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Chapter 1

INTRODUCTION

1.1 Motivation

Turbulence is a phenomenon that occurs frequently in nature, and has been the subject of study for
several centuries. In 1510, Leonardo da Vinci accompanied a drawing of the vortices shed behind a blunt
obstacle (Fig. 1.1) with the following observation:

Observe the motion of the water surface, which resembles that of hair, that has two motions:
one due to the weight of the shaft, the other to the shape of the curls; thus, water has eddying
motions, one part of which is due to the principal current, the other to the random and reverse
motion.

Although based entirely on speculation, and not accompanied by a mathematical analysis, this observation
may be seen as a precursor to Reynolds' decomposition of velocity, pressure and other variables into mean
and 
uctuating parts.

Figure 1.1: Sketch from Leonardo da Vinci's notebooks.

Over the one-hundred and twenty years since Osborne Reynolds' experiments, much progress has
been made. Statistical theories of turbulence have provided good understanding of the scaling laws
in various 
ow regimes. Experimental studies have given great insight in the understanding of the
structure of turbulent 
ows, particularly in the identi�cation of the coherent eddies responsible for most
of the energy production. Measurement techniques can now give single-point measurements of velocity
and velocity gradient components using Laser-Doppler velocimetry or multiple wire anemometers, or
velocity distributions in a plane, through Particle-Image or Particle-Tracking Velocimetry. A signi�cant
contribution to this progress, over the last thirty years, is due to the development of advancement
numerical simulation methods for turbulent 
ows, such as the direct and large-eddy simulation. These
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techniques have made available data that had never been measurable previously: multi-point, unobtrusive
measurements of velocity, velocity gradients, pressure, passive scalars etc. Although only over the last few
years these techniques (and especially LES) have been used for more engineering-oriented con�gurations,
the knowledge that has been gained from their application to simple, building-block 
ows, has been
invaluable. Databases obtained from direct simulations have been used extensively for model validation
and development, and have provided new insight on the physics of turbulent 
ows.

As the prediction and control of turbulent 
ows become increasingly important, the need for accurate
models of turbulent 
ows is presently the pacing item for the development of design and analysis tools
for the applications mentioned above. Large-eddy and direct simulations are two of the tools that can be
used by the research and engineering communities to make inroads into this important problem.

1.2 Simulation techniques

Analytical or numerical solution of turbulent 
ow problems can be accomplished using various levels of
approximation, yielding more or less detailed descriptions of the state of the 
ow. The simplest approach
is to use semi-empirical correlations. Moody's diagram, which gives the skin friction factor for cylindrical
pipes as a function of Reynolds number and relative roughness, is an example of this approach, which
is especially useful for global, control-volume analyses, but yields no information on local quantities and
relies heavily on the availability of experimental data in con�gurations similar to the one under study.

A more sophisticated method involves the use of Reynolds' averaging: the long-time average of a
quantity f is de�ned as

hfi =
1

T

Z t+T

t

f(�)d�; (1.1)

where T is a time interval much longer than all the time scales of the turbulent 
ow. The averaging
operation de�ned above permits one to decompose any quantity into its mean part, hfi, and a 
uctuating
part, f � hfi. If the averaging operation (1.1) is applied to the equations of motion, one obtains the
well-known Reynolds-averaged Navier-Stokes equations (RANS), that describe the evolution of the mean
quantities. The e�ect of turbulent 
uctuations appears in a Reynolds stress term that must be modeled to
close the system. A very wide range of models for the Reynolds stresses is available, ranging from simple,
algebraic models, to K�" models, to full or algebraic Reynolds stress closures. The solution of the RANS
equations is now used in engineering applications to predict the 
ow in fairly complex con�gurations.

This approach su�ers from one principal shortcoming: the fact that the model must represent a very
wide range of scales. While the small scales tend to depend only on viscosity, and may be somewhat
universal, the large ones are a�ected very strongly by the boundary conditions (see, for instance, the
di�erence between the spanwise rollers present in mixing layers and wakes and the elongated streamwise
vortices that are found in the near-wall region of a turbulent boundary layer). Thus, it does not seem
possible to model the e�ect of the large scales of turbulence in the same way in 
ows that are very
di�erent.

Direct numerical simulations (DNS) of turbulence are the most straightforward approach to the solu-
tion of turbulent 
ows. In DNS the governing equations are discretized directly, and solved numerically.
If the mesh is �ne enough to resolve the smallest scales of motion, one can obtain an accurate three-
dimensional, time-dependent solution of the governing equations completely free of modeling assumptions,
and in which the only errors are those introduced by the numerical approximation. DNS makes it pos-
sible to compute and visualize any quantity of interest, including some that are diÆcult or impossible
to measure experimentally, and to study the spatial relationships between 
ow variables (for instance,
vorticity and energy production), to obtain insight on the detailed kinematics and dynamics of turbulent
eddies.

DNS have been a very useful tool for the study of transitional and turbulent 
ow physics, but they have
some limitations. First, the use of highly accurate, high-order schemes is desirable to limit dispersion and
dissipation errors; these schemes (spectral methods, for example) tend to have little 
exibility in handling
complex geometries and general boundary conditions. Secondly, to resolve all the scales of motion, one
requires a number of grid points proportional to the 9/4 power of the Reynolds number, Re, and the
cost of the computation scales like Re3 (see the discussion on the resolution requirements for LES and
DNS in Section 3.1). For these reasons, DNS have largely been limited to simple geometries (
at plate,
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homogeneous 
ows) at low Reynolds numbers, and its application to engineering-type problems within
the next decade appears unlikely.

Large-eddy simulations (LES) are a technique intermediate between the direct simulation of turbulent

ows and the solution of the Reynolds-averaged equations. In LES the contribution of the large, energy-
carrying structures to momentum and energy transfer is computed exactly, and only the e�ect of the
smallest scales of turbulence is modeled. Since the small scales tend to be more homogeneous and
universal, and less a�ected by the boundary conditions than the large ones, there is hope that their
models can be simpler and require fewer adjustments when applied to di�erent 
ows than similar models
for the RANS equations.

LES are similar to DNS in that they provide a three-dimensional, time dependent solution of the
Navier-Stokes equations. Thus, they still require fairly �ne meshes. However, they can be used at much
higher Reynolds numbers than DNS; ideally, in fact, if the small scales obey inertial-range dynamics, the
cost of a computation is independent of Re (not, however, if a solid boundary is present). Among the
objectives of LES are to provide data for lower-level turbulence models at Reynolds numbers beyond the
reach of DNS, and to study more complex physics than can be addressed by DNS, in con�gurations closer
to those of engineering interest.

In the past, the engineering community has mostly performed fairly well-resolved LES calculations of
relatively simple 
ows, while in the meteorological community coarser calculations in which the resolution
was inadequate near the solid boundaries have been prevalent. Although during the last decade the
development of new, more accurate models for the unresolved scales has allowed the simulation of 
ows
in more complex con�gurations than previously possible, the application of LES to actual technological
applications hinges on the development of more eÆcient methodologies to represent the region near solid
boundaries.

1.3 Objectives and plan

Purpose of these notes is to give the reader a 
avor of the current state of LES and DNS. Over the
next Chapters the required tools will be presented: governing equations, numerical methods, boundary
conditions, resolution requirements will be discussed, and some achievements and applications of DNS
will follow. Then, the discussion will be focused on the LES approach: several subgrid-scale models will
be introduced, applications and future challenges will be presented. Some �nal remarks will conclude
these notes.

