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CFDmodelling of slug flow in vertical tubes
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Abstract

In this work we present a numerical study to investigate the motion of single Taylor bubbles in vertical tubes. A complete description
of the bubble propagation in both stagnant and flowing liquids was obtained. The shape and velocity of the slug, the velocity distribution
and the distribution of local wall shear stress were computed and compared favourably with the published experimental findings. The
volume of fluid (VOF) method implemented in the commercial CFD package, Fluent is used for this numerical study.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

When gas and liquid flow in a pipe they tend to distribute
themselves in a variety of configurations. These character-
istic distributions of the fluid–fluid interface are called flow
patterns or flow regimes. Much time and effort has been
expended in determining these regimes for various pairs
of fluids, channel geometries, and inclinations (Mandhane
et al., 1974; Taitel and Duckler, 1976; Taitel, 1986; Barnea,
1987). For vertical co-current flow and at low gas flow rates,
the flow pattern observed is bubbly. Here, the gas phase is
distributed as discrete bubbles within the liquid continuum.
At higher gas flow rates, some of the bubbles have nearly the
same cross-sectional area as that of the channel. These bullet-
shaped bubbles—sometimes referred to as ‘Taylor bubbles’
or ‘slugs’—move along and are separated by liquid plugs
that may or may not contain a dispersion of smaller gas bub-
bles. An increase in the gas flow rate in a two-phase mixture
flowing in slug flow will eventually result in a complete de-
struction of slug flow integrity with consequential churning
or oscillatory action. At very high gas flow rates, the flow
becomes annular, in which, adjacent to the channel wall.
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There is a liquid continuum and the core of the channel is a
gas continuum (Hewitt and Hall-Taylor, 1970).
Slug flow is the most important of the two-phase flow

regimes primarily because of the numerous industrial and
practical applications. Some of these include buoyancy-
driven fermenters, production and transportation of hydro-
carbons, boiling and condensation processes in thermal
power plants, and emergency cooling of nuclear reactors.
Slug flow is characterised by its random intermittence and
inherent unsteadiness. A fixed observer would see a quasi-
periodic occurrence of long, bullet-shaped Taylor bubbles
followed by liquid plugs sometimes carrying dispersed
bubbles and taking on the appearance of bubbly flow in
a pipe. The bubble region may take on stratified or an-
nular configurations depending upon the tube inclination
and flow conditions. In order to understand the complex
features of intermittent slug flow, mainly experimental re-
search has been conducted to study the motion of isolated
Taylor bubbles in motionless and flowing liquids for var-
ious inclination angles. Here, vertical slug flow will be
emphasised.
The shape and the velocity with which a single Taylor

bubble ascending through a denser stagnant liquid is in-
fluenced by the forces acting on it, namely the viscous,
inertial and interfacial forces. Dimensionless analysis
based on Pi-theorem leads to the following dimensionless
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whereDt is the diameter of the tube,UT B is Taylor bubble
velocity,�L and�G are the density of the liquid and gas, re-
spectively,�L and�G are the viscosity of the liquid and gas
respectively,� is the surface tension andLT B is the length
of Taylor bubble. For cylindrical bubbles, the film thickness
and the bubble rise velocity are independent of the bubble
length (Griffith and Wallis, 1961; Nicklin et al., 1962; Mao
and Duckler, 1989; Polonsky et al., 1999). Under the as-
sumption that inertial forces in the gas are far smaller than
the inertial forces in the liquid (�L/�G � 1),�L/�G can be
eliminated. And if the viscosity of the gas in the bubble is
neglected the following set of three dimensionless groups is
sufficient to characterise the motion of a single bubble rising
through a motionless liquid. These are the Eötvös number
Eo = g(�L − �G)D2

t /�, the Morton number defined as
M=g�4L(�L−�G)/�2L�3 and the Froude number defined as
Fr = UT B/

√
gDt(�L − �G)/�L. The Eötvös number rep-

resents the relative significance of surface tension and buoy-
ancy. The Morton number is sometimes referred to as the
property group. The Froude number represents the ratio of
inertial to gravitational forces. Other dimensionless groups
could be used, e.g.,Fabre and Line (1992)in their review
paper on the motion of Taylor bubbles used Froude number
as a unique function of Eötvös number and a dimensionless
inverse viscosity number,Nf , given byNf = (gD3

t )
1/2/�.

