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SHOCK WAVES: It has been found experimentally that, under 
some circumstances, it is possible for an almost spontaneous 
change to occur in a flow, the velocity decreasing and the pressure 
increasing through this region of sharp change. The possibility 
that such a change can occur actually follows from the analysis 
given below. It has been found experimentally, and it also follows 
from the analysis given below, that such regions of sharp change
can only occur if the initial flow is supersonic. The extremely thin 
region in which the transition from the supersonic velocity, 
relatively low pressure state to the state that involves a relatively 
low velocity and high pressure is termed a shock wave.
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The changes that occur through a normal shock wave, i.e., 
a shock wave which is straight with the flow at right angles to the 
wave, is shown in the following figure:
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A photograph of a normal shock wave is shown in the 
following figure:
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A shock wave is extremely thin, the shock wave normally 

only being a few mean free paths thick. A shock-wave is 
analogous in many ways to a “hydraulic-jump” that occurs in 
free-surface liquid flows, a hydraulic jump being shown 
schematically below. A hydraulic jump occurs, for example, in 
the flow downstream of a weir.
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In the case of a normal shock wave, the velocities both 
ahead (i.e. upstream) of the shock and after (i.e., downstream) of 
the shock are at right angles to the shock wave. In the case of an 
oblique shock wave there is a change in flow direction across the 
shock. This is illustrated in the following figure:
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A complete shock wave may be effectively normal in 
part of the flow, curved in other parts of the flow and 
effectively oblique in other parts of the flow as shown in the 
following figure:
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Because of their own importance and because, as will be 
shown later, the oblique shock relations can be deduced from 
those for a normal shock wave, the normal shock wave will be 
first be considered in the present chapter. Oblique shock 
waves will then be discussed in the next chapter. Curved shock 
waves are relatively difficult to analyze and they will not be 
discussed in detail in the present course.

Normal shock waves occur, for example, in the intakes 
to the engines in some supersonic aircraft, in the exhaust 
system of reciprocating engines, in long distance gas pipe-lines 
and in mine shafts as a result of the use of explosives.
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When a normal shock wave occurs, for example, in a 
steady flow through duct, it can be stationary with respect to 
the coordinate system which is fixed relative to the walls of 
the duct. Such a shock wave is called a stationary shock 
wave since it is not moving relative to the coordinate system 
used. On the other hand, when a sudden disturbance occurs 
in a flow, such as, for example, the sudden closing of a valve 
in a pipe-line or an explosive release of energy at a point in a 
duct, a normal shock wave can be generated which is 
moving relative to the duct walls. This is illustrated in the 
following figure.

Mech 448
Mech 448

To illustrate how a shock wave can form, consider the generation
of a sound wave as discussed earlier. It was assumed that there 
was a long duct containing a gas at rest with a piston at one end 
of this duct that was initially at rest. Then, at time 0, the piston 
was given a small velocity into the duct giving rise to a weak 
pressure pulse, i.e., a sound wave, that propagated down the duct 
(see following figure).
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Generation of a Normal Shock Wave
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If  dV is the velocity given to the piston, which is, of course, the 
same as the velocity of the gas behind the wave, then the increase 
in pressure and temperature behind the wave are equal to ρ a dV
and [( γ - 1 ) T dV / a] respectively. Since ρ, a, and T are all 
positive, this shows that the pressure and temperature both 
increase across the wave. It was also shown that the velocity at
which the wave moves down the duct is equal to           , which is 
by definition the speed of sound. Therefore, since the temperature 
increases across the wave, the speed of sound behind the wave will 
be a + da , where da is positive. Now consider what happens if 
some time after the piston is given velocity dV into the duct, its 
velocity is suddenly again increased to 2 dV. As a result of the 
second increase in piston speed, a second weak pressure wave will 
be generated that follows the first wave down the duct as shown 
in the above figure.

