Microstructure and Mechanical Properties of Directionally Solidified Ti-Fe Eutectic Alloy

Rodrigo Contieri, Eder Lopes and <u>Rubens Caram</u> University of Campinas, Brazil

Washington, DC October, 2012

- Founded in 1966
- Strong tradition in education and in scientific research (15% of the Brazilian Scientific Production)
- 17,000 undergraduate and 16,000 graduate students

Outline

- Eutectic Alloys
- Eutectic Growth in Metallic Systems
- Eutectic Arrangements
 - Previous Studies:
 - Ni-Si; Al-Nb; Ni-Al-Mo; Al-Nb-Ni
- Ti-Fe Eutectic Alloy
- Results D.S. of Ti-Fe Eutectic Alloy
 - DS based on Arc Melting Equipment
 - Microstructure
 - Mechanical Behavior
 - Conclusions

Eutectic Alloys

- Eutectic alloys allow the developing of in situ composite for structural applications
- This material consists of phases embedded in a matrix that do not dissolve in each other and are physically separated by a sharp interface between them
- This composite material provides the opportunity of merging the properties of distinct constituents into one material.

Eutectic Growth

- Growth of eutectic alloys is an effective method in obtaining in situ composite materials
- In situ composites generally have a high degree of thermal stability and improved mechanical properties
- D.S. eutectic alloys results in regular structure of two or more solid phases
- Eutectic solidification leads to <u>cooperative growth</u>

Cooperative Growth

While the α phase segregates B, the β phase rejects A Such a phenomenon leads to a solute build up in the liquid in front of the α e β phases and hence, to lateral solute diffusion of A and B

Eutectic Growth

Growth of CBr₄-C₂Cl₆ eutectic organic alloy

J.D. Hunt and K.A. Jackson – Bell Laboratories – 60's

Previous Studies

Ni-Ni₃Si - Lamellar Al₃Nb-Nb₂Al - Lamellar Ni-Al-Mo - Rod-like $Al_3Nb-Nb_2Al-AlNiNb - Ternary$

Lamellar Eutectic Growth

 $L \leftrightarrow \alpha(Ni) \in \beta_3(Ni_3Si)$

Journal of Crystal Growth 198/199 (1999) 844

Eutectic Transformation 1595°C / AI-42.2Nb at%

Materials Characterization 54 (2005) 187

L↔ NiAl–Mo

Eutectic Transformation 1600°C / NiAI-10Mo at%

Journal of Alloys and Compounds 381 (2004) 91

Rod-Like Eutectic Growth

NiAl-Mo In Situ Composite

L↔ Al₃Nb–Nb₂Al-AlNbNi Eutectic Transformation 1520°C / Al-40.4Nb-2.4Ni at%

Scripta Materialia 48 (2003) 1495

Ternary Eutectic Growth

Atom distribution by X-Ray Maps

Ternary Eutectic Growth

3D reconstruction of the ternary eutectic microstructure using the serial sectioning technique

SFC

Materials Characterization 59 (2008) 693

Directional Solidification

D.S. of eutectics was carried out by using a vertical Bridgman furnace, in Al₂O₃ crucibles (0.8 ID x 1.0 cm OD and 6.0 cm long)

Ti alloys can not be processed in Al₂O₃ crucibles

Ti-Fe System

 Mechanical performance of Ti can be considerably enhanced by combining it and Fe, causing an eutectic transformation:

L↔ βTi–TiFe 1095°C/Ti-32.5Fe wt% βTi: ductile BCC phase TiFe: high strength phase Directional solidification was carried out in a setup that employs a water-cooled copper crucible combined with a voltaic electric arc moving through the sample.

Sample Preparation

 Arc furnace with non-consumable W electrode and water cooled copper hearth under Ar atmosphere.

Directional Solidification

Arc furnace with a nonconsumable W electrode that moves longitudinally along the ingot at different rates

Directional Solidification

Three solidification rates chosen: V=10, 30 and 60 mm/h.

Sample Characterization

- Chemical composition
 - X-ray fluorescence spectrometry Rigaku RIX 3100
 - Oxygen and nitrogen LECO TC-400 analyzer
- Phase transformations
 - Differential thermal analysis Netzsch STA 409
- Microstructure characterization
 - Scanning electron microscopy Zeiss EVO 15
 - Transmission electron microscopy JEOL JEM
 2100
 - X-ray diffraction PANalytical X'Pert
- Mechanical characterization
 - Vickers Hardness test Buehler 2100
 - Nano-indentation NHT CSM Instruments
 - Compressive tests EMIC DL2000

Chemical Composition

- Chemical composition:
 - X-ray fluorescence spectrometry Rigaku RIX 3100
 - Oxygen and nitrogen LECO TC-400 analyzer

Primary Phase

Phase Transformations

- DTA Ti-32.5Fe eutectic alloy
- Heating rate of 10°C/min
- Al₂O₃ Crucible
- Helium

As-Cast Condition

 SEM micrographs of the Ti–Fe eutectic alloy in the as-cast condition

XRD Patterns

XRD patterns of Ti–Fe eutectic alloys in as-cast and directionally solidified (DS) conditions

TEM Analysis

TEM micrographs in bright field mode and SADP

Solidification Rate

 SEM micrographs showing transverse and longitudinal cross-sections at different rates

Solidification Rate

 Relationship between the average interspace and the solidification rate of d.s. Ti-Fe eutectic alloy

Mechanical Tests

 Evolution of hardness with interphase spacing versus Vickers microhardness (HVmicro) and nanohardness (HVnano).

Mechanical Tests

Compressive mechanical properties •

λ (μm)	Ultimate stress σ_{max} (MPa)	Yield strength σ_y (MPa)	Yield strain e _y (%)	Fracture strain ɛ _f (%)
0.7	3000 ± 137	1926 ± 69	11.7 ± 1	25.2 ± 2
1.0	2494 ± 161	1790 ± 124	8.5 ± 1	23.0 ± 1
1.5	1844 ± 101	1644 ± 72	8.1 ± 1	21.6 ± 1

Compression tests:

- Strain rate of 8x10⁻³s⁻¹
- Samples 4 mm high and 2 mm in diameter

Conclusions

New experimental setup was applied to D.S. of Ti-Fe eutectic:

- No oxygen contamination
- No evidence of oxygen rich phase
- Well aligned eutectic microstructure
- Eutectic transformation at 1080°C
- TEM/SADP
 - \rightarrow orientation relationship: (113)_{β} (113)_{TiFe}</sub>
- λ²v=22.3 x 10⁻¹⁵ m³/h
- E_E varies from 110 to 177 GPa
- σ_{UTS} varies from 1844 to 3000 MPa
- Ductility varies from 21.5 to 25.2 %

Acknowledgments

- The State of São Paulo Research Foundation
- The Brazilian National Council for Scientific and Technological Development for financial support

2014 World Cup

Visit Brazil

Olympic Games Rio 2016