Wallis (1969)used a set ofFr, Nf and Archimedes number
Ar (Ar = �3/2�L/�2Lg1/2(�L − �G)1/2). Other and these
widely used dimensionless groups can all be derived by
manipulating and/or combining two or more of groups
adopted in this work, e.g.,Nf =(E3

o/M)1/4, Ar=(1/M)1/2

and the capillary number,Ca= Fr(M Eo)1/4 which is the
ratio of viscous to surface tension forces.White and
Beardmore (1962)described a wide spectrum of experimen-
tal results on Taylor bubbles drifting through motionless
liquids in vertical tubes. The authors presented a cross plot
(Fig. 6 in their paper) showing the regions in which vari-
ous retarding forces may be neglected. The density of air
was neglected and instead ofFr,

√
Fr is plotted to have a

reasonable spread of data (White and Beardmore, 1962). In
the region where surface tension dominates the bubble does
not move at all where the hydrostatic forces are completely
balanced by surface tension forces. This occurs atEo<3.37
(Hattori, 1935; Bretherton, 1961). For inertia-controlled
region when viscosity and surface tension can be neglected
(Eo>100, Nf >300, �2LgDt/�

2
L >3 × 105), the bubble

rise velocity is given solely in terms ofFr (Nicklin et al.,
1962; White and Beardmore, 1962; Zukoski, 1966; Mao
and Duckler, 1990). In the centre of the graph, the relative
magnitude of all retarding forces, namely the viscous, iner-

tial, and interfacial forces are significant. In this region the
relationship betweenFr, Eo, andM for vertical tubes has
been presented byWhite and Beardmore (1962)as a graph-
ical map which plots lines of constantM on Fr–Eo axis.
Similar maps have been produced for non-vertical tubes by
Wallis (1969)andWeber et al. (1986).
The description of the motion of single Taylor bubbles

in flowing liquids dates back to the pioneering work of
Nicklin’s et al. (1962)who placed the corner stone of slug
flow modelling by recognising the fact that the bubble ve-
locity is a superimposition of two components:

UT B = C1Um + U0. (1)

The second term represents the drift due to buoyancy (the
bubble velocity in a stagnant liquid) and the first term refers
to the transport by the mean flow,Um(Um=USL+USG).C1
is a dimensionless coefficient that depends on the velocity
profile ahead of the bubble, and can be seen as the ratio of
the maximum to the mean velocity in the profile. Hence for
turbulent flows,C1�1.2 while for laminar pipe flow,C1�2
(Nicklin et al., 1962; Collins et al., 1978; Grace and Clift,
1979; Bendiksen, 1985; Polonsky et al., 1999). The veloc-
ity field around the bubble has been measured by many re-
searchers primarily because of its importance regarding the
interaction between two Taylor bubbles. Several techniques
have been adopted, e.g.: the photochromic dye activation
(PDA) method (DeJesus et al., 1995; Kawaji et al., 1997;
Ahmad et al., 1998), the particle image velocimetry (PIV)
technique (Polonsky et al., 1999; Nogueria et al., 2000) and
the laser doppler velocimetry (LDV) technique (Kvernvold
et al., 1984). Measurement of wall shear stress in stagnant
(Mao and Duckler, 1989) and flowing (Nakoryakov et al.,
1989) water showed clearly the reversal of the flow in the
liquid film. Experimental work on the propagation of Tay-
lor bubbles in downward flow has been limited to a few
studies on ascending bubbles in vertically downward flow
(Martin, 1976; Polonsky et al., 1999) and one single study (to
our knowledge) on inclined downward flow byBendiksen
(1984). Theoretical treatments of the problem for predict-
ing the rise bubble velocity have been successful for the
special case of vertical tubes. This is, however, restricted
to the case where both viscous and surface tension effects
are negligible (Dumitrescu, 1943; Davies and Taylor, 1950),
or the case where viscous effects dominate (Goldsmith and
Mason, 1962). Later, Bendiksen (1985)extended the the-
oretical approach ofDumitrescu (1943)and Davies and
Taylor (1950)to account for the surface tension.Mao and
Duckler (1990, 1991)andClarke and Issa (1997)performed
numerical simulations in order to calculate the velocity of
the bubble and the velocity field in the liquid film. Propa-
gation of Taylor bubbles in non-vertical tubes has been less
well studied experimentally, and even less well theoretically,
for the obvious reason of asymmetry.
Thus, studying the motion of a single Taylor bubble in