The notes should be viewed as a tutorial, not as a comprehensive review of the area. The reader
interested in more in-depth discussions of the subject is addressed to several recent reviews, in particular
those by Lesieur & M�etais (1995), Piomelli & Chasnov (1996), Moin (1997), Moin & Mahesh (1998),
Piomelli (1999) and Meneveau & Katz (2000).
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Chapter 2

PROBLEM FORMULATION

2.1 The Navier-Stokes equations

The equations governing the conservation of mass, momentum and energy in a viscous, Newtonian 
uid
are, in the absence of body forces:

@�

@t
+

@

@xj
(�uj) = 0 (2.1)

@�ui
@t

+
@

@xj
(�uiuj) = �

@p

@xi
+

@

@xj

�
�

�
2Sij �

2

3
ÆijSkk

��
(2.2)

@e

@t
+

@

@xj
(uje) =

@Q

@t
�

@

@xj

�
�
@T

@xj

�
; (2.3)

where ui is the velocity,1 p the pressure, � the density of the 
uid, � its viscosity, e = cvT + �uiui=2
is the total energy per unit volume, cv is the speci�c heat at constant volume, and T the temperature,
@Q=@t is the heat generation per unit volume, � = �=�cp is the molecular conductivity, cp is the speci�c
heat at constant pressure, � is the thermal di�usivity, and Sij is the strain-rate tensor

Sij =
1

2

�
@ui
@xj

+
@uj
@xi

�
: (2.4)

An equation of state and a relationship that gives the viscosity as a function of the other state variables
(Sutherland's law, for instance) close the system. For incompressible 
ows2 with constant properties
(2.1-2.3) reduce to

@uj
@xj

= 0 (2.5)

@ui
@t

+
@

@xj
uiuj = �

1

�

@p

@xi
+ �r2ui; (2.6)

@T

@t
+

@

@xj
ujT = �r2T: (2.7)

where � = �=�; the equation for the temperature is decoupled from the momentum and mass conservation
equations, in the absence of buoyancy e�ects.

2.2 The �ltered Navier-Stokes equations

To separate the large from the small scales, LES is based on the de�nition of a �ltering operation: a
�ltered (or resolved, or large-scale) variable, denoted by an overbar, is de�ned as

f(x) =

Z
D

f(x0)G(x;x0)dx0; (2.8)

1Einstein's summation convention applies to repeated indices.
2The extension to compressible 
ows will be discussed in Section 7.1.
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Figure 2.1: Typical �lter functions. : sharp Fourier cuto�; : truncated Gaussian; : tophat.

(a) real space; (b) Fourier space.

where D is the entire domain and G is the �lter function. The �lter function determines the size and
structure of the small scales. It is easy to show that, if G is a function of x� x0 only, di�erentiation and
the �ltering operation commute (Leonard 1974).

The most commonly-used �lter functions are the sharp Fourier cuto� �lter, best de�ned in wave
space3 bG(k) = � 1 if k � �=�

0 otherwise;
(2.9)

the Gaussian �lter,

G(x) =

s
6

��
2
exp

�
�
6x2

�
2

�
; (2.10)

and the tophat �lter in real space:

G(x) =

�
1=� if jxj � �=2
0 otherwise;

(2.11)

These three �lters and their Fourier transforms bG(k) are shown in Fig. 2.1. It should be noticed that in
practice the Gaussian �lter is always used in conjunction with a sharp Fourier cuto�; the truncation of
the Gaussian at a non-negligible value is the cause for the ringing observed in the �gure. For uniform
�lter width4 � the �lters above are mean-preserving and commute with di�erentiation.

To illustrate the di�erence between the �lters de�ned above they are applied to a test function
obtained from random noise with a given spectrum; the spectra of the �ltered variables are shown in
Fig. 2.2. The tophat and Gaussian �lters give similar results; in particular, they both smooth the large-
scale 
uctuations as well as the small-scale ones, unlike the Fourier cuto�, that only a�ects the scales
below the cuto� wave-number.

If the �ltering operation (2.8) is applied to the governing equations, one obtains the �ltered equations
of motion, which are solved in large-eddy simulations. For an incompressible 
ow of a Newtonian 
uid,

3Unless otherwise noted, a quantity denoted by a caret b� is the complex Fourier coeÆcient of the original quantity.
4For a discussion of �ltering with non-uniform �lters see Ghosal & Moin (1995).
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Figure 2.2: Filtering of a test function. : Un�ltered; k�5=3; + : sharp Fourier cuto�; � : Gaussian;

4 : tophat.

they take the following form:

@ui
@xi

= 0: (2.12)

@ui
@t

+
@

@xj
(uiuj) = �

1

�

@p

@xi
�
@�ij
@xj

+ �
@2ui

@xj@xj
: (2.13)

The �ltered Navier-Stokes equations, written above, govern the evolution of the large, energy-carrying,
scales of motion. The e�ect of the small scales appears through a subgrid-scale (SGS) stress term,

�ij = uiuj � uiuj ; (2.14)

that must be modeled.
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Chapter 3

NUMERICAL METHODS

In both direct and large-eddy simulations the governing equations (2.5-2.6) or (2.12-2.13) are discretized
and solved numerically. For DNS, this straightforward approach presents nonetheless signi�cant numerical
challenges. In LES, the computational diÆculties are slightly decreased, but modeling the small scales,
the SGS stresses �ij , becomes an issue. In this Chapter, some consideration on numerical issues will be
presented.

3.1 Resolution requirements

3.1.1 Direct simulations

The range of scales present in a turbulent 
ow is a strong function of the Reynolds number. Consider
for instance the mixing layer shown in Fig. 3.1. The largest eddies in this 
ow are the spanwise rollers,
whose scale is L; a very wide range of smaller scales is present, the smallest ones being the Kolmogorov
scales �. The dissipation takes place in the non-dimensional wave-number band 0:1 < k� < 1:0, which
corresponds to a length scale band of about 6� to 60�.

In DNS, all the scales of motion, up to and including the dissipative scales of order � must be resolved;
since the computational domain must be signi�cantly larger than the large scale L, while the grid size
must be of order �, the number of grid points required is proportional to the ratio L=� � Re3=4 (where
Re is the Reynolds number based on an integral scale of the 
ow). Thus, the number of grid points
needed to perform a three-dimensional DNS scales like the 9/4 power of the Reynolds number.

The time-scale of the smallest eddies also supplies a bound for the maximum time-step allowed: since
the ratio of the integral time-scale of the 
ow to the Kolmogorov time-scale is also proportional to Re1=2

the number of time-steps required to advance the solution by a �xed time has the same dependence on
Re. Assuming that the CPU time required by a numerical algorithm is proportional to the total number
of points N , the cost of a calculation will depend on the product of the number of points by the number
of time-steps, hence to Re11=4.

For wall-bounded 
ows, the dependence of the calculation cost on the Reynolds number is even
stricter. In the near-wall region, the appropriate scaling for the turbulent eddies responsible for the
streaky structures shown in Fig. 3.2 is the viscous length-scale �=u� , where u� = (�w=�)

1=2 is the friction

Large structures
scale L

Small structures
scale η

x

y

Figure 3.1: Visualization of the 
ow in a mixing layer (from Brown & Roshko 1974).
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Low−speed streaks, scale λ+

x

z

Figure 3.2: Visualization of the 
ow in a turbulent boundary layer (from Kline et al. 1967).

velocity, and �w is the viscous stress at the wall. In boundary layers or pipe 
ows, u� � UC
1=2
f , and

Cf � Re��, where Cf = 2�w=�U
2 is the skin-friction coeÆcient, U is an outer velocity scale of the 
ow

(the free-stream velocity in a boundary layer, or the centerline velocity in a pipe) and � ' 0:2� 0:25. To
maintain constant grid spacing in wall units, �x+i = �xiu�=�, therefore, the required number of points
in each direction is

Ni =
Li
�xi

=
Li

�x+i �=u�
�
LiURe

��=2

�
� Re1��=2; (3.1)

and the total number of points is proportional at least to Re2:6. The cost, from considerations similar to
those made above, scales approximately like Re3:5.

