

University of Campinas, Brazil

Effects of Aging Heat Treatment on the Microstructure of Ti-Nb and Ti-Nb-Sn Alloys Employed as Biomaterials

E.S.N. Lopes, A. Cremasco, R. Contieri and R. Caram

Mediterranean Conference on Innovative Materials and Applications 15 – 17 March 2011 Beirut - Lebanon

University of Campinas, Brazil

CIMA 2011 #2

```
UNICAMP
```

Outline

Introduction

- Orthopedic Implants
- Total Hip Replacement Requiriments
- Bone Elastic Deformation
- Ti Alloys Phase Transformations
- Objectives
- Experiments
- Results
 - DSC
 - High Temperature X-Ray Diffraction
 - Aging Heat Treatment and Mechanical Behavior
 - Cold Forged Femoral Stem
- Conclusions

Introduction

Concept of implanting materials in the human body is not new

Ancient Egypt

mummified foot with an artificial wooden toe

Ancient Egypt

dental implant

in mummies

Ancient mediterranean civilization

dental bridge

Total Joint Replacement

TJR is a surgical procedure in which certain parts of a damaged joint, are removed and replaced with a plastic or metal device called a prosthesis

Prosthesis is designed to enable the artificial joint to move just like a healthy joint

Total Hip Replacement

Hip joints and adjacent skeletal components

Total hip replacement

Implant after surgery

CIMA 2011 #6

Total Hip Replacement

CIMA 208.10 Tram - 7

Bone Elastic Deformation

- Implant material must simulate bone elastic behavior
- Wolff's Law: Bone modifies its internal architecture and external shape as a result of mechanical stress
- Insufficient load transfer from the implant to the bone causes bone mass loss and osteoporosis

Healthy bone

Bone with osteoporosis

Bone fracture

Total Hip Replacement Requirements

Objectives

To discuss phase transformations in β Ti-Nb-Sn alloys:

- α phase precipitation during aging heat treatment of metastable microstructures
- Correlation between microstructure and mechanical behavior
- Application of phase transformations knowledge in Ti-based femoral stem manufacturing

Titanium Metallurgy

Titanium shows two allotropic forms: HCP and BCC

Addition of alloying elements may change the phase stability and hence, the microstructure and mechanical behavior

(110)

BCC (β) 883 °C

ΗCΡ (α)

β Titanium Alloy

β Ti alloys

β Stabilizer elements: Cr, Nb, V, Ta, Mo HIGH STRENGTH-TO-DENSITY RATIO LOW ELASTIC MODULUS **HIGH STRENGTH HIGH TOUGHNESS** BIOCOMPATIBILITY **EASY TO HEAT TREAT EXCELLENT CORROSION RESISTANCE** LOW FORGING TEMPERATURE

Ti Alloys Phase Transformations

MECHANICAL PROPERTIES OF Ti ALLOYS

Processing Route

Alloy Compositions: Ti-30Nb and Ti-30Nb-2Sn (wt. %)

Effect of Sn on α " Amount

Microstructure = orthorhombic martensite (α ") and β phase.

Small amount of nanometric precipitates of ω in Ti-30Nb.

CIMA 2011 #15

Martensite Decomposition

Thermal Analysis – DSC

- WQ Ti-30Nb and Ti-30Nb-2Sn samples with α " and β phases
- **Peak 1: reverse transformation** α " $\rightarrow \beta$
- Precipitation of ω in β matrix (end of peak 1)
- Peak 2: nucleation of α "ω act as substrates"
- Peak 3: β transus

Martensite Decomposition: Ti-30Nb

High Temperature X-Ray Diffraction

 Martensite decomposition occurred with the aging time
 Reverse

transformation of α " into β phase also took place

Precipitation of α and ω phases is visible by high temperature XRD

CIMA 2011 #17

Martensite Decomposition: Ti-30Nb-2Sn

High Temperature X-Ray Diffraction

- Martensite decomposition occurred with the aging time
 Reverse transformation of α" into β phase also took place
 No precipitation of ω
- phase is observed by high temperature XRD

Mechanical Behavior: Ti-30Nb

Mechanical Behavior: Ti-30Nb-2Sn

Tensile Test: Mechanical Properties

Effect of aging on mechanical behavior

Alloy	Phases	συτs	Elong	E	Hardness
Condition	(XRD)	(MPa)	(%)	(GPa)	(VH)
Ti-30Nb	α"+β+ω	332 ± 21	30 ± 7	74	299 ± 6
Ti-30Nb Aged	β+α+ω	826 ± 24	0.8 ± 0.1	105	430 ± 10
Ti-30Nb-2Sn	α"+β	300 ± 32	36 ± 4.0	67	219 ± 5
Ti-30Nb-2Sn Aged	β+α+ω**	800 ± 22	3.0 ± 0.2	85	390 ± 15

 ω^{**} - very small amount

Cold Forged Femoral Stem using Ti-30Nb-2Sn alloy

Conclusions

- Microstructure of WQ Ti-30Nb and Ti-30Nb-2Sn was formed by β and α" phase and the amount of α" decreases with increase of Sn;
- Aging caused α " decomposition and precipitation of β , ω and α phases;
- Results suggest that Sn may act as a suppressor of ω precipitation, which allows the control of microstructure features and hence, mechanical properties
- WQ Ti-Nb-Sn sample showed yield strength near 300 MPa, which makes easier cold forging process, whose aged sample value increased up to 800 MPa
- Aged Ti-Nb-Sn alloy showed elastic modulus of 85 GPa
- These final values are very suitable in terms of orthopedic biomaterial applications

Questions??