RTγ
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This second wave will be moving relative to the gas ahead 
of it at the speed of sound in the gas through which it is 
propagating. But the gas ahead of the second wave has velocity 
dV. Hence, the second wave moves relative to the duct at a 
velocity of a + da + dV. But, the first wave is moving at a velocity 
of a relative to the duct. Therefore, since both da and dV are 
positive, the second wave is moving faster than the first wave 
and, if the duct is long enough, the second wave will overtake the 
first wave. But the second wave cannot pass through the first 
wave. Instead, the two waves merge into a single stronger wave. 
If, therefore, the piston is given a whole series of step increases in 
velocity, a series of weak pressure waves will be generated which 
will all eventually overtake each other and merge into a single 
strong wave if the duct is long enough, i.e., a moving normal 
shock wave will be generated.
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The analysis of stationary normal shock waves will first be 
considered and then the application of this analysis to moving 
normal shock waves will then be discussed. 
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STATIONARY NORMAL SHOCK WAVES: Attention will first 
be given to the changes that occur though a stationary normal 
shock wave. In order to analyze the flow though a stationary 
normal shock wave, consider a control volume of the form 
indicated in the following figure:
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This control volume has a cross sectional area of A 
normal to the flow direction. The shock wave relations are 
obtained by applying the laws of conservation of mass, 
momentum, and energy to this control volume. Conservation of 
mass gives:

i.e.:

1 1 2 2m V A V Aρ ρ= =

1 1 2 2V Vρ ρ=
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Next consider conservation of momentum. Since the only 
forces acting on the control volume in the flow direction are the 
pressure forces, conservation of momentum applied to the 
control volume gives:

or

1 2 1 1 2 1( )p p V V Vρ− = −

1 2 2 2 2 1( )p p V V Vρ− = −
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These two equations can be rearranged to give:

and:

Adding these two equations together then gives:
m

2 1 2
1 2 1

1

p pV V V
ρ
−

− =

2 1 2
2 2 1

2

p pV V V
ρ
−

− =

( )2 2
2 1 1 2

1 2

1 1V V p p
ρ ρ

⎛ ⎞
− = − +⎜ ⎟

⎝ ⎠
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Lastly, consider the application of conservation of energy 
to the flow across the shock wave. Because one-dimensional flow 
is being considered there are no changes in the flow properties 
in any direction that is normal to that of the flow and, because
the upstream and downstream faces of the control volume lie 
upstream and downstream of the shock wave, there are no 
temperature gradients normal to any face of the control volume. 
The flow through the control volume is, therefore, adiabatic and
the energy equation, therefore, gives:

The stagnation temperature therefore does not change across 
the shock.

2 2
1 2

1 2 0 constant
2 2p p p

V Vc T c T c T+ = + = =
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Applying the equation of state across the wave gives:

1 2

1 1 2 2

p p
T Tρ ρ

=

The above four equations obtained by applying 
conservation of mass, conservation of momentum, conservation 
of energy and the equation of state can be combined to give the 
following:
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⎡ ⎤⎛ ⎞+
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T p
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The above three equations give the density, velocity and 
temperature ratios,                                             , across a normal 
shock wave in terms of the pressure ratio,               , across the 
shock wave. The pressure ratio,               , is often termed the 
strength of the shock wave. This set of equations is often termed 
the Rankine-Hugoniot normal shock wave relations.

2 1 2 1 2 1/ , / , and /V V T Tρ ρ
2 1/p p

2 1/p p
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While the application of conservation of mass, momentum 
and energy principles shows that a shock wave can exist, it does
not indicate whether the shock can be either compressive (i.e., p2 / 
p1 > 1 ) or expansive (i.e., p2 / p1 < 1 ). To examine this, the second 
law of thermodynamics must be used. Now the entropy change 
across the shock wave is given by:

Using the relations for T2 / T1 and p2 / p1 given above then gives:

2 2
2 1

1 1

 ln ln  p
T p

s s c R
T p

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
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The variations of ( s2 - s1 ) / R for various values of γ (γ is always 
greater than 1) as given by the above equation are shown in the 
following figure:

