  0r
Since the pseudo time scale is not physical, we can

accelerate the integration however we want.
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Pressure Correction Method - 1

Marker-and-Cell (MAC) Method — Harlow and Welch (1965)

 Originally derived for free surface flows with staggered grid

a—u:—u u+a02u—=P and O=0
ot Jo,
Explicit integration
Un+1 _un

- —u" [, u" +a02u" — 2P
At h h 0
Taking divergence of momentum equation,

n+l n 2
0B 1, e ) = - B ez

At Jo,

12p=—-p0, [Qu"00,u™) Poisson equation
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Pressure Correction Method - 2

Projection Method — Chorin (1968), Temam (1969)

 Originally derived on a colocated grid
o |dentical to MAC except for the Poisson equation

n+l _ .t
u Atu =-20,p = u™=u-Sn,p
P P
. 0, W™ =
g(ﬁ‘nﬂzmhmt _gmh hP
Jo,




WPI Computational Fluid Dynamics |
Pressure Correction Method - 3

MAC VS. Projection

1. Integration without pressure

u'=u" u' :u“+At(—A”+D”)

2. Poisson equation

_ n n _P
2p=-p, Qu" [0,u") p=2 0,0
3. Projection into incompressible field

- At
u”“:u”+At(—A“+D”)—§th u™ =u'-—0,p

P P
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Pressure Correction Method - 4

SIMPLE Algorithm — Patankar (1981)
(Semi-Implicit Method for Pressure Linked Equations)

I

- Iterative procedure with pressure correction pP=pP,+p

1. Guess the pressure field Py
2. Solve the momentum equation (implicitly)
u,—u" ]
OAt = —u, [Mu, +a0%u, -
Jo,

3. Solve the pressure correction equation

?2p =L (O
P At( mjo)



WPI Computational Fluid Dynamics |
Pressure Correction Method - 5

4. Correct the pressure and velocity

P=p,+p
u=u, —EDp'
0

5. Go to 2. Repeat the process until the solution converges.

Notes:
- Originally developed for the staggered grid system.

- The corrected velocity field satisfies the continuity equation
even If the pressure correction is only approximate.
- Sometimes P’ tends to be overestimated

P=p,tap (w=0.8) underrelaxation
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Pressure Correction Method - 6

SIMPLER (SIMPLE Revised)
- Incorporating the projection method (fractional step)

1. Guess the velocity field Uy
2. Solve momentum equation (implicitly) without pressure

e

u-—u A ~
0 = -0 DG + o040
At
3. Solve the pressure Poisson equation
02p =2 (0m)

At
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Pressure Correction Method - 7

5. Solve the momentum equation with p

u _UO:_U* u*+a|:|2 *—iljp*
At

6. Pressure correction equation

P (o
1%p —E(Dﬁu)

/. Correct the velocity, but not the pressure

u=u —gDp’

Jo,
8. Go to 2. Repeat the process until solution is converged.
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Stablility Consideration

Explicit time integration in 2-D requires the stability condition:

2
A< and at<I 2
(ul+ M) 4a 030
At “ At:h_z
High-Re flow: advection-controlled da
Low-Re flow: diffusion-controlled
Use implicit schemes for
appropriate terms! 1/ ~ Re

At — 0 at both limits!
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Accuracy Improvement — Spatial 1

Spatial Accuracy

 EXplicit differencing - use larger stencils

f  —-8f_ +8f_  —f
fJ,: j—2 j—1 j+1 J+2 +O(h4)
12h
 Tridiagonal - Padé (compact) schemes

/ I / — 3
fj—1+4fj + 1:j+1 _E(fjﬂ_ fj—1)+0(h4)

e Pentadiagonal

af | ,+ [+ +&  +&,=af _,+bf_ +cf +df  +ef,,+-

j*2
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Accuracy Improvement — Spatial 2

Exact
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Ref: Kennedy, C. A. and Carpenter, M. H.,
Applied Numerical Mathematics, 14, pp. 397-433 (1994) .
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Accuracy Improvement — Temporal 1

Temporal Accuracy

ou =—-A(u)+D(u) —ED
ot Jo,

 Implicit — Crank-Nicolson

un+1 _un :%[_ (A(un) +A(u”+1))+a'(D2u” +D2Un+1)] At Dpn+1/2
Jo,

Nonlinear advection term requires iteration.