stagnant and in moving liquid is essential in order to un-
derstand the intrinsically complicated nature of slug flow.
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The rise of a single bubble in both stagnant and flowing liq-
uid inside vertical tubes has been extensively studied by nu-
merous researchers, both experimentally and theoretically.
All the published numerical methods to model slug flow
are restricted only to vertical tubes and they assume ei-
ther the shape of the bubble or a functional form for the
shape (Dumitrescu, 1943; Davies and Taylor, 1950). These
assumptions constrain the nature of the solution, while the
approach adopted here (the volume of fluid method, VOF)
lays no such a priori foundations. The solution domain in the
present model not only includes the field around the bubble,
as in the study ofMao and Duckler (1990), but also extends
behind the bubble, allowing field information to be obtained
in the wake region. The difficulty of obtaining local data is
even more complicated in horizontal and inclined slug flow
by the fact that the flow is asymmetric, and consequently,
very few detailed data have been published in the open liter-
ature. Previous models available in literature also fail to pro-
vide a fully satisfactory mechanistic model of slug flow in
horizontal configuration (Duckler and Hubbard, 1975; Taitel
and Barnea, 1990). Thus, it is evident that more insight into
slug flow is needed to attain a thorough understanding of the
internal structure of the slug flow pattern. In this work, an
attempt is made to calculate the shape and rising velocity of
a single Taylor bubble in stagnant and in moving liquid in
vertical tubes. The velocity field in a slug unit (Taylor bub-
ble + liquid plug) and wall shear stress are also calculated.
The intention of future work is to characterise the hydrody-
namics of slug flow when the tube is tilted away from the
vertical and also to investigate the effect of the leading bub-
ble on the shape and velocity of the trailing one.

2. CFD model development

The CFD software FLUENT (Release 5.4.8, 1998) is used
to simulate the motion of a single Taylor bubble rising in
a motionless or flowing liquid through a vertical tube. In
FLUENT, the control volume method—sometimes referred
to as the finite volume method—is used to discretise the
transport equations. The movement of the gas–liquid inter-
face is tracked based on the distribution of�G, the volume
fraction of gas in a computational cell, where�G = 0 in the
liquid phase and�G = 1 in the gas phase (Hirt and Nichols,
1981). Therefore, the gas–liquid interface exists in the cell
where�G lies between 0 and 1.

2.1. Model geometry

For axisymmetric simulations, a 2D coordinate system as-
suming axial symmetry about the centreline of the pipe is
used. The length of the domain is 11Dt , whereDt is the
tube diameter. The grids used to generate the numerical re-
sults throughout this work are either uniform grids contain-
ing quadrilateral control elements/volumes or uniform grids
with extra refinement near the walls. Confidence of grid in-

dependence results is gained by selecting simulations that
were run with the grid cells number doubled (i.e., choosing
results from a 52× 560 grid rather than a 26× 280). Prior
to simulations simple mass balance was performed to test
whether the film is turbulent. This is discussed below. For
axisymmetric simulations, the grid was uniform containing
52× 560 elementswhen the liquid film is laminar. If the
liquid film is turbulent, the last row of cells near the walls is
sub-divided three times. The result is a 59× 560 elements
in the domain. This refinement method, ensuring film region
grid independence, does, however, not always guarantee full
grid independence in regions where the air–liquid interface
is highly curved.
In Fig. 1 the boundary conditions and the initial bubble

shape used in the simulation are displayed. The initial bub-
ble shape consists of one hemisphere connected to a cylinder
of the same radius. If other shapes were used (e.g. only a
cylinder), the final shape of the bubble is found to be similar
except the convergence is slower in the latter case. Thus, for
the simulations the former initial shape is adopted. The ini-
tial guess for the film thickness and the bubble rise velocity
are calculated using simple mass balance and Eq. (1), re-
spectively. The no-slip wall condition is applied to the walls.
The fluid mass flux at the inlet is specified using a profile for
a fully developed flow through a pipe. The governing equa-
tions are solved for a domain surrounding a Taylor bubble
in a frame of reference attached to the rising Taylor bubble.
With these coordinates, the bubble becomes stationary and
the pipe wall moves with a velocityUwall, equal to that of
the Taylor bubble rise velocity,UT B . The liquid is fed at
the inlet with an average velocityUinlet, which is equal to
UT B − USL. A fully developed velocity profile is imposed
at the inlet and the relative movement between the liquid
and the wall generates a velocity profile shown inFig. 1.
The value ofUT B is adjusted after the initial guess until
the nose of the bubble ceased to move in the axial direc-
tion. Trial simulations were conducted to examine the effect
of using a fixed frame of reference; they run longer with
the same final result as with that of a moving frame of ref-
erence. Throughout this work moving wall simulations are
presented. The frame of reference, initial and the boundary
conditions for 3D simulations are similar to those adopted
in axisymmetric simulations. The geometric reconstruction
scheme that is based on the piece linear interface calcula-
tion (PLIC) method ofYoungs (1982)is applied to recon-
struct the bubble free surface. The surface tension is approx-
imated by the continuum surface force model ofBrackbill
et al. (1992). In all calculations, Courant number was set to
a value of 0.25 and time step was set to 10−3 s.

