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• Eutectic alloys allow the developing of in 
situ composite for structural applications 

• This material consists of phases 
embedded in a matrix that do not 
dissolve in each other and are physically 
separated by a sharp interface between 
them 

• This composite material provides the 
opportunity of merging the properties of 
distinct constituents into one material.    

 

 

Eutectic Alloys 
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• Growth of eutectic alloys is an effective 
method in obtaining in situ composite 
materials 

• In situ composites generally have a high 
degree of thermal stability and improved 
mechanical properties 

• D.S. eutectic alloys results in regular 
structure of two or more solid phases 

• Eutectic solidification leads to 
cooperative growth 

Eutectic Growth 



 

While the  phase segregates B, the  phase rejects A  

Such a phenomenon leads to a solute build up in the 
liquid in front of the  e  phases and hence, to 

lateral solute diffusion of A and B 

 phase 

Cooperative Growth 

 phase 
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Growth of CBr4-C2Cl6 eutectic organic alloy 

V Liquid Solid 

 

Hot Cold 

S/L Interface 

J.D. Hunt and K.A. Jackson – Bell Laboratories – 60’s 

Eutectic Growth 
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Previous Studies 

Ni-Ni3Si - Lamellar 

Al3Nb-Nb2Al - Lamellar 

Ni-Al-Mo - Rod-like 

Al3Nb-Nb2Al-AlNiNb - Ternary 



 Lamellar Eutectic Growth 
L↔ (Ni) e 3(Ni3Si)  

Longitudinal Transverse 

Eutectoid 

Decomposition 

Journal of Crystal Growth 198/199 (1999) 844 
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 Lamellar Eutectic Growth 

Materials Characterization 54 (2005) 187 

Eutectic Transformation 

1595oC / Al-42.2Nb at% 

L↔ Al3Nb–Nb2Al 

20 μm 

20 μm 

Longitudinal 

Transverse 
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Rod-Like Eutectic Growth 

Eutectic Transformation 

1600oC / NiAl-10Mo at% 

L↔ NiAl–Mo 

Journal of Alloys and Compounds 381 (2004) 91 

Longitudinal 

Transverse 
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Ternary Eutectic Growth 

Eutectic Transformation 1520oC / Al-40.4Nb-2.4Ni at% 
L↔ Al3Nb–Nb2Al-AlNbNi 

Scripta Materialia 48 (2003) 1495 
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Ternary Eutectic Growth 

Atom distribution by X-Ray Maps 
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Ternary Eutectic Growth 

Materials Characterization 59 (2008) 693 

3D reconstruction 

of the ternary 

eutectic 

microstructure 

using the serial 

sectioning 

technique 
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Ternary Eutectic Growth 

Materials & Design 33 (2012) 563 

Longitudinal 

Transverse 
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Graphite 

Ingot 
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Crucible 

• D.S. of eutectics was carried out by using a 
vertical Bridgman furnace, in Al2O3 crucibles (0.8 
ID x 1.0 cm OD and 6.0 cm long) 

 

 

 

 

 

 

 

 

 

• Ti alloys can not be processed in Al2O3 crucibles 

Directional Solidification 
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• Mechanical performance of Ti can be 

considerably enhanced by combining it and 

Fe, causing an eutectic transformation: 

 

 

 Ti: ductile BCC phase 

 TiFe: high strength phase 
• Directional solidification was carried out in a 

setup that employs a water-cooled copper 

crucible combined with a voltaic electric arc 

moving through the sample. 

Ti-Fe System 

L↔ Ti–TiFe      1095oC/Ti-32.5Fe wt% 
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A ssessed  T i - F e p h ase d iag r am .Ti-Fe System 



 

• Arc furnace with non-consumable W 
electrode and water cooled copper hearth 
under Ar atmosphere. 