The landmark DNS of plane channel 
ow at Re = 3300 by Kim et al. (1987), for instance, used 2
million grid points, and required approximately 200 hours of CPU time on a Cray YMP. To increase
the Reynolds number by a factor of 10, 800 million points would be necessary to resolve the 
ow, and
approximately 600000 CPU hours (almost seven years) would have been required on the YMP. Even
with present supercomputers, that are faster by one or two orders of magnitude than the YMP, this
computation would require a major e�ort.

3.1.2 Large-eddy simulation

In an LES only the large scales of motion must be resolved. The similarity of the small scales, which only
transmit energy to smaller scales (energy cascade), and the fact that the dissipation is set by the large
scales are exploited by SGS models, whose main purpose is to reproduce the energy transfer accurately,
at least in a statistical sense. When the �lter cuto� is in the inertial region of the spectrum, therefore,
the resolution required by an LES is nearly independent of the Reynolds number.

The cost of an LES calculation, however, depends on the Reynolds number if a solid surface is
present, since in that case even the largest scales of motion depend on the Reynolds number. Chapman
(1979) estimated that the resolution required to resolve the outer layer of a growing boundary layer is
proportional to Re0:4, while for the viscous sublayer (which, in aeronautical applications, only accounts
for approximately 1% of the boundary layer thickness) the number of points needed increases at least
like Re1:8. Thus, although LES can give some improvement over DNS, and be extended to 
ows at
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Reynolds numbers at least one order of magnitude higher than DNS at a reasonable cost, its application
to engineering 
ows remains expensive, unless approximate boundary conditions, or wall models, are
used. This approach will be described in Section 7.2.

3.2 Time advancement

The choice of the time advancement method is usually determined by the requirements that numerical
stability be assured, and that the turbulent motions be accurately resolved in time. Two stability limits
apply to DNS and LES calculations. The �rst is the viscous condition, that requires that the time-step
�t be less than �tv = ��y2=� (where � depends on the actual time advancement chosen). The CFL
condition requires that �t be less than �tc = CFL�x=u, where the maximum allowable Courant number
CFL also depends on the numerical scheme used. Finally, the physical constraint requires �t to be less
than the time scale of the smallest resolved scale of motion, � � �x=Uc (where Uc is a convective velocity
of the same order as the outer velocity).

In most 
ows, the viscous condition demands a much smaller time-step than the other two; for
this reason, the di�usive terms of the governing equations are usually advanced using implicit schemes
(typically, the second-order Crank-Nicolson scheme). Since, however, �tc and � are of the same order of
magnitude, the convective term can be advanced by explicit schemes such as the second-order Adams-
Bashforth method, or third- or fourth-order Runge-Kutta schemes. In compressible 
ow calculations, or
in unbounded 
ows in which the mesh must not be very �ne near a solid surface, fully explicit schemes
are often employed.

3.3 Spatial discretization

The analytical derivative of a complex

Figure 3.3: Modi�ed wave-number for various di�er-

encing schemes. Exact; second-order cen-

tral; fourth-order compact; fourth-order Pad�e;

sixth-order Pad�e; spectral.

exponential f(x) = eikx is f 0(x) = ikeikx; if
f is di�erentiated numerically, however, the
result is

Æf

Æx
= ik0eikx; (3.2)

where k0 is the \modi�ed wave-number".
A modi�ed wave-number corresponds to
each di�erencing scheme. Its real part rep-
resents the attenuation of the computed
derivative compared to the actual one,
whereas a non-zero imaginary part of k0 in-
dicates that phase errors are introduced by
the numerical di�erentiation. Figure 3.3
shows the real part of the modi�ed wave-
numbers for various schemes. For a second-
order centered scheme, for instance, k0 =
k sin(k�x)=(k�x). For small wave-numbers
k the numerical derivative is quite accu-
rate; high wave-number 
uctuations, how-
ever, are resolved poorly. No phase errors,
however, are introduced.

The need to resolve accurately high
wave-number turbulent 
uctuations implies that either low-order schemes are used on very �ne meshes
(such that, for the smallest scales that are physically important k0 ' k), or that higher-order schemes
are employed on coarser meshes. High-order schemes are more expensive, in terms of computational
resources, than low-order ones, but the increase in accuracy they a�ord (for a given mesh) often justi�es
their use.
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3.4 Conservation

It is particularly important, in direct and large-eddy simulations of transitional and turbulent 
ows, that
the numerical scheme preserves the conservation properties of the Navier-Stokes equations. In the limit
Re!1, the Navier-Stokes equations conserve mass, momentum, energy and vorticity in the interior of
the 
ow: the integral of these quantities over the computational domain can only be a�ected through
the boundaries. Some numerical schemes, however, do not preserve this property. For instance, the
convective term in the momentum equations can be cast in several ways:

Advective form : uj
@ui
@xj

; (3.3)

Divergence form :
@

@xj
(uiuj); (3.4)

Rotational form : �ijkuj!k �
@

@xi
(ujuj=2); (3.5)

Skew-symmetric form :
1

2

�
uj
@ui
@xj

+
@

@xj
(uiuj)

�
: (3.6)

It is easy to show (Morinishi et al. 1998) that, if a typical co-located �nite-di�erence scheme is used, the
�rst form does not conserve either momentum or energy, the second conserves momentum but not energy,
the others conserve both. If, on the other hand, a control-volume approach is used, the divergence form
conserves energy but the pressure-gradient term does not. With a staggered grid and central di�erences
the conservation properties of the Navier-Stokes equations.

Upwind schemes also have very undesirable e�ects on the conservation properties of the calculation,
as does the explicit addition of arti�cial dissipation. It will be shown later in Chapter 6 that even mildly
upwind-biased schemes result in a signi�cant loss of accuracy. In incompressible 
ows, these type of
methods are not suited to DNS and LES, and should be avoided.

3.5 Example of a numerical algorithm

One common technique used in DNS and LES calculations is the fractional time-step method (Chorin
1969, Kim & Moin 1985), in which �rst the Helmholtz equation is solved to obtain an estimate of the
velocity �eld that does not satisfy mass conservation; the pressure is then computed by solving Poisson's
equation, the estimated velocity �eld supplying the source term. If a pressure correction is applied, the
resulting velocity will be a divergence-free solution of the Navier-Stokes equations. If the Navier-Stokes
equations are written as

@ui
@t

= �
@p

@xi
�Hi +

1

Re
r2ui; (3.7)

where an appropriate length and velocity scale have been used to make the equations dimensionless, and
Hi is the nonlinear terms, a typical time-advancement sequence using the Crank-Nicolson scheme for the
viscous stresses and the second-order Adams-Bashforth method for the convective term would consist of
the following steps:

1. Velocity prediction (Helmholtz equation):

vj � unj = ��t

�
3

2
Hn
j �

1

2
Hn�1
j

�
+

�t

2Re

�
r2vj +r

2unj
�

(3.8)

2. Poisson solution:

r2� =
1

�t

@vj
@xj

(3.9)

3. Velocity correction:

un+1j = vj ��t
@�

@xj
; (3.10)

where vj is the estimated velocity, and � is the modi�ed pressure, related to the actual pressure by
p = �� (�t=2Re)r2�. This time-advancement scheme is second-order-accurate in time.
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Figure 3.4: Matrix form for the central-di�erence discretization of the Helmholtz and Poisson equations.