2.2. Turbulence model and grid refinement

Prior to simulations a simplemomentumandmass balance
(Taitel and Barnea, 1990) was conducted to test whether the
liquid film is turbulent. The RNGk-epsilon model was the
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Fig. 1. Initial and boundary conditions for a Taylor bubble rising in a
vertical pipe in a moving coordinate moving with the bubble.

turbulencemodel used throughout this work.Amass balance
on the liquid film, relative to a coordinate system moving
with the bubble, yields the following differential equation:

dUf

dx
= −

{[
g(1− �L/�G)

(UT B − Uf )
+ (2/Dt)fw

(UT B − USL)

]

× Uf |Uf |
}
, (2)

where fw = Cf (DtFf Uf �L/�L)m, Ff being the liquid
holdup in film which can be written as a function of liquid
film thickness,Ff = 2h/R − h2/R2 whereh is the liquid
film thickness andR is the tube radius. For laminar flow
Cf = 16 andm = −1, while for turbulent flowCf = 0.046
andm = −0.2. The above differential equation was solved
using a 4th Runge–Kutta with initial condition:Uf = USL

atx =0 wherex is axial distance from the bubble nose. This
will give us the local liquid film thickness,h(x) and the lo-
cal film velocity,Uf (x). When the flow is turbulent in the
film (Ref >2000), a turbulence model is introduced (Taitel
and Barnea, 1990).

3. Results and discussion

3.1. Drift of Taylor bubbles in stagnant liquids

Consider a single Taylor bubble rising in stagnant liquid
inside a vertical tube with velocityUT B . The bubble may be
made stationary by superimposing a downward velocityUT B

to the liquid and to the tube walls. The bubble has a round
nose and fills almost the cross sectional area of the tube
(Fig. 2). The liquid ahead of the bubble moves around the
bubble as a thin liquid filmmoving downwards in the annular
space between the tube wall and the bubble surface. Along-
side the bubble, the liquid film accelerates until it reaches
its terminal velocity under the condition of a long enough
bubble. At the rear of that bubble, the liquid film plunges
into the liquid plug behind the bubble as a circular wall jet
and produces a highly agitated mixing zone in the bubble
wake. As shown clearly inFig. 2, this recirculation zone
sometimes contains small bubbles shed from the bubble tail
due to the turbulent jet of the liquid film.
Experimental data obtained by extensively varying the

fluid properties and pipe diameter, indicated that the termi-
nal rising velocity and shape are significantly affected by
viscosity, surface tension, buoyancy and inertia. By taking
into account these effects,White and Beardmore (1962)con-
ducted a dimensional analysis using a large matrix of ex-
perimental data. They also proposed a graphical correlation
of the terminal rise velocity of Taylor bubble inside vertical
tubes. The three dimensionless numbers,Eo, MandFr, are
the Eötvös, Morton and Froude numbers, respectively, de-
fined above.Fig. 3 presents the computed results for water
where the Froude number is plotted as a function of Eötvös
andM <10−8. It can be seen that the results agree well
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Fig. 2. Numerical simulation of a Taylor bubble rising through glycerine
in a vertical tube.