 

 

Crucible 

Electrode 

Sample Preparation 
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Nominal (at.%) 

Ti-32.5 Fe 



 Directional Solidification 

Tungsten 

Electrode 

Liquid 

Pool 

Water 

Cooled 

Crucible 

Sample 

Spindle 

• Arc furnace with a nonconsumable W 
electrode that moves longitudinally along the 
ingot at different rates 
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• Three solidification rates chosen: 

 V=10, 30 and 60 mm/h.             

 

Directional Solidification 

23 



 

24 

• Chemical composition 

• X-ray fluorescence spectrometry - Rigaku RIX 3100 

• Oxygen and nitrogen - LECO TC-400 analyzer 

• Phase transformations 

• Differential thermal analysis - Netzsch STA 409  

• Microstructure characterization 

• Scanning electron microscopy - Zeiss EVO 15 

• Transmission electron microscopy - JEOL JEM 
2100  

• X-ray diffraction - PANalytical X’Pert 

• Mechanical characterization 

• Vickers Hardness test – Buehler 2100 

• Nano-indentation – NHT – CSM Instruments 

• Compressive tests – EMIC DL2000 

 

 

Sample Characterization 
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• Chemical composition: 

• X-ray fluorescence spectrometry - Rigaku RIX 3100 

• Oxygen and nitrogen - LECO TC-400 analyzer 

very low interstitial  

contamination 

Chemical Composition 

Nominal (at.%) Measured (at.%) 

Ti-32.5 Fe Ti-32.8 Fe 

Ti O (wt.%) N (wt.%) 

Balance 0.0855 0.014725 



 

• DTA - Ti-32.5Fe eutectic alloy 

• Heating rate of 10oC/min 

• Al2O3 Crucible 

• Helium  

 
620oC 

1080oC 

1120oC 

Ti-Fe Phase Diagram  

Eutectic  

Eutectoid  

Primary  

Phase  
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Phase Transformations 



 

• SEM micrographs of the Ti–Fe eutectic alloy in 
the as-cast condition 

 

Eutectic Microstructure 

 phase 

(dark gray) 

TiFe - Intermetallic Phase 

(light gray) 
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As-Cast Condition 
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XRD Patterns 

• XRD patterns of Ti–Fe eutectic alloys in as-cast 
and directionally solidified (DS) conditions 

 

aDS<aAs-cast 



 

• TEM micrographs in bright field mode and SADP 

 

[113]TiFe // [113] 
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TEM Analysis 



 

• SEM micrographs showing transverse and 
longitudinal cross-sections at different rates 
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Solidification Rate 



 

• Relationship between the average interspace and 
the solidification rate of d.s. Ti-Fe eutectic alloy 

10 mm/h 

30 mm/h 

60mm/h 

 
2.v=22.3x10-15 m3h-1 
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Solidification Rate 



 

• Evolution of hardness with interphase spacing 
versus Vickers microhardness (HVmicro) and 
nanohardness (HVnano). 

EE=110 to 177 GPa 

 

ETiFe = 137 GPa   
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Mechanical Tests 

Nano-indentation: 

Three-sided Berkovich 

diamond indenter and 

applying a maximum 

load of 500 Mn: 



 

• Compressive mechanical properties 
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Compression tests: 

• Strain rate of 8x10-3s-1 

• Samples 4 mm high 
and 2 mm in diameter 

Mechanical Tests 

10 mm/h 

30 mm/h 

60mm/h 
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Conclusions 
New experimental setup was applied to D.S. of 
Ti-Fe eutectic: 

• No oxygen contamination 

• No evidence of oxygen rich phase 

• Well aligned eutectic microstructure 

• Eutectic transformation at 1080oC 

• TEM/SADP 

  → orientation relationship: (113)║(113)TiFe 

• 2v=22.3 x 10-15 m3/h 

• EE varies from 110 to 177 GPa 

• UTS varies from 1844 to 3000 MPa 

• Ductility varies from 21.5 to 25.2 % 
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