The predictor step can be rewritten as�
1�

�t

2Re
r2

�
vj = ��t

�
3

2
Hn
j �

1

2
Hn�1
j

�
+

�
1 +

�t

2Re
r2

�
unj : (3.11)

The discretization of the di�erential operators results in a system of algebraic equations to be solved;
the form of the matrix associated with the linear system depends on the discretization chosen. If central
di�erences are used in all directions, for instance, the resulting matrix is banded hepta-diagonal (Fig. 3.4),
and can be solved iteratively, or can be split into three tri-diagonal matrices that can be solved in sequence
(Kim & Moin 1985).

The Poisson equation (3.9), on the other hand, results in a matrix that, although also of the form
shown in Fig. 3.4, cannot, in general, be solved directly. Several techniques are commonly used, including
multigrid methods, conjugate gradients and, for cases in which one or more directions of homogeneity
exist, direct solvers.

Spectral methods, in which the velocity and pressure are expressed in terms of Fourier series in
the directions of homogeneity of the 
ow, Chebychev or Legendre polynomials in the inhomogeneous
directions, may allow decoupling of the equations. For a problem that is homogeneous in three directions,
(the study of decaying or forced isotropic turbulence, for instance) the velocity can be written as

uj(x; t) =

N1=2X
k1=�N1=2

N2=2X
k2=�N2=2

N3=2X
k3=�N3=2

buj(k; t)eik�x =X
k

buj(k; t)eik�x (3.12)

where N1, N2 and N3 are the number of grid points in the three directions, bui are the Fourier coeÆcients
of the velocity1 and k � (k1; k2; k3)

T is the vector wave-number. The Fourier expansion (3.12) can be
di�erentiated term by term to yield

r2uj =
X
k

�
�k21 � k22 � k23

� bujeik�x = �
X
k

k2bujeik�x: (3.13)

Taking the Fourier transform of (3.11), multiplying both sides by exp�ik0 � x and taking advantage of
the orthogonality properties of the complex exponentials allows (3.8) to be replaced by a set of algebraic
equation (one for each wave-number k):�

1 + k2
�t

2Re

�bvj = ��t

�
3

2
bHn
j �

1

2
bHn�1
j

�
+

�
1� k2

�t

2Re

� bunj ; (3.14)

1The constraint that ui be real requires that bui(k) = bu
�

i (�k), where bu
�

i is the complex conjugate of bui.
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Figure 3.5: Evolution of perturbations in a channel: spatial vs. temporal development.

(where k2 = k21 + k22 + k23), that can be solved very easily, since each wave-number component bv(k) is
decoupled from all the others. The Poisson equation can be treated similarly to yield

�k2b� = �
ikjbvj
�t

; (3.15)

while the velocity correction gives: bun+1j = bvj � i�tkj b�; (3.16)

equations (3.15) and (3.16) can also be solved directly. More information on spectral methods in 
uid
dynamics can be found in the book by Canuto et al. (1988).

3.6 Boundary conditions

3.6.1 Periodic conditions

Many 
ows that have been studied by DNS and LES have one or more directions of homogeneity, that
allow the application of periodic boundary conditions. Periodic boundary conditions imply that the
computational domain repeats itself an in�nite number of times. Periodic boundary conditions are
convenient, since they eliminate the need to specify in
ow and out
ow conditions, easy to implement
(in fact they are applied implicitly by Fourier methods) and eÆcient, since they allow use of small
computational domains.

The use of periodic boundary conditions is similar to studying the time development, rather than the
spatial development, of a 
ow; if one looks at the spatial evolution of a perturbation in plane channel
(Fig. 3.5), for instance, the use of periodic boundary conditions is equivalent to studying the 
ow in a
convecting frame of reference. Each 
ow realization (i.e., each time-step) is equivalent to one location
in the spatially developing framework. When periodic boundary conditions are used, the computational
domain must be at least as long as the wavelength of the longest structure present in the 
ow. If such
wavelength is not known a priori, the two-point correlations must be examined to determine whether the
domain length is suÆcient.

For self-similar 
ows, one can solve the governing equations in the self-similar coordinate frame and
still apply periodic boundary conditions. Spalart performed DNS of sink 
ow (Spalart 1986) and 
at-
plate (Spalart 1988) boundary layers using this approach. Spalart also used periodic conditions to study
a boundary layer in the presence of favorable, then adverse pressure gradient (which is not self-similar)
by introducing the \fringe method" (Spalart & Watmu� 1993). This technique consists in adding forcing
terms to the Navier-Stokes equations in small regions near the in
ow and out
ow of the domain to remove
mass and decrease the boundary layer thickness, prior to re-introducing it at the in
ow. Although this
method can be e�ective for the simulation of equilibrium boundary layers, and in some non-equilibrium
cases (Liu et al. 1996), its general applicability is limited, since the streamwise extent of the computational
box should be increased substantially to allow the 
ow to return to equilibrium as it approaches the
out
ow boundary.
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3.6.2 In
ow and out
ow conditions

Despite the attempts to use periodic boundary conditions in 
ows that are not homogeneous in space,
the speci�cation of in
ow and out
ow conditions is required in many cases. Several studies have focused
on the out
ow conditions; at present it appears that the use of a bu�er domain (Streett & Macaraeg
1989) in which the equations are parabolized, of convective boundary conditions (Orlansky 1976), or a
combination of the two techniques, can give adequate results in most 
ows of interest.

The speci�cation of the in
ow conditions can, however, be more problematic, since the 
ow variables
on the entire in
ow plane must be speci�ed as a function of time. To study transitional 
ows, perturba-
tions can be superposed on a laminar mean 
ow. This approach has been used successfully in boundary
layers (Rai & Moin 1993, Ducros et al. 1996, Huai et al. 1997) and mixing layers (Comte et al. 1998).
If, however, one is interested in turbulent 
ows, the development of turbulence from perturbed bound-
ary conditions may require excessively long streamwise domains, since turbulence must be allowed to
develop from the imposed perturbation. Another option is to assign a mean velocity pro�le, upon which
random noise perturbations are superimposed, with their phases adjusted to yield the desired moments.
Lee et al. (1992) used this technique in a DNS of isotropic compressible turbulence; they found that
the 
ow recovers fairly quickly (in about two integral length scales) from the random 
uctuations. The
method, however, appears to be less well suited to wall-bounded 
ows. Le et al. (1997) and Akselvoll &
Moin (1996) found that several boundary-layer thicknesses (10Æ and 25Æ, respectively) were needed for
reasonable statistics to be established before the region of interest in backward facing step computations.
Similar results were reported by Lund et al. (1998) in their zero-pressure-gradient boundary-layer LES. In
addition to the waste of computational resources due to large recovery lengths, control of the skin friction
and integral thickness just upstream of the domain of interest is diÆcult; the development section is
unphysical and the upstream conditions do not always lead to the desired statistics downstream.

Lund et al. (1998) proposed a method that also requires self-similarity, but has proven to be more

exible than any of the others used so far: it involves rescaling the velocity �eld at some downstream
location, in a 
at-plate boundary layer, and re-introducing it at the in
ow. An advantage of this method
is that it allows the calculation of non-equilibrium 
ows, as long as a 
at-plate of suÆcient length
is appended before the region of interest. A large region of the 
ow (and substantial computational
resources) are, however, used only to generate a realistic in
ow condition.