with a wide range of experimental results and correlations
reported in literature. For low viscous liquids, all the data
points reported follow the same course where there is a crit-
ical Eo value (Eo<3.37) below which the bubble ceased
to move. IncreasingEo would increase the bubble veloc-
ity as Eötvös number represents the relative significance of
surface tension and buoyancy. For more viscous liquids, the
calculated terminal rise velocity of a Taylor bubble in sev-
eral liquids covering a wide range of Eötvös and Morton
numbers is presented inFig. 4, where the results compared
favourably with experimental data reported byWhite and
Beardmore (1962). In Fig. 4the separation of the curves can
be attributed to the increasing importance of viscous forces
on the terminal rise velocity.
Goldsmith and Mason (1962)observed in their experi-

ments that in the case of high viscosity both ends of the
bubble rising in stagnant liquid are spheroids; the top end
is prolate and the bottom is oblate. They also indicated that
the degree of prolateness of the nose and oblateness of the
tail increase with surface tension. In addition, they reported
that a wave disturbance would appear at the tail of the bub-
ble when the viscosity is high. Also, the film thickness de-
creases as the surface tension increases.Fig. 5 shows the
results from the VOF method of the effects ofEo andM
on the bubble shape. With decreasing Morton number under
a constant Eötvös number, the bluntness of the nose of the
bubble increases and the bubble tail is flattening, which re-
sults in an increment of the liquid film thickness around the
bubble. The bluntness of the nose increases with increasing
Eo. The wavelet disturbance shown inFig. 5 appears when
Eo is low. In the above calculations, it is found that the film
thickness and the bubble rise velocity are independent of the
bubble length, which is consistent with experiments by other
researchers (Griffith and Wallis, 1961; Nicklin et al., 1962).
The understanding of the hydrodynamic characteristic of

wake behind the bubble is of great importance to the task of
modelling transient slug flow (Moissis and Griffith, 1962;
Duckler et al., 1985; Fabre and Line, 1992). The wake re-
gion is believed to play a pivotal role in explaining the inter-
action and coalescence between two successive Taylor bub-
bles (Moissis and Griffith , 1962; Shemer and Barnea , 1987;
Taitel and Barnea, 1990; Pinto and Campos, 1996; Talvy
et al., 2000). For situations where heat and mass transfer is
augmented by introducing air slugs this understanding can
be critical.
Inspired by the work ofMaxworthy (1967), Campos

and Guedes de Carvalho (1988)conducted a photographic
study of the wake behind Taylor bubble. The liquids used
were water, glycerol, and mixture of the two in differ-
ent proportions, covering a wide range of viscosities. The
authors adoptedFr, Nf and Eo as the set of dimension-
less group to characterise the wake pattern behind the
bubbles. In their experiments the surface tension may be
neglected (Eo>680) and forNf >250 the Froude number,
Fr = 0.351. Thus the wake nature depends solely on the di-
mensionless number,Nf (Campos and Guedes de Carvalho,
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Fig. 3. Taylor bubble rise velocity in stagnant water and dilute aqueous solutions contained in vertical tubes:(�) Dumitrescu (1943); (�) Laird and
Chisholm (1956); (•) Gibson (1913); (�) Barr (1926);(
) Hattori (1935); (◦) Nicklin et al. (1962); (×) Griffith and Wallis (1961); (+) White and
Beardmore (1962); ( ) White Correlation (1962); ( ) Harmathy Correlation (Harmathy, 1960); (�) Polonsky et al. (1999); (�) CFD-This work.

Fig. 4. Taylor bubble rise velocity in stagnant viscous liquids contained in vertical tubes, experiment,White and Beardmore (1962): (
) M =4.7×10−5;
(�) M = 1.6× 10−2; (◦) M = 0.33; (•) M = 8.0; (�) M100; (—) CFD-This work.

1988). They identified three different patterns in the wake
depending onNf . The authors observed a closed axisym-
metric wake forNf <500, closed unaxisymmetric wake for
500< Nf <1500 and opened wake with recirculatory flow
for Nf >1500. Their experimental results are simulated
here. The wake patterns for five differentNf values are
presented inFig. 6. For lowest value ofNf , the annular film
conforms to the body of the tail of the bubble. With increas-
ingNf , the liquid jet starts to separate from the body of the
bubble with the free streamlines rejoining together at some
point downstream forming a closed region, i.e., the wake,
containing closed vortices travelling steadily at the same
velocity of the bubble. The wake here is enclosed into the
oblate tail of the bubble and is axisymmetric with respect of

