In Situ Aging Characterization of Ti Alloys Using High Temperature X-Ray Diffraction

Prof. Rubens Caram University of Campinas Brazil

5th International Conference on Diffusion in Solids and Liquids 24 – 26 June 2009 Rome, Italy

Introduction

- Orthopedic Implants
- Total Hip Replacement / THR Requiriments
- Bone Elastic Deformation / Implant Elastic Modulus
- Ti Alloys Phase Transformations
- Objectives
- Experiments
- Results
 - High Temperature X-Ray Diffraction
 - **DSC**
 - Aging Heat Treatment and Mechanical Behavior
 - Cold Forged Femoral Stem
- Conclusions

Introduction

Concept of implanting materials in the human body is not new

Ancient Egypt

mummified foot with an artificial wooden toe

Ancient Egypt

dental implant

in mummies

Ancient mediterranean civilization

dental bridge

Orthopedic Implants

- Orthopedic biomaterials are successful in restoring mobility and quality life to millions of individuals each year
- Success of orthopedic biomaterials may be exemplified by their world market:
 - Annual growth rate of 7% to 9%
 - 2002 Sales of US\$ 14 billion
 - Joint replacements: US\$ 12 billion
 - Hip implant products: 2.5 billion
 - (700,000 knee replacement surgeries)
 - Knee implant products: US\$ 2.5 billion
 - (700,000 knee replacement surgeries)

Total Joint Replacement

ROME, Italy DSL-2009 24-26 June 2008

TJR is a surgical procedure in which certain parts of an arthritic or damaged joint, are removed and replaced with a plastic or metal device called a prosthesis

Prosthesis is designed to enable the artificial joint to move just like a normal, healthy joint.

R. Caram - 5

ROME, Italy DSL-20 24/26 June 201

Total Hip Replacement

Hip joints and adjacent skeletal components

Total hip replacement

Implant after surgery

THR Requiriments

- Biomaterials must show the following properties:
 - High mechanical strength
 - Processability
 - Low prices
 - High biocompatibility
 - High corrosion resistance
 - Must simulate bone elastic behavior
 - → low elastic modulus
 E_{stainless steel}: 200 GPa
 - ECo-Cr-Mo Alloys: 230 GPa
 - **E**Ti-CP: **110 GPa**
 - **E**_{Ti-6AI-4V}: 106 GPa
 - **E**_{β-alloys}: <60 GPa
 - Ebone: 10 30 GPa

Bone Elastic Deformation

- Implant material must simulate bone elastic behavior
- Insufficient load transfer from the implant to the bone causes bone re-absorption and loosening of the implant device
- Reduction of load applied to the bone causes bone mass loss and osteoporosis

Bone fracture

Stainless steel 316L E = 200 GPa

Objectives

- The main aim of this research is to investigate β titanium alloys to be used as orthopedic biomaterials
- This work attempts to examine phase transformations during aging heat treatment of β Ti-Nb alloys with Sn additions and to correlate microstructure and mechanical behavior using high temperature X-ray diffraction.

Titanium Metallurgy

- Titanium shows two allotropic forms: HCP and BCC
- Addition of alloy elements may change the phase stability and hence, the microstructure and mechanical behavior

883 °C

BCC (β)

β Titanium Alloy

β Ti alloys

β Stabilizer elements: Cr, Nb, V, Ta, Mo HIGH STRENGTH-TO-DENSITY RATIO LOW ELASTIC MODULUS **HIGH STRENGTH HIGH TOUGHNESS BIOCOMPATIBILITY EASY TO HEAT TREAT EXCELLENT CORROSION RESISTANCE** LOW FORGING TEMPERATURE

Ti Alloys Phase Transformations

Alloy Preparation

Alloys were prepared by using high purity Ti, Nb and Sn
 Alloys were melted in arc furnace with non-consumable W electrode and water cooled copper hearth under Ar atmosphere

R. Caram - 13

Alloy Composition

	(Ph)		
Nominal (%wt)	Measured (%wt) Ti-30.4Nb Ti-30.5Nb-2.1Sn		
Ti-30.0Nb			
Ti-30.0Nb-2.0Sn			
Ti-30.0Nb-4.0Sn	Ti-30.6Nb-1.9Sn		

Processing Route

DME, Italy

Sample Characterization

- Alloys chemical composition: X-ray fluorescence spectrometry
- Phase transformations : differential scanning calorimetry
- Phase detection: X-ray diffraction
- Phase evolution (Aging): high temperature X-ray diffraction
- Metallographic preparation: mechanical grinding using SiC sandpaper up to 1200 mesh, polishing with 6 and 1 µm diamond paste
- Samples were etched in a Kroll's solution: 5 % vol HF, 30 % vol HNO₃ and 65 % vol H₂O

Effect of Sn on a" Amount

Effect of Sn addition on the amount of martensite

α " Decomposition

In Situ Aging Characterization of Ti Alloys Using High Temperature X-Ray Diffraction K α Co: λ =0.17890 nm

R. Caram - 18 UNICAMP

α " Decomposition

Mechanical Behavior

Mechanical Behavior

R. Caram - 21 UNICAME

Mechanical Behavior

R. Caram - 22 UNICAME

Tensile Test: Mechanical Properties

Effect of aging on mechanical behavior

Alloy Condition	Phases (XRD)	συτs (MPa)	Elong (%)	E (GPa)	Hardness (HV)
Ti-30Nb Full β	β+ ω	532 ± 21	30 ± 7	74	199 ± 6
Ti-30Nb Aged	β+α+ω	826 ± 24	0.8 ± 0.1	105	424 ± 10
Ti-30Nb-2Sn Full β	β	500 ± 32	36 ± 4.0	70	219 ± 5
Ti-30Nb-2Sn Aged	β+α+ω*	857 ± 22	0.8 ± 0.2	100	432 ± 15
Ti-30Nb-4Sn Full β	β	531 ± 20	21.6 ± 1.2	62	211 ± 7
Ti-30Nb-4Sn Aged	β+α+ω**	937 ± 18	1.2 ± 4.3	101	387 ± 11

 ω^* - small amount

 ω^{**} - very small amount

Cold Forged Femoral Stem using Ti-30Nb-4Sn alloy

Optimized Mechanical Behavior

- Problem: When using aging process, it is virtually impossible to obtain a β Ti alloy with high mechanical strength and low elastic modulus
- Solution: Application of different heat treatment procedures according to the region of the prosthesis

Conclusions

- In WQ condition (1h/1000°C/WQ) the microstructure of Ti-30Nb, Ti-30Nb-2Sn and Ti-30Nb-4Sn alloys was formed by β and α" phase and the amount of α" decreases with increase of Sn;
- Aging procedure allowed to verify that α " decomposition results in precipitation of β , ω and finally, α phases;
- Results suggest that Sn may act as a suppressor of ω phase precipitation, which allows the control of microstructure features and hence, mechanical properties
- While rapid quenched Ti-Nb-Sn samples showed yield strength below 310 MPa, which makes easier cold forging process, whose aged sample value increased up to 900 MPa
- Full β alloy showed elastic modulus below of 62 GPa
- These final values are very suitable in terms of orthopedic biomaterial applications

Questions??