1
21

1
2 1 2 1

21

1

( 1) ( 1)
ln

( 1) ( 1)

p
s s p p

pR p
p

γ
γ

γ
γ γ

γ γ

−
−

−

⎧ ⎫
⎡ ⎤⎪ ⎪+ + −⎢ ⎥⎛ ⎞⎪ ⎪− ⎢ ⎥= ⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪+ + −
⎢ ⎥⎪ ⎪⎣ ⎦

⎩ ⎭
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Now, the second law of thermodynamics requires that for an 
adiabatic process the entropy must remain unchanged or must 
increase, i.e., it requires that:

Using the above equation for the entropy change, or the figure 
given above, it is found that this will only occur if: 

2 1 0s s
R
−

≥

2

1

0p
p

≥
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It therefore follows that the shock wave must always be 
compressive, i.e., that p2 / p1 must be greater than 1, i.e., the 
pressure must always increase across the shock wave. Using the 
equations for the changes across a normal shock then shows that 
that the density always increases, the velocity always decreases and 
the temperature always increases across a shock wave.
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The entropy increase across the shock is, basically, the 
result of the fact that, because the shock wave is very thin, the 
gradients of velocity and temperature in the shock are very high. 
As a result, the effects of viscosity and heat conduction are 
important within the shock leading to the entropy increase 
across the shock wave.

Because the flow across a shock is adiabatic, the 
stagnation temperature does not change across a shock wave. 
However, because of the entropy increase across a shock, the 
stagnation pressure always decreases across a shock wave.
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NORMAL SHOCK WAVE RELATIONS IN TERMS OF 
MACH NUMBER: While the relations derived in the previous 
section for the changes across a normal shock in terms of the
pressure ratio across the shock, i.e., in terms of the shock 
strength, are the most useful form of the normal shock wave 
relations for some purposes, it is often more convenient to have
these relations in terms of the upstream Mach number M1 . To 
obtain these forms of the normal shock wave relations, it is 
convenient to start again with a control volume across the shock
wave such as that shown in the following figure and to again 
apply conservation of mass, momentum and energy to this 
control volume but in this case to rearrange the resulting 
relations in terms of Mach number.
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In writing the conservation laws, no generality is lost by 
taking the area of the control volume parallel to the wave as 
unity. Conservation of mass then gives:

Dividing this equation by a1 then gives:

which can be rewritten in terms of Mach numbers as:

1 1 2 2V Vρ ρ=

1 2 2
1 2

1 2 1

V V a
a a a

ρ ρ=

2 1 1

1 2 2

M a
M a

ρ
ρ

=
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Next consider conservation of momentum applied to the 
control volume shown earlier. This gives:

Hence, since:

the above equation gives:

2 2
1 2 2 2 1 1p p V Vρ ρ− = −

2
2 i.e.,p aa pγ ρ

ρ γ
= =

2
2 1 2

2
1 2 1

1
1

M a
M a

ρ γ
ρ γ

⎛ ⎞⎛ ⎞+
= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
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Lastly, consider the application of the conservation of
energy principle to the control volume used above. This gives:

Dividing this equation by gives on rearrangement:

2 2 2 2
1 1 2 2

2 2
1 1

V a V a
γ γ

⎛ ⎞ ⎛ ⎞
+ = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

( )2
12 / 1a γ −

2
2 1

2
1 2

2 ( 1)
2 ( 1)

a M
a M

γ
γ

⎛ ⎞ ⎡ ⎤+ −
=⎜ ⎟ ⎢ ⎥+ −⎝ ⎠ ⎣ ⎦
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Combining the equations given above leads on 
rearrangement to:
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2
2 1
2 2

1

( 1) 2
2 ( 1)
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=
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2
2 1

1

2 ( 1)
( 1)

p M
p
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γ
− −

=
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2
2 1

2
1 1

( 1)
2 ( 1)

M
M

ρ γ
ρ γ

+
=
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2 2
1 12 2

2 2
1 1 1

2 ( 1) 2 ( 1)
( 1)