the tube axis. No bubble shedding is observed.Campos and
Guedes de Carvalho (1988)observed the same type of pat-
tern and they referred to them as laminar wakes. Increasing
Nf further causes the wake to stretch downstream. At high
Nf , the free streamlines may not rejoin downstream result-
ing in an open wake thereby allowing for vortex shedding.
Here, 3D simulation of the bubble is conducted to capture
the 3D nature of the flow. The unstable and transient nature
of the flow surrounding the bubble from laminar to turbu-
lent produces significant modification to the bubble profile
and stability. As one can see fromFig. 6 the bubble tail
oscillates and small bubbles can be seen shed at the bubble
rear.Fig. 7 depicts a sequence of pictures of a 3D shape of
the bubble and the velocity field around it obtained with a
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Fig. 5. Bubble shape profile:(�)Eo=477,M=4.7×10−5; (•) Eo=120, M=4.7×10−5; (�) Eo=1986,M=1.6×10−2; (
) Eo 1142, M=1.6×10−2;
(◦) Eo= 642,M 1.6× 10−2; bubble volume= 1.03ml; x—axial distance from bubble nose.

Fig. 6. Wake flow pattern at different values ofNf for bubbles ris-
ing through stagnant glycerol solutions inside a 19mm vertical tube;
the frame of reference is moving with the bubble: (a)� = 1223 kg/m3;
�=9.7×10−5m2/s;Eo=0.066;Fr=0.30;Nf =84, (b)�=1206 kg/m3;

� = 4.67 × 10−5m2/s; Eo = 0.064; Fr = 0.341; Nf = 176, (c)

�=1202 kg/m3; �=4.0×10−5m2/s;Eo=0.064;Fr=0.351;Nf =205, (d)

�=1190 kg/m3; �=2.5×10−5m2/s;Eo=0.063;Fr=0.351;Nf =325, (e)

�=1129 kg/m3; �=547×10−6m2/s;Eo=0.064;Fr=0.341;Nf =1528.

Fig. 7. Progression of wake flow pattern behind a Taylor bubble ris-
ing through a stagnant glycerol solution inside a 19mm vertical tube:
�=1181 kg/m3; �=1.9×10−5m2/s;Eo=0.062;Fr=0.351;Nf =437;
�t = 0.01 s; the frame of reference is moving with the bubble.
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Fig. 8. Dependence of length of bubble wake onNf : (�) numerical
results; the liquids used are stagnant glycerol solutions similar to those
presented inFig. 5, Dt = 19mm; (�) experiment, Campos and Duedes
de Carvalho (1988); (—) correlation, Campos and Duedes de Carvalho
(1988).

time interval of 0.01 s between the consecutive images at
moderateNf . It can be seen that the bubble nose propagates
smoothly, while the tail is characterised by vigorous oscilla-
tions accompanied by small bubbles being shed at the bubble
trailing end. This was observed experimentally byPolonsky
et al. (1999). The wake of the bubble is closed but lacks sym-
metry and it tends to oscillate and was referred to as tran-
sitional wake byCampos and Guedes de Carvalho (1988).
Fig. 7 also shows that a streaming tail can be seen trailing
the travelling transitional wake in accordance with the ex-
perimental findings byLighthill (1968). The dependence of
wake length onNf for low and intermediateNf is depicted
in Fig. 8. The length of the wake is defined as the distance
between the bottom of the bubble at the central plane of the
tube and the stagnation area behind the bubble (Nogueria et
al., 2000). The linear relationship between the wake length

Fig. 9. Wall shear stress distribution in a slug unit at different values ofNf : Dt = 19mm; liquids used are stagnant glycerol solutions; 1-Nf = 84,
Eo= 0.066; 2-Nf = 176,Eo= 0.065; 3-Nf = 437,Eo= 0.062; bubble length= 3Dt ; x—axial distance from bubble nose; the frame of reference is as
seen by a fixed observer.

andNf suggested by theCampos and Guedes de Carvalho
(1988)is plotted together with their experimental results and
compared favourably with the theoretical values.
Fig. 9 illustrates the calculated wall shear stress around

