Aging Heat Treatments of Ti-Nb and Ti-Nb-Sn Alloys

Rubens Claram Eder S. N. Lopes Alessandra Cremasco

Department of Materials Engineering University of Campinas Campinas, SP, Brazil

Campinas, SP, Brazil

University of Campinas

- Founded in 1966
- Strong tradition in education and in scientific research (15% of the Brazilian Scientific Production)
- 17,000 undergraduate and 16,000 graduate students

Outline

- Motivation to Study Ti Alloy Phase Transformations
 - Materials for Implant
- Ti Alloys Phase Transformations
- Experiments
- Results
 - Metastable Phase Formation: JEQ Experiments
 - Metastable Phase Decomposition: DSC, HTXRD
 - Aging Heat Treatment and Mechanical Behavior
 - Applications

Orthopedic Biomaterials

- Biomaterials market is estimated to be worth more than US\$ 300 billion and to be increasing 20% per year
- Orthopedic and dental applications represent 55% of the biomaterials market
- **2010**:
 - More than 4.4 million people with at least one internal fixation device
 - 1.3 million people with an artificial joint

Nanomedicine: Nanotechnology, Biology and Medicine 7 (2011) 22–39

Total Joint Replacement

- TJR surgical procedure: parts of a damaged joint are removed and replaced with prostheses
- Prosthesis is designed to enable the artificial joint to move just like a normal healthy joint

Total Hip Replacement

Bone Deformation

- Implant material must simulate bone elastic behavior
- Insufficient load transfer from the implant to the bone causes bone re-absorption and loosening of the implant
- Reduction of load applied to the bone causes bone mass loss and osteoporosis

316L Stainless Steel E = 200 GPa

Total Hip Replacement

- Femoral Stem:
 - Mechanical strength
 - Biocompatibility
 - Corrosion resistance
 - Bone elastic behavior
 - Low elastic modulus to avoid
 - " bone stress shielding"
 - E_{bone}: 10 30 GPa
 - E_{Ti-CP}: 110 GPa
 - E_{Ti-6AI-4V}: 106 GPa
 - E_{β-alloys} < 60 GPa

Objectives

- To discuss:
 - Orthorhombic martensite formation as function of composition and cooling rate
 - Phase precipitation during aging heat treatment
 - Microstructure and mechanical behavior
 - Application of phase transformations knowledge on Ti-based implants manufacturing

Phase Transformations in β Ti Alloys

Mestastable Phases

- α " phase: Martensitic phase formed during rapid cooling of β in high solute content alloys
- ω phase: Very small precipitate formed during cooling of β:
 - $ω_{athermal}$ formed on quenching, if the solute content is high enough to retain β
 - ω_{isothermal} formed during aging in a temperature range of 100°C to 400°C
 - $-\omega$ precipitation drastic embrittlement of Ti alloys

Heat Treatment

Decomposition of Retained β

Experiments

Alloy Compositions

Nominal (wt.%)	Measured (wt.%)		
Ti-30.0Nb	Ti-30.4Nb		
Ti-30.0Nb-2.0Sn	Ti-30.5Nb-2.1Sn		
Ti-30.0Nb-4.0Sn	Ti-30.6Nb-1.9Sn		

Experiments

High Temperature XRD

JEQ Experiments

JEQ Experiments

Effect of Sn addition

Aging Experiment

Thermal Analyses

- DSC of WQ Ti-30Nb sample with α " and β phases showed β decomposition:
 - Peak 1: reverse transformation α " $\rightarrow\beta$ Precipitation of ω in β matrix (end of peak 1)
 - Peak 2: nucleation of α : " ω acts as substrates"

- Peak 3: β transus

Elastic Modulus and Hardness

Elastic Modulus and Hardness

Elastic Modulus and Hardness

TEM - Ti-30Nb aged at 400°C/4 h

HRTEM image showing α" in β matrix

SADP: [214]β zone axis and [113] α" zone axis

Indexed SADP

Orthorhombic Symmetry Phase

- Intriguing observation: formation of orthorhombic symmetry phase during the aging of Ti-30Nb (400 °C/4 h).
- Ti-30Nb-2Sn alloys also showed precipitation of orthorhombic phase during aging heat treatment
- Ti-30Nb-4Sn does not seem to show precipitation of orthorhombic phase during aging heat treatment
- How was this orthorhombic phase formed?
 - Transition phase in metastable β decomposition?
 - Induced by air cooling?