The use of the results of a separate calculation may be the most realistic type of in
ow condition
available, since the development section can be drastically reduced or in some cases eliminated altogether.
The auxiliary calculation must be run synchronously with or prior to the actual computation, and a time
series of data stored on disk is used as in
ow. Using this approach, several computations of spatially
developing 
ows have been conducted successfully (Kaltenbach et al. 1999). In high-Reynolds number

ows, however, the number of points in the in
ow plane increases dramatically and the cost of the
auxiliary computation may become signi�cant from the storage and the CPU time point of view.

3.6.3 Wall boundary conditions

At solid walls, the momentum 
ux must be known. Since the wall velocity is assigned, the no-slip condition
allows the determination of the convective part uiuj of the momentum 
ux at the wall. Di�erentiation
of the velocity pro�le to determine the viscous stress, however, is accurate only if the wall-layer is well-
resolved. To represent accurately the structures in the near-wall region, the �rst grid point must be
located at y+ < 1, and the grid spacing must be of order �x+ ' 15, �z+ ' 5 (�x+ ' 50 � 150,
�z+ ' 15�40 for LES). As Re!1, an increasing number of grid points must be used to resolve a layer
of decreasing thickness. This may also result in high aspect-ratio cells, with subsequent degradation of
the numerical accuracy.

Alternatively, approximate boundary conditions, or wall models, may be used in LES. When the
grid is not �ne enough to resolve the near-wall gradients,the wall layer must be modeled by specifying a
correlation between the velocity in the outer 
ow and the stress at the wall. This approach allows the
�rst grid point to be located at y+ ' 30 � 150, and, since the energy-producing vortical structures in
the wall-layer do not have to be resolved, it permits the use of coarser meshes in the other directions as
well: �x+ ' 100� 600, �z+ ' 100� 300, but the modeling of the wall-layer physics introduces further
empiricism in the calculations. Some remarks on wall models will be made in Section 7.2.
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Figure 3.6: Time history in a typical time-developing calculation.

3.7 Initial conditions

For 
ows that are statistically steady the initial conditions are relatively unimportant; they may consist
of large-amplitude perturbations superposed on a realistic mean 
ow, or of a fully-developed 
ow in a
similar con�guration. Typically, the 
ow is allowed to develop in time until a steady state is reached,
and then statistics are accumulated (Figure 3.6).

For 
ows in which the transient is important (temporal transition, the decay of homogeneous isotropic
turbulence, etc.), more care should be used when assigning the initial conditions. In problems involving
laminar-turbulent transition, controlled or random perturbations can be used. For turbulent 
ow prob-
lems, on the other hand, assigning random noise with a given spectrum requires some adjustment time
before the nonlinear interactions become realistic.
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Chapter 4

APPLICATIONS OF DNS

4.1 The role of direct simulations

Direct numerical simulations supply the time-dependent velocity �eld at multiple locations in the 
ow,
yielding a wealth of information from which single- and multi-point statistics can be calculated, even
for quantities (such as the pressure or the vorticity) that are diÆcult to measure experimentally. This
important feature of DNS has been exploited in several investigations that applied DNS to transitional
and turbulent 
ows, and have contributed signi�cantly to the understanding of the turbulence physics,
and to the improvement of lower-level models. Moin and Mahesh (1998) present a recent review of the
achievements of DNS. Only a brief summary of the principal ones follows.

4.2 Model validation

Since DNS allows the computation of all terms in the Reynolds stress balance equations, DNS data can
be used for the direct evaluation of RANS models. While experimental data usually allow only the
evaluation of the e�ect of the entire model, by comparing some measurable quantity such as the velocity
pro�le, skin friction or pressure coeÆcient, DNS data allows the direct comparison of each term of the
model.

Bardina et al. (1985), for instance, studied the e�ect of rotation on turbulence, and determined that
an additional term should be used in turbulence models to account for the rotation e�ects correctly.
Mansour et al. (1988) used data from the simulation of plane channel 
ow by Kim et al. (1987) to study
the dissipation budget in wall-bounded 
ows, and were able to examine in detail the asymptotic behavior
of the budget terms. Rogers et al. (1989) used DNS data to develop improved models of passive scalar
transport.

DNS data has also been extremely valuable to study the physics of the subgrid-scale stresses, and
devise improved models. This is achieved by �ltering the DNS data to compute explicitly the SGS stresses,
as well as other important terms (a priori test) . Until very recently, multi-point experimental data that
could be �ltered in such a way was not available. A priori tests have been very valuable in understanding
the mechanisms that govern the energy transfer between the resolved and unresolved scales of motion
(Piomelli et al. 1988, Domaradzki et al. 1994, or Piomelli et al. 1996).

4.3 Turbulence structure

Perhaps the most signi�cant contribution of DNS to date has been the identi�cation and eduction of
turbulent structures. Since DNS supplies the velocity and its gradients at each point in space and time,
it allows the investigation of the relationship between the vortical structures and the energy and Reynolds
stress production (Robinson 1991a, 1991b).

Several methods can be used to visualize the coherent eddies in a turbulent 
ow. Robinson (1991b)
compared various techniques, and found that the pressure is e�ective in identifying the regions of strong
rotation in vortex cores. Hunt et al. (1988) proposed the use of the second invariant of the velocity-
gradient tensor,

Q = �
1

2

@ui
@xj

@uj
@xi

= �
1

2
(SijSij � 
ij
ij) ; (4.1)
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Figure 4.1: Ejections (in yellow), sweeps (in green) accompanied by vortical structures (in white). Turbulent

plane channel 
ow, Re� = 180. Reproduced with permission from N. Kasagi.

where Sij and 
ij are, respectively, the strain-rate and rotation tensors, that is, the symmetric and
anti-symmetric parts of the velocity-gradient tensor; in regions where Q > 0 the vorticity is signi�cant,
and is due to rotation rather than to shear.

In Fig. 4.1 the pressure is used to visualize the coherent eddies in fully developed turbulent channel

ow at Re� = u�Æ=� = 180 (where Æ is the channel half-width, and u� , the friction velocity, was de�ned in
Chap. 3). This �gure shows how the regions of signi�cant Reynolds shear stress occur in close proximity
of the quasi-streamwise vortical structures, highlighted by showing the low-pressure regions associated
with the vortex cores (regions where p+ < �3). The ejections (regions in which u0 < 0, v0 > 0, and
u+

0

v+
0

< �3), occur on the up-wash side of the vortex, whereas the sweeps (regions in which u0 > 0,
v0 < 0, and u+

0

v+
0

< �3) on the down-wash side.
Figure 4.2 highlights the relationship between the sweeps (regions of high-speed 
uid moving towards

the wall), the quasi-streamwise vortices, and the regions of large u0v0. Around z+ = 150, for example,
several quasi-streamwise vortical structures can be observed; very close to these structures, regions of
high Reynolds shear stress are located.