a slug unit (Taylor bubble + liquid plug) for a bubble ris-
ing into stagnant glycerol solutions inside a 19mm diameter
tube at different values ofNf . The frame of reference is as
seen by a fixed observer and not moving with the bubble.
The shear stress is plotted against a dimensionless distance
from the bubble nose. The character of the wall shear stress
distribution is similar for all cases. The wall shear stress
rapidly increases attaining its maximum positive value, in-
dicating downflow in the film, near the bubble tail and then
starts to decrease to zero at the end of the bubble wake. The
positive value of the shear stress just ahead of the bubble in-
dicates the existence of upward flow upstream of the bubble
nose. This bubble expansion-induced velocity is confined
to approximately 0.5Dt ahead of the bubble in agreement
with Polonsky et al. (1999)andvan Hout et al. (2002). The
falling liquid film is accelerated under gravity along the Tay-
lor bubble while the film thickness is continually narrowed
(Fig. 10) until it is stabilised under the action of the friction
force at the wall provided that the bubble is long enough.
In this case the film attains its terminal film thickness and
the corresponding terminal velocity.Figs. 9and10 suggest
that the distance from the bubble nose where the liquid film
reaches its terminal thickness and velocity increases with in-
creasingNf . IncreasingNf also results in an increase in the
wall shear stress and a reduction in the liquid film thickness.

3.2. Rise of Taylor bubbles in flowing liquids

For a Taylor bubble rising in a moving liquid it is gener-
ally agreed that the translational bubble velocity,UT B , can
be expressed as the superimposition of two components: the
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Fig. 10. Bubble shape profile at different values ofNf : Dt =19mm; liquids used are stagnant glycerol solutions; 1-Nf =84,Eo=0.066; 2-Nf =176,
Eo= 0.065; 3-Nf = 437,Eo= 0.062; x—axial distance from bubble nose.

Fig. 11. Parity plot of Taylor bubble velocity:Dt = 20mm; air–water
system.

Fig. 12. Wall shear stress distribution in a slug unit:Dt = 20mm; air–water system;(�) USL = 0.625,UT B = 0.81, LT B = 2.5Dt ; (�) USL = 0.714,
UT B = 0.90, LT B = 2.7Dt ; (
) USL = 1.0, UT B = 1.2, LT B = 2.5Dt ; (•) USL = 1.25, UT B = 1.44, LT B = 2.6Dt ; (—) USL = 1.42, UT B = 1.63,
LT B = 2.7Dt ; x—axial distance from bubble nose; the frame of reference is as seen by a fixed observer.

drift due to buoyancy (the bubble velocity in a stagnant liq-
uid) and the velocity due to the transport by the mean flow
(Eq. (1)). It is generally assumed that the value ofC1Um

is equal to the maximum local superficial liquid velocity
(Nicklin et al., 1962; Collins et al., 1978). Thus, for turbu-
lent pipe flow,C1 ≈ 1.2, while for a fully developed lami-
nar flow in a pipe the value ofC1 approaches 2. The bubble
propagation velocity inside a 20mm diameter tube was cal-
culated and found to beU0 = 0.155m/s, corresponding to
0.351

√
gDt , which is in agreement withDumitrescu (1943)

andNicklin et al. (1962). Fig. 11shows a parity plot of the
translational bubble velocity predicted by Eq. (1) and the
calculated values with reasonable agreement.
Fig. 12illustrates the calculated wall shear stress around a

slug unit for various superficial liquid velocities for a Taylor
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bubble moving inside a 20mm diameter tube. The frame of
reference is as seen by a fixed observer and not moving with
the bubble. The character of the wall shear stress distribution
is similar for all cases. The wall shear stress sign changes
twice in a slug unit. The first change takes place near the nose
of the Taylor bubble and the second near the top of the liquid
plug. The negative shear stress, indicating upflow, exists over
the liquid plug ahead of the bubble and persists beyond the
nose of the Taylor bubble, before becoming positive as the
downflow is established in the liquid film around the bubble.
As the liquid flow increases, the portion of downward flow

becomes shorter and the sign does not change if the bub-
ble is not long enough (UT B = 1.63). This is expected as
the velocity of the Taylor bubble increases with increasing
liquid velocity, and to accelerate the falling liquid film up
to the velocity of the bubble (which corresponds to a zero
wall shear stress in the bubble region) it is necessary that the
bubble length to be long enough. Near the bubble tail fluc-
tuations of the wall shear stress can be seen corresponding
to the stirring nature of the wake trailing the bubble. This
mixing zone caused by the annular film impinging the liquid
plug behind the bubble plays a pivotal role in mass and heat
transfer augmentation. The length of the mixing zone can
be determined from the wall shear stress profile and found
to be approximately 2Dt confirming the experimental find-
ings of other researchers (Nakoryakov et al., 1989; Mao and
Duckler, 1989).