M MT a
T a M

γ γ γ

γ

⎡ ⎤ ⎡ ⎤− − + −⎛ ⎞ ⎣ ⎦ ⎣ ⎦= =⎜ ⎟ +⎝ ⎠

The stagnation pressure ratio across a normal shock wave 
is obtained by noting that:
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/( 1)
20 02 02 2 2

01 01 1 1
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1
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p M
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γ
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−

−

− −

⎛ ⎞−⎛ ⎞= + = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥= −⎢ ⎥⎜ ⎟ ⎜ ⎟− + +⎛ ⎞⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

From which it follows that:
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The variations of pressure ratio, density ratio, temperature 

ratio and downstream Mach number with upstream Mach number 
given by these equations are shown in the following figure for the 
case of γ =1.4:
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Consideration will lastly again be given to the change in 
entropy across a normal shock wave in terms of the upstream 
Mach number. Now it was shown previously that the change in 
entropy is given by:

The right hand side of this equation can be expressed in terms of
the upstream Mach number by using the relationships derived 
above for the pressure and density ratios. Using these gives:

1/( 1) /( 1)

2 1 2 2

1 1

lns s p
R p

γ γ γ
ρ
ρ

− − −⎡ ⎤⎛ ⎞ ⎛ ⎞−
⎢ ⎥= ⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

/( 1)1/( 1) 2
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1 2
1

( 1)2ln ( 1) 1
1 2 ( 1)

s s MM
R M

γ γγ
γγ

γ γ

− −−⎧ ⎫⎡ ⎤⎡ ⎤− −⎪ ⎪= − +⎨ ⎬⎢ ⎥⎢ ⎥+ + −⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
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The variation of  ( s2 - s1 ) / R with M1 as given by this equation
for various values of  γ is shown in the following figure:
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Now as discussed before , the second law of 
thermodynamics requires that for an adiabatic process the 
entropy must remain unchanged or must increase, i.e., it requires 
that:

It will be seen from the results given in the above figure that for 
this to be satisfied it is necessary that:

It, therefore, follows that the Mach number ahead of a shock wave
must always be greater than 1 and that the shock wave must, 
therefore, as discussed before, always be compressive, i.e., the
pressure must always increase across the shock wave. 

2 1 0s s
R
−

≥

1 1M ≥
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It then follows from:

that:

i.e., the flow downstream of a normal shock wave will always be 
subsonic.

2 1M ≤

2
2 1
2 2

1

( 1) 2
2 ( 1)

MM
M
γ
γ γ
− +

=
− −

These conclusions about the changes across a normal 
shock wave are summarized in the following figure:
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NORMAL SHOCK WAVE TABLES: A number of sets of tables 
and graphs are available which list the ratios of the various flow 
variables such as pressure, temperature and density across a 
normal shock wave and the downstream Mach number as a 
function of the upstream Mach number for various gases, i.e. for
various values of γ . An example of a set of tables is shown below.

The values in these tables and graphs are, of course, 
derived using the equations given in the previous section. As with 
isentropic flow, instead of using tables, it is often more convenient 
to use a computer program to find the changes across a shock 
wave. Alternatively, most calculators can be easily programmed 
to give results for a normal shock wave.
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THE PITOT TUBE IN SUPERSONIC FLOW: Consider flow 
near the front of a blunt body placed in a supersonic flow as 
shown in the following figure. Because the flow is supersonic, a
shock wave forms ahead of the body as shown in the figure.
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The shock wave ahead of the body is curved in general but 

ahead of the very front of the body, the shock is effectively 
normal to the flow. Hence, the conditions across the shock, i.e., 
between points 1 and 2 in the above figure, are related by the 
normal shock relations. Further, since the flow downstream of a 
normal shock wave is always subsonic, the deceleration from 
point 2 in the figure to point 3 in this figure, where the velocity is 
effectively zero can, as discussed in the previous chapter, be 
assumed to be an isentropic process. Using this model of the flow, 
the pressure at the stagnation pressure can be calculated for any 
specified upstream conditions. 