4.4 Drag reduction and turbulence control

More recently, DNS have been used to study strategies to control turbulence, both passive and active.
Choi et al. (1993) performed the simulation of the 
ow over a grooved surface (a riblet wall) using
a second-order-accurate �nite-di�erence method in generalized coordinates. Riblets had been studied
experimentally (Walsh 1980, and others), and had been found to produce net drag reduction of up to 8%
when the groove spacing was less than 25 wall units, even though the surface exposed to the 
ow was
increased. Despite the experimental studies, the mechanisms by which the riblets reduce drag were not
yet understood well. Four con�gurations were studied, with riblet angles of 45 and 60 degrees, and groove
spacings of 20 and 40 wall units. Consistent with the experimental studies, the lower spacing yielded
drag reduction of 5 or 6%, while the higher spacing gave rise to a drag increase varying between 2 and
12%, values in excellent agreement with the experiments. The mean 
ow was found to remain uniform in
the spanwise direction, except very near the riblets. The wall shear was substantially reduced over most
of the riblet surface; only near the riblet tip the wall shear was larger than on the 
at wall.

Figure 4.3a shows contours of the instantaneous wall shear. In the s+ = 20 case regions of high wall
shear only occur near the riblet tip, whereas in the drag-increasing case they occur in the groove as well;
these regions of high shear are often associated, in wall-bounded 
ows, with the down-wash of strong
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Figure 4.2: Velocity, vorticity, Reynolds stress contours and secondary (v�w) velocity vectors in a cross-plane.

Turbulent plane channel 
ow, Re� = 180.
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Figure 4.3: Instantaneous 
ow over the riblets with � = 60o. (a) contours of the wall-shear on the riblet

surface; (b) cross-
ow velocity vectors and contours of the streamwise vorticity in the yz�plane. Reproduced

with permission from Choi et al. (1993).

S+ = 20S+ = 40

High skin-friction region
due to downwash motion

(a) (b)

 

Figure 4.4: Schematic diagram of drag increase and reduction mechanisms by riblets. (a) s+ = 40; (b) s+ = 20.

Reproduced with permission from Choi et al. (1993).
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Figure 4.5: Performance of optimized control for di�erent control strategies as computed in direct numerical

simulations of turbulent channel 
ow at Re� = 100. The optimization horizon was T+ = 100.

streamwise vortices. The cross-
ow velocity contours shown in Fig. 4.3b show this phenomenon very
clearly. They also show how the streamwise vortices, whose average diameter is approximately 30 wall
units (Kim et al. 1987) are more likely to be found inside the groove in the s+ = 40 case than in the
s+ = 20 con�guration. When the vortices move into the riblet valley (Fig. 4.4), a larger area is exposed
to the down-wash of the vortices, resulting in the increase in the average friction coeÆcient. Conversely,
when the spacing is smaller than the average vortex diameter, the vortices are forced to reside above the
riblet tips, which results in the thickening of the viscous sublayer, and in a smaller region near the tip
being exposed to the down-wash.

Active control strategies have also been explored by DNS (see, for example, the recent review by
Lumley & Blossey 1999). Choi et al. (1994) applied \opposition control" in channel 
ow at Re� = 100.
By applying suction and blowing at the wall to oppose the vertical motion of the 
uid some distance
away from the wall, they obtained drag reduction up to 25%. Hammond et al. (1998), in calculations
performed at Re� = 180, observed that the opposition control is e�ective if the detection point is quite
close to the wall (a distance of 15 wall units was found to be optimal). If the detection point is too far
from the wall, the 
uid particle may meander away from the point where the blowing is applied, possibly
ending near a point in which suction is applied. This results in an undesirable increase of the turbulence
levels.

Bewley et al. (2000) applied optimal control theory to reduce drag in turbulent channel 
ow at
Re� = 100 and 180. In their approach a cost functional was minimized over a certain time interval, the
\horizon". Typical cost functionals involved the drag, the turbulent kinetic energy, the enstrophy or the
terminal value of the turbulent kinetic energy. The cost minimization required solution of the adjoint
Navier-Stokes operator. They showed that, for long enough horizons, the performance of the optimal
control far exceeded the best that could be obtained with opposition control. Figure 4.5 shows the drag
history in the plane channel when various control strategies were employed. The best control strategy
was the one involving \terminal control" of the turbulent kinetic energy, i.e., one in which the �nal value
of the turbulent kinetic energy (rather than the instantaneous one) was minimized. This approach allows
the cost functional to increase within the optimization horizon, but leads to more substantial reduction
of the turbulence level at the end the horizon, as shown in the Figure. The 
ow, when this type of
control was applied, became laminar; similar results were obtained at Re� = 180. Although the control
algorithm was computationally very expensive, to the point of being infeasible in practical application,
it was extremely useful in supplying a target, as well as in illustrating how control strategies a�ect the
Reynolds-stress and energy-carrying coherent structures.
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Chapter 5

SUBGRID-SCALE MODELING

5.1 Energy transfer mechanisms

In large-eddy simulations, the dissipative scales of motion are resolved poorly, or not at all. The main
role of the subgrid-scale model must be, therefore, to remove energy from the resolved scales, mimicking
the drain that is usually associated with the energy cascade. Thus, it is not necessary for a model to
represent the \exact" SGS stresses accurately at each point in space and time, but only to account for their
global e�ect. To understand the interaction between resolved and unresolved scales better, consider the
transport equations for q2 = uiui, twice the total resolved energy (mean and 
uctuating), and q2sgs = �kk,
twice the subgrid-scale kinetic energy:

@q2

@t
+

@

@xj
(q2uj)| {z }

Advection of q2

= �2
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@xj
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@ui
@xj

@ui
@xj| {z }

Visc. Diss. of q2

+2 �ijSij| {z }
SGS Diss.

(5.1)
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: (5.2)

The equations above show that the resolved scales in a control volume (a grid cell, for example),
exchange energy with the unresolved scales and the surroundings through several mechanisms. The
advection and di�usion terms do not create or destroy resolved energy but only redistribute it between
adjoining volumes. The last two terms in (5.1) represent respectively the resolved energy lost by viscous
dissipation at the resolved-scale level, and the net energy exchange between the resolved and unresolved
scales. Although the subgrid-scale dissipation "sgs = �ijSij can be positive or negative, on the average
energy 
ows from the large to the small scales, and "sgs < 0 (forward scatter); backscatter occurs when
the energy 
ow is reversed ("sgs > 0). The total transfer of energy between large and subgrid scales is
the SGS transfer, sum of SGS di�usion and dissipation.

The energy exchange mechanisms for the subgrid scales are similar; the advection and di�usion terms
are again redistribution terms. The energy lost by the resolved scales to the subgrid ones appears as a
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source term in the transport equation for q2sgs: the SGS di�usion and dissipation have opposite signs in
(5.1) and (5.2). It is important to point out the di�erence between the viscous and SGS dissipation terms.
The SGS dissipation "sgs represents an energy interchange between resolved and unresolved scales, and is
generally a dissipative term in the equation for q2 and, conversely, a production term in the equation for
q2sgs. The viscous dissipation terms, on the other hand, represent a net loss, the resolved or SGS energy
dissipated by the viscous forces.

5.2 Eddy viscosity models

Most subgrid scale models in use presently are eddy-viscosity models of the form

�ij �
Æij
3
�kk = �2�TSij ; (5.3)

that relate the subgrid-scale stresses �ij to the large-scale strain-rate tensor Sij . In most cases, the eddy
viscosity �T is obtained algebraically to avoid solving additional equations that would increase the cost
of an already expensive calculation. Moreover, since the small scales tend to be more homogeneous and
isotropic than the large ones, it is hoped that even simple, algebraic models can describe their physics
accurately. Finally, since the SGS stresses only account for a fraction of the total stresses, modeling
errors should not a�ect the overall accuracy of the results as much as in the standard turbulence modeling
approach.