WPI Computational Fluid Dynamics |
Accuracy Improvement — Temporal 2

Linearization of Advection Terms

* For example, a 2-D equation
oU OE OF
+ + =0
ot ox oy
U=l pu| E=|pu®+p-1,| F=| puv-r1,,
) \ PV~ T, ) \pv2+p—z'yy)
can be linearized as
ouU
—+
ot

U 40U
[A]&Jf[B]a—y—O

where [A]:a—E [B]:a—F Jacobian matrix
oU oU
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Accuracy Improvement — Temporal 3

Fractional Step Method — Kim & Moin (1985)

* Projection method extended to higher accuracy

t n

u —u 1 _ 1
=-Z[BAMUN -AU"D|[+—D*@" +u"
=AU S AU+ DR )
Adams-Bashforth (AB2) Crank-Nicolson
un+1_ut )
= -0
At 71 qua:iﬂmt
n+1 At
Om™ =0 |

Note that ¢ is different from the original pressure
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Accuracy Improvement — Temporal 4

Treatment of implicit viscous terms

u' —u" 1 N1 5
SA(U A (u +—D u +u
~ [ (u")-Au"™)| SO +u")
= (1—ﬂaxx At Ay -ty j(ut—u”):
2Re 2Re 2Re

At _ At
-—BAUY-AU"N|+—0, +J,, +I, "
~lBawn -Au)+ (0,46, +,)
Factorizing,

At t N\
(1‘2—%"”)( 2Re5yyj(1_2—lf\’e5 j(”t‘” )=
—%[BA(U”) -AU™) +%(5XX +5, + O, "

TDMA In three directions
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Accuracy Improvement — Temporal 5

Notes on Fractional Step Method

 Originally implemented into a staggered grid system
 Later improved with 3rd-order Runge-Kutta method
Ref: Le & Moin, J. Comp. Phys., 92:369 (1991)
 The method can be applied to a variable-density problem
(e.g. subsonic combustion, two-phase flow) where

Poisson egquation becomes

-
quozi D[ﬁptut)+aa'[: Pl =1 Eq. of State

At

Ref. Rutland, Ph. D. Thesis, Stanford University (1989)
Bell, Collela and Glaz, JCP, 85:257 (1989)
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Boundary Conditions

Boundary Conditions for Incompressible Flows

 In general, boundary condition treatment is easier
than for the compressible flow formulation due to the
absence of acoustics

 Typical boundary conditions:
- Periodic: f, =1, fy., =1, etc.
- Inflow conditions: f(x=0)=F(y,zt)

- Qutflow conditions: convective outflow condition

Ut+Ua—u:O a x=L |:U :ij‘udA:|
0X A
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Compressible
Navier-Stokes Equations
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oU aE aF aG
ot ax ay 0z

oY (pu v (o Y (ow \
ou oS+ p-T,, PN =T, PUW—T
U=|pv |[E=| puv—T,, F=| ov*+p-1, |G=|pwW-T,
PN | PWT, pW=T,, W +p-T,,
\PE) (PE+pu+y,) | (E+pv+y, | \(PE+pW+y,,
wnere Constitutive relations

’ p=pRT, e=cT, h=cT oOf

= (r-De

Y, =-Ur,, —VI,, —WT,, +(, o
Y,=-ur,,—-Vvr,-wr, +q, v~ y_1’ p=(-Dpe T= R
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Solution methods for compressible N-S equations

ouU aE aF GG
at ax ay 0z

follows the same techniques used for hyperbolic equations

For smooth solutions with viscous terms, central differencing
usually works.
— No need to worry about upwind method, flux-splitting,

TVD, FCT (flux-corrected transport), etc.
In general, upwind-like methods introduces numerical

dissipation, hence provides stability, but accuracy
becomes a concern.
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Explicit Methods

- MacCormack method

- Leap frog/DuFort-Frankel method
- Lax-Wendroff method

- Runge-Kutta method

Implicit Methods

- Beam-Warming scheme
- Runge-Kutta method

Most methods are 2nd order.
The Runge-Kutta method can be easily tailored to higher
order method (both explicit and implicit).



WPI Computational Fluid Dynamics |

Most of the time, an implicit integration method involves
nonlinear advection terms

ouU 6E aF aG
at ax ay 0z

which are linearized as

U n+l U n GU n+1 GU n+1 GU n+1
e LS
y 0z

o) () ()

+ ADI, factorization, etc.
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Ultimately, compressible Navier-Stokes equations
can be written as a system of ODE’s

ou _ oE aF aG
at ax ay 0z

du
= == F(t,U(t))

U(t =t,) =U, Initial condition

Solution techniques for a system of ODE applies.
- Explicit vs. Implicit (Nonstiff vs. Stiff)
- Multi-stage vs. Multi-step



WPI Computational Fluid Dynamics |
Boundary Conditions

Boundary Conditions for Compressible Flows

* In general, boundary condition for the compressible flow
IS trickier because all the acoustic waves must be
properly taken care of at the boundaries.

 Typical boundary conditions:

- Periodic: still easy to implement

- Both inflow and outflow conditions require treatment of
characteristic waves
(hard-wall, nonreflecting, sponge, etc).