The flow model is thus:

Ahead of 1 - Undisturbed Flow
1 to 2 - Normal Shock Wave
2 to 3 - Isentropic Deceleration to M=0 
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When a Pitot tube is placed in a supersonic flow, a type of 
flow similar to that indicated in the above figure occurs i.e the 
flow over a Pitot tube in supersonic flow resembles that shown 
below:
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Since there will be a change in stagnation pressure across 

the shock wave, it is not possible to use the subsonic pitot tube
equation in supersonic flow. However, as noted above, over the 
small area of the flow covered by the pressure tap in the nose of 
the pitot tube the shock wave is effectively normal and the flow 
behind this portion of the shock wave is, therefore, subsonic and 
the deceleration isentropic, these assumptions being shown in the 
following figure.
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The flow can, therefore, be analyzed as follows:

1. The pressure ratio across the shock wave, p2 / p1 , can be found 
using normal shock wave relations,

2.   The pressure at the stagnation point can be found by assuming 
that the isentropic relations apply between the flow behind the 
shock and the stagnation point.
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Hence, since:

where the subscripts 1 and 2 denote the conditions upstream and 
downstream of the shock wave respectively, using the relations 
previously derived, this equation gives:

02 02 2

1 2 1

p p p
p p p

=

/( 1) 2
202 1
2

1

2 ( 1)11
2 1

p MM
p

γ γ γ γγ
γ

− ⎡ ⎤− −−⎡ ⎤= + ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦
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Therefore, using the expression for the downstream Mach 
number, it follows, on rearrangement, that:

This equation is known as the Rayleigh Supersonic Pitot Tube 
equation. If p02 and p1 are measured, this equation allows M1 to be 
found. The value of p02 / p1 is usually listed in normal shock wave 
tables or given by software.

/( 1)2
1

02
1/( 1)21 1

( 1)
2

2 1
1 1

M
p
p M

γ γ

γ

γ

γ γ
γ γ

−

−

⎡ ⎤+
⎢ ⎥
⎣ ⎦=

⎡ ⎤⎛ ⎞ ⎛ ⎞−−⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎝ ⎠⎝ ⎠⎣ ⎦
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It should be noted that the static pressure ahead of the 

shock wave, i.e., p1 , must be measured. If the flow is very nearly 
parallel to a plane wall there will be essentially no static pressure 
changes normal to the flow direction and p1 can then be found 
using a static hole in the wall as indicated in the following figure:
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However, it has been found that a Pitot-static tube can also be 
used in supersonic flow because the shock wave interacts with the 
expansion waves (see later) decaying rapidly to a Mach wave and 
the pressure downstream of the vicinity of the nose of the Pitot
tube is thus essentially equal to p1 again as indicated in the 
following figure.
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MOVING NORMAL SHOCK WAVES: In the above discussion 
of normal shock waves, the coordinate system was so chosen that 
the shock wave was at rest. In many cases, however, it is necessary 
to derive results for the case where the shock wave is moving 
relative to the coordinate system. 
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Consider the case where the gas ahead of the shock wave is 
stationary with respect to the coordinate system chosen and where 
the normal shock wave is moving into this stationary gas inducing 
a velocity in the direction of shock motion as indicated in the 
following figure.
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Such moving shock waves occur, for example, in the inlet 

and exhaust systems of I.C. engines, in air-compressors, as the 
result of explosions and in pipe-lines following the opening  or 
closing of a valve.