The eddy viscosity is, by dimensional analysis, the product of a length scale, `, and a velocity scale,
qsgs. Since the most active of the unresolved scales are those closest to the cuto�, the natural length
scale in LES modeling is the �lter width, which is the size of the smallest structure in the 
ow, and is
proportional to the grid size. The velocity scale is usually taken to be the square-root of the trace of the
SGS stress tensor, q2sgs = �kk . Although in some cases a transport equation is solved to determine q2sgs, in
most cases the equilibrium assumption is made to simplify the problem further and obtain an algebraic
model for the eddy viscosity.

The equilibrium assumption is based on the consideration that the small scales of motion have shorter
time scales than the large, energy-carrying eddies; thus, it can be hypothesized that they adjust more
rapidly than the large scales to perturbations, and recover equilibrium nearly instantaneously. Under
this assumption, the transport equation for q2sgs, (5.2) simpli�es signi�cantly, since all terms drop out,

except the production term, "sgs = �ijSij , and the viscous dissipation of SGS energy, "v, to yield:

��ijSij = "v: (5.4)

The equilibrium assumption implies inertial range dynamics: energy is generated at the large-scale level,
and transmitted to smaller and smaller scales, where the viscous dissipation takes place. Piomelli et
al. (1997) carried out a study of the subgrid-scale (SGS) stresses in non-equilibrium, wall-bounded 
ows.
Their �ndings indicate that the SGS stresses react to the imposition of the perturbation more rapidly
than the large-scale ones, although not instantaneously.

5.3 Smagorinsky model

The Smagorinsky model (1963) is, from an historical point of view, the progenitor of all subgrid-scale
stress models. It is based on the equilibrium hypothesis (5.4). If the viscous dissipation is modeled
as "v � q3sgs=`, and (5.3) is substituted into (5.4) with �T � `qsgs, one obtains qsgs � `jSj, where

jSj = (2SijSij)
1=2 is the magnitude of the strain-rate tensor. Letting ` � �, the eddy viscosity can be

written as

�T = (Cs�)
2jSj: (5.5)

Since the constant Cs (the Smagorinsky constant) is real, the model is absolutely dissipative: "sgs =
�(Cs�)

2jSj3 � 0.

To evaluate Cs, Lilly (1967) assumed the existence of an inertial-range spectrum E(k) = Ko "2=3k�5=3,
where k is the wavenumber, Ko the Kolmogorov constant, and " the total viscous dissipation (due to
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both resolved and subgrid scales) which was assumed to be approximately equal to "v. Then jSj can be
evaluated approximately by integrating the dissipation spectrum over all resolved wave-numbers

jSj2 ' 2

Z �=�

0

k2E(k)dk = 2Ko "2=3
Z �=�

0

k1=3dk =
3

2
Ko "2=3

�
�

�

�4=3
: (5.6)

With Ko = 1:41, this gives

Cs '
1

�

�
2

3Ko

�3=4
= 0:18: (5.7)

It was, however found by Deardor� (1970), and subsequently con�rmed in a priori tests by McMillan
et al. (1980), that in the presence of shear the coeÆcient must be reduced (values of the order of Cs '
0:065� 0:1 are commonly used).

For grids that are uniform in all directions, the �lter width is proportional to the grid size in any
direction (typically, � = 2�x). When the grid is inhomogeneous, it is common to use an average �lter
width given by � = 2(�x�y�z)1==3. Furthermore, in the presence of solid boundaries the length scale
needs to be modi�ed by the introduction of Van Driest (1956) damping to account for the reduced growth
of the small scales near the wall; the model is then recast in the form:

�T =
h
Cs�

�
1� e�y

+=25
�i2

jSj: (5.8)

To reduce the SGS stresses during laminar-turbulent transition an intermittency factor was used by
Piomelli et al. (1990), while Voke & Yang (1995) developed a low-Reynolds number correction and used
only the 
uctuating strain-rate tensor in (5.8).

5.4 Two-point closures

Two-point closures have been an alternative way to derive SGS models. Kraichnan (1976), using a
two-point closure model for isotropic turbulence, computed the energy transfer from the resolved to the
unresolved scales, Tsub(kjkm), given a cuto� wave-number km lying in an in�nite inertial subrange. He
then de�ned the net eddy-viscosity from the calculated subgrid-scale transfer:

�e(kjkm) = �
Tsub(kjkm)

2k2E(k)
: (5.9)

For km lying in the inertial subrange, the net eddy viscosity approaches a k-independent eddy viscosity
for k << km. Near km, however, both a negative and a positive contribution are signi�cant; the negative
part corresponds to energy transfer from the small to the large scales (backscatter, or eddy noise). The
net eddy viscosity increases with increasing k=km to a �nite cusp at k=km = 1.

Chollet & Lesieur (1981) used the Eddy-Damped, Quasi-Normal Markovian (EDQNM) theory to
develop a SGS model with similar results. The Chollet-Lesieur (1981) model uses [kmE(km)]

1=2 as
velocity scale, and k�1m as length scale for the eddy viscosity, which, in wave space, is given by

b�T (k) = b�+T (k=km) [E(km)=km]1=2 ; (5.10)

b�+T (k=km) can be approximated by (Chollet 1984)

�+e (k=km) = Ko�
3
2 [0:441 + 15:2 exp (�3:03km=k)] ; (5.11)

where the value of the Kolmogorov constant was chosen to be Ko = 1:4. The Chollet parameterization
of the dimensionless eddy viscosity is shown in Fig. 5.1. The eddy viscosity goes to a k-independent
constant for k=km << 1, and rises to a �nite cusp at k=km = 1.

The Chollet-Lesieur model produces zero eddy viscosity as long as there is no energy near the cuto�;
it is, however, de�ned in wave space, which hampers its extension to �nite-di�erence schemes and to
complex geometries. To overcome this shortcoming, M�etais & Lesieur (1992) derived the \structure
function model." Assuming a cuto� wave number in the inertial region of a Kolmogorov spectrum, they
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Figure 5.1: Non-dimensional spectral eddy viscosity as parameterized by Chollet (1984) and M�etais &

Lesieur (1992) for turbulence obeying a k�m spectrum. The lines correspond to m = 8=3 (lowest) through

m = 2=3 (highest); a solid line denotes a Kolmogorov spectrum (m = 5=3).

expressed the energy spectrum at the cuto�, E(km), in terms of the resolved-scale second-order velocity
structure function,

F2(x; �) = h[ui(x+ r)� ui(x)] [ui(x+ r)� ui(x)]i; (5.12)

where h�i is an ensemble-average taken over all points such that jrj = �, and obtained

�T (x) = 0:063�
�
F 2(x; �)

�1=2
: (5.13)

It must be remarked that, if an isotropic grid is used, the structure function can be seen as a �nite
di�erence approximation of the velocity gradient tensor:

F 2 ' 2�
2 @ui
@xj

@ui
@xj

= 2�
2 �
SijSij +
ij
ij

�
= �

2 �
jSj2 + !i!i

�
; (5.14)

(where 
ij is the anti-symmetric part of the velocity gradient tensor, and !i the vorticity), which gives

�T (x) = 0:063�
2 �
jSj2 + j!j2

�1=2
: (5.15)

For isotropic 
ows, the model is less dissipative than the Smagorinsky model, in which values such as
Cs = 0:18� 0:23 are commonly used; this is re
ected in a more accurate prediction of the inertial range
(see, for instance, Fig. 2 in the article by Lesieur & M�etais 1995). For sheared 
ows, however, the structure
function may be excessively dissipative. Improved results were obtained by applying a Laplacian �lter
to remove the contribution of the largest eddies to the velocity gradient before computing the structure
function (Ducros et al. 1996).