3.3. Effect of angle of inclination

Although upward vertical two-phase slug flow has re-
ceived considerablymore attention in the open literature than
downward and inclined flows for the obvious reason that the
symmetry with respect to the tube axis is lost once the tube
is tilted away from the vertical. The difficulty in handling
the 3D nature of the flow limits the existence of experimen-
tal data. When the tube is titled away from the vertical, the
axisymmetry of slug flow is breached. The degree of this ec-
centricity increases when the inclination increases from the
vertical to the horizontal.Fig. 13 shows the shape and the
velocity field around a Taylor bubble rising through motion-
less water in a 20mm diameter tube when the tube is tilted
20◦ away from the vertical. This feasibility study of inclined
slug flow shows that the VOF method adopted in this work
proved to be powerful in tackling 3D slug flows, in general,
and should meet the challenges in downward and inclined
slug flow to provide a comprehensive picture of such com-
plex flows.

4. Conclusions

In this paper we presented a numerical study to investi-
gate the motion of single Taylor bubbles in vertical tubes.
A complete description of the bubble propagation in both
stagnant and flowing liquids was obtained. The bubble was

Fig. 13. Numerical simulation of a Taylor bubble rising through water
inside a 20mm diameter tube titled 20◦ away from the vertical.

found to have a cylindrical body with a spherical nose and
a fluctuating tail. Sometimes, small bubbles were seen to
be sheered off the tail due to the liquid jet coming down
from the annular region that separates the bubble from the
tube walls. As the bubble moves up, the liquid ahead of
it is picked up, and at a certain distance from the bub-
ble nose, it starts to accelerate downwards in the annu-
lar region. This distance becomes longer for faster bub-
bles. Under the condition of a long enough bubble, the
liquid film accelerates until it eventually reaches its ter-
minal velocity. At the rear of the bubble, the liquid film
impinges the liquid plug behind the bubble as a circular
wall jet and produces a highly agitated mixing zone in the
bubble wake. Depending upon the inverse viscosity dimen-
sionless number,Nf , the wake takes on different patterns.
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WhenNf <500, the wake was found to be composed of
two closed toroidal vortices which are mirror image of each
other. The wake is enveloped into the oblate bubble tail. At
500< Nf <1500, the bubble tail is nearly flat and the wake,
still closed, tends to lose symmetry around the tube axis
and to show periodic undulation, the frequency of which in-
creases with increasingNf . At Nf >1500, the bubble wake
opens and turbulent eddies are shed from the main bubble
wake. For the low and moderate range ofNf , the length
of the bubble wake was found to be linearly dependent on
Nf .
The bubble shape was found to be dependent upon

liquid viscosity and surface tension but not on the bub-
ble length. The degree of prolateness of the nose and
oblateness of the tail increase with surface tension. A
wavelet was seen at the bubble tail when viscosity is
high. The film thickness around the bubble decreases
as surface tension increases. The bluntness of the bub-
ble nose increases with decreasing viscosity, which re-
sults in an increment of the liquid thickness. The bub-
ble velocity was calculated over a wide range of tube
diameter and liquid properties and the values obtained
compared favourably with experimental results reported
in literature.

Notation

Ar Archimedes number, dimensionless
C1 dimensionless coefficient, dimensionless
Cf dimensionless coefficient, dimensionless
Ca capillary number, dimensionless
Dt diameter of the tube, m
Eo Eötvös number, dimensionless
fw friction factor, dimensionless
Ff liquid holdup in the liquid film, dimensionless
Fr Froude number, dimensionless
g acceleration due to gravity, m/s2

h liquid film thickness, m
LLP length of liquid plug, m
LT B length of Taylor bubble, m
m dimensionless coefficient, dimensionless
M Morton number, dimensionless
Nf inverse viscosity dimensionless number, dimen-

sionless
R bubble radius, m
U0 Taylor bubble drift velocity, m/s
Uf liquid film velocity, m/s
Uinlet inlet velocity, m/s
Um mixture velocity, m/s
USG superficial gas velocity, m/s
USL superficial liquid velocity, m/s
UT B Taylor bubble velocity, m/s
Uwall wall velocity, m/s
x axial coordinate, m

Greek letters

�G volume fraction of the gas phase in the compu-
tational cell, dimensionless

�G gas molecular viscosity, kg/ms
�L liquid molecular viscosity, kg/ms
� kinematic viscosity, m2/s
�G gas density, kg/m3

�L liquid density, kg/m3

� surface tension, N/m
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