The required results can be obtained from those that were 
derived above for a stationary normal shock wave by noting that 
the velocities relative to a coordinate system fixed to the shock 
wave are as indicated in the following figure.
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Hence, it follows that:

Since the direction of the flow is obvious, only the magnitudes of 
the velocities will be considered here. The Mach numbers 
upstream and downstream of the shock wave relative to the shock 
wave are given by:

where:

1 2,S SV U V U V= = −

1
1

S
S

UM M
a

= =

'1 1 1
2 2

2 2 1 2 2 2 2 2

S S
S S

U U a a aV V VM M M M
a a a a a a a a

= − = − = − = −

'
2

1 2

ands
S

U VM M
a a

= =
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Ms is the “shock Mach number”. Substituting the value of 
M1 for the moving shock into the equations previously given for a 
stationary normal shock wave then gives:

2
2

1

2 ( 1)
( 1)

SMp
p

γ γ
γ
− −

=
+

2
2

2
1

( 1)
2 ( 1)

S

S

M
M

γρ
ρ γ

+
=

+ −

2 2
2 2

2 2
1 1

2 ( 1) 2 ( 1)
( 1)

S S

S

M MT a
T a M

γ γ γ

γ

⎡ ⎤ ⎡ ⎤− − + −⎛ ⎞ ⎣ ⎦ ⎣ ⎦= =⎜ ⎟ +⎝ ⎠

2
'2

2

( 1) 2
2 ( 1)

S

S

MM
M
γ
γ γ
− +

=
− −
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Normal shock wave tables and software can be used to 

evaluate the properties of a moving normal shock wave. To do 
this, M1 is set equal to Ms and the tables or software are then used 
to directly find the pressure, density and temperature ratios 
across the moving shock wave. Further, since:

and since M2 is given by the normal shock tables or software, M'
2 ,

can be found.
Also since:

V can also thus be deduced using normal shock tables or software.

' 1
2 2

2
S

aM M M
a

= −

' 2 2
2 2

1 1 1
S

a aV M M M
a a a
= = −
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Brief consideration will now be given to the “reflection” of 
a moving shock wave off the closed end of a duct. Consider a 
moving normal shock wave propagating into a gas at rest in a 
duct. The shock, as discussed above, induces a flow behind it in
the direction of shock motion. If the end of the duct is closed,
however, there can be no flow out of the duct, i.e., the velocity of 
the gas in contact with the closed end must always be zero. 
Therefore, a normal shock wave must be “reflected” off the closed 
end, the strength of this “reflected” shock wave being just 
sufficient to reduce the velocity to zero. This is illustrated in the 
following figure. 

Mech 448

Reflection of a moving normal shock wave from the closed 
end of a duct.

Mech 448

Consider a set of coordinates attached to the reflected 
normal shock wave. The gas velocities relative to this reflected
shock wave are, therefore, as shown in the following figure.
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Now:

These equations can be used in conjunction with the normal 
shock relations previously given or shock tables or the software
provided to find the properties of the reflected shock. 

'
1 2

2

SR
R SR

U VM M M
a
+

= = +

2 2
2

3 2 3 3

SR SR
R SR

U U a aM M
a a a a

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
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Lastly, consider what happens if a gas is flowing out of a 
duct at a steady rate when the end of the duct is suddenly closed. 
Since the velocity of the gas in contact with the closed end must 
again be zero, a shock wave is generated that moves into the 
moving gas bringing it to rest, i.e., the strength of the shock wave 
must be such that the velocity reduced to zero behind it. This is 
illustrated in the following figure. 
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A shock wave generated in this way can be analyzed using the 
same procedure as used to analyze a normal shock wave reflected 
from a closed end of a duct.

Moving normal shock 
wave generated by the 
closing of the end of a 
duct out of which a gas 
is flowing.
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CONCLUDING REMARKS:CONCLUDING REMARKS:

A normal shock wave is an extremely thin region at right 
angles to the flow across which large changes in the flow variables 
can occur. Although the flow within the shock wave is complex, it 
was shown that expressions for the overall changes across the 
shock can be relatively easily derived. It was also shown that 
entropy considerations indicate that only compressive shock 
waves, i.e., shock waves across which the pressure increases, can 
occur and that the flow ahead of the shock must be supersonic. It 
was also shown that the flow downstream of a normal shock wave 
is always subsonic. The analysis of normal shock waves that are 
moving through a gas was also discussed.