Transition Phase

 Orthorhombic phase formation may be a transition phase which occurs during the decomposition of metastable β phase, and over certain composition range(s)

Transition Metastable Phase

- Decomposition of β metastable on aging in Ti-5553 alloy
- Depending on heating rates, three transformation sequences were found:
 - $0.1^{\circ}C/s: \beta \rightarrow \beta + \omega_{iso} \rightarrow \beta + \alpha" + \alpha \rightarrow \beta + \alpha$
 - 1°C/s: $\beta \rightarrow \beta + \alpha^{"} \rightarrow \beta + \alpha^{"} + \alpha \rightarrow \beta + \alpha$
 - Higher heating rate: $\beta \rightarrow \beta + \alpha$
 - A. Settefrati et al., Solid State Phenomena 173 (2011) 760

MSCH12

HTXRD

HTXRD

HTXRD

Mechanical Behavior

Alloy Condition	Phases (XRD)	συτs (MPa)	Elong (%)	E (GPa)	Hardness (VH)
Ti-30Nb WQ	β+α"+ω	532 ± 21	30 ± 7	74	199 ± 6
Ti-30Nb Aged	β+α+ω	846 ± 24	0.8 ± 0.1	105	424 ± 10
Ti-30Nb-2Sn WQ	β+α"	500 ± 32	36 ± 4.0	70	219 ± 5
Ti-30Nb-2Sn Aged	β+α+ω*	857 ± 22	0.8 ± 0.2	100	432 ± 15
Ti-30Nb-4Sn WQ	β+α"	531 ± 20	21.6 ± 1.2	62	211 ± 7
Ti-30Nb-4Sn Aged	β+α+ω**	850 ± 18	1.2 ± 4.3	101	387 ± 11
ω^* - small amount ω^{**} - very small amount					

Possible Applications of Ti-Nb-Sn Alloys

Femoral Stem Forging

- Femoral stem produced by hot forging
- T above 1000°C
- Alpha-case
- Oxidization
- Die degradation

Cold Forging

Screw for Implants

- Screws are made using Ti Alloys
- Screws are used in dental and orthopedic implants

Screw for Implants

- Usually, Ti alloys screws for implants are manufactured by machining because plastic deformation is challenging
- Ti Alloys: High yield strength and low elastic modulus = spring back phenomenon

Screw for Implants

 WQ Ti-Nb-Sn alloys with low yield strength allow one to use more conventional screw manufacturing processes:

Cross rolling

Hybrid Mechanical Behavior

Low elastic modulus

High Fatigue Strength High Yield strength

High Fatigue Strength High Yield strength High Corrosion Resistance

Selective Heat Treatment

Hybrid Mechanical Behavior

Conclusions

- WQ Ti-30Nb, Ti-30Nb-2Sn and Ti-30Nb-4Sn alloys showed β and α " and the amount of α " decreases with addition of Sn;
- α " decomposition results in precipitation of β , ω and α phases;
- Sn may act as a suppressor of ω phase precipitation;
- Orthorhombic symmetry phase formation not completely understood and more work (TEM and HTXRD) is needed to find its origin;
- (1h/1000°C/WQ) samples showed yield strength below 310 MPa (easy cold forging) - aged sample value increased up to 850 MPa
- (1h/1000°C/WQ) samples showed elastic modulus below 62 GPa
- Finally, besides stable phases, controlled precipitation of metastable phases is of paramount importance when designing Ti alloys for orthopedic applications

Acknowledgments

- Alessandra Cremasco and Eder Lopes
- Jim Williams, Hamish Fraser, Raj Banerjee, Soumya Nag and Dipankar Banerjee
- The State of São Paulo Research Foundation and the Brazilian National Council for Scientific and Technological Development for financial support

Questions?