M�etais & Lesieur (1992) also proposed a modi�cation of the eddy viscosity in (5.11) to account for
deviations of the spectrum from the 5/3 Kolmogorov law. Assuming that E(k) / k�m gives a correction
to the plateau level, which is decreased for m > 5=3 (see Fig. 5.1), while maintaining a cusp-like behavior
for k ' km. This \spectral-dynamic model" resulted in improved results in transitional 
ows, in the
near-wall region of turbulent 
ows, or in regions of intermittent 
ow, where the spectrum is steeper than
k�5=3 (see Lamballais et al. 1998).

5.5 Scale-similar and mixed models

Scale-similar models are based on the assumption that the most active subgrid scales are those closer to
the cuto�, and that the scales with which they interact most are those right above the cuto� (Bardina
et al. 1980). The \largest subgrid scales" can be obtained by �ltering the SGS velocity u0i = ui � ui to
obtain

u0i = ui � ui: (5.16)
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If the SGS stresses are decomposed in terms of ui and u0i, (5.16) is used, and a Smagorinsky model is
added to represent the dissipative e�ect of the small scales, the mixed model can be written as

�ij �
Æij
3
�kk = CB

�
uiuj � ui uj �

Æij
3

�
ukuk � uk uk

��
� 2�TSij : (5.17)

The �rst part of the model is the scale-similar model; the Smagorinsky contribution provides the dissi-
pation that is underestimated by the scale-similar part alone.

Another form of a scale-similar model can be obtained by applying a second �lter, bG, with charac-
teristic length b� > �, to the velocity �eld (Liu et al. 1994). The SGS stresses can be parameterized
as

�ij = �2�TSij + duiuj � bui buj : (5.18)

This model has been applied by Anderson & Meneveau (1999) to the simulation of homogeneous isotropic
turbulence decay. Scale-similar and mixed models have been recently revisited in the framework of
dynamic modeling ideas and will be discussed later.

5.6 Dynamic models

The introduction of dynamic modeling ideas (Germano et al. 1991) has spurred signi�cant progress in
the subgrid-scale modeling of non-equilibrium 
ows. In dynamic models for the subgrid-scale stresses,
the model coeÆcients are computed dynamically as the calculation progresses, rather than input a priori
as in the standard Smagorinsky (1963) model. This is accomplished by de�ning a test �lter (denoted by

a caret) whose width b� is larger than the grid �lter-width � (typically, b� = 2�). Dynamic adjustment
of the model coeÆcients is based on the identity (Germano 1992)

Lij � Tij � b�ij ; (5.19)

which relates the \resolved turbulent stresses" Lij = duiuj�bui buj (the contribution from the region between

test-�lter and grid-�lter scale), the subgrid-scale stresses �ij and the subtest stresses Tij = duiuj � buibuj ,
which are obtained by applying the test �lter bG, of characteristic width b�, to the �ltered Navier-Stokes
equations.

Consider now an eddy-viscosity model to param-
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Figure 5.2: Grid- and test-�ltering for the dynamic

model.

eterize both subgrid and subtest stresses, of the
form

�ij = �2C�ij ; Tij = �2C�ij : (5.20)

Upon substituting (5.20) into (5.19), the identity
(5.19) can be satis�ed only approximately, since
the stresses are replaced by modeling assump-
tions, and the system is over-determined (�ve in-
dependent equations are available to determine a
single coeÆcient). Lilly (1992) proposed that the
error incurred when a single coeÆcient is used be
minimized in a least-square sense.1 The error is

eij = Lij � Tij +c�ij = Lij + 2CMij : (5.21)

with Mij = �ij � c�ij . The least-squares mini-
mization procedure requires that

@E2

@C
=
@heijeiji

@C
= 2

�
eij

@eij
@C

�
= 0 (5.22)

1It is assumed here that the model coeÆcient is smooth on the b� scale, and can, therefore, be extracted from the �ltering
operation.
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where the brackets indicate an appropriate ensemble average; since @eij=@C = 2Mij , this implies that

h(Lij + 2CMij)Miji = 0 (5.23)

which gives

C = �
1

2

PLM
PMM

; (5.24)

where PEF = hEijFiji.
This procedure can be applied to mixed models, or models with more than one coeÆcient as well. For

a one-coeÆcient mixed model of the form

�ij = Aij � 2C�ij ; Tij = Bij � 2C�ij ; (5.25)

the least-squares minimization procedure gives

C = �
1

2

PLM � PNM

PMM
; (5.26)

with Nij = Bij �dAij . In the case of two model coeÆcients

�ij = C1Aij � 2C2�ij ; Tij = C1Bij � 2C2�ij ; (5.27)

it is necessary to require that @E2=@C1 = @E2=@C2 = 0 to yield

C1(x; t) =
PMNPLM � PMMPLN
PMNPMN � PMMPNN

; (5.28)

C2(x; t) = �
1

2

PMNPLN � PNNPLM
PMNPMN � PMMPNN

: (5.29)

The ensemble average has the purpose of removing very sharp 
uctuations of the coeÆcient, which
tend to destabilize numerical calculations, and make the model inconsistent, since the model coeÆcients

cannot be extracted from the �ltering operation (i.e., the di�erence[C�ij � Cc�ij becomes signi�cant).
Germano et al. (1991) averaged the model coeÆcient over all homogeneous directions, thereby removing
completely the mathematical inconsistency. Ghosal et al. (1995) used an integral formulation of the
identity (5.19) that rigorously removed the mathematical inconsistency at the expense of having to solve
an integral equation at each time-step (an expense comparable to the solution of a Poisson equation,

therefore signi�cant). Localized �ltering can be performed over the scale b� (somewhat justi�able by the
consideration that, if the same coeÆcient is used to model both �ij and Tij , it must be smooth on the
test-�lter scale). Zang et al. (1993) performed this type of averaging; the inclusion of the scale-similar
part into their model decreased the contribution of the eddy-viscosity term, and no spuriously high values
of the coeÆcient were observed.

Meneveau et al. (1996) proposed a Lagrangian ensemble average based on the consideration that the
memory e�ects should be calculated in a Lagrangian framework, following the 
uid particle, rather than
at an Eulerian point, which sees di�erent particles, with di�erent histories, at each instant. This average
is de�ned as

If = hfi =

Z t

�1

f(t0)W (t� t0)dt0 (5.30)

where the integral is carried out following a 
uid path-line. IfW (t) is chosen to be an exponential function
(to give more weight to recent times) the integrals at time-step n are governed by a passive-scalar-type
transport equation, and can be conveniently evaluated using a simple relaxation technique; for instance

InLM =

Z t

�1

Lij(t
0)Mij(t

0)W (t� t0)dt0

= H
�
"LnijM

n
ij + (1� ")In�1

LM (x� un�t)
	

(5.31)

where H is the Heaviside function, the evaluation of the integrals at the Lagrangian point x � un�t
is performed by linear interpolation, and " = (�t=T )=(1 + �t=T ). The Lagrangian averaging has been
performed successfully, within the framework of eddy-viscosity and mixed models, by Wu & Squires
(1997), Anderson & Meneveau (1999) and Sarghini et al. (1999).
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5.7 Deconvolution models

\Deconvolution" is the process of re-constructing the total (un�ltered) velocity ui = ui + u0i from the
resolved one ui. If the �lter function G is invertible, deconvolution is trivial, since it simply consists of
applying the inverse �lter, G�1, to ui. The main diÆculty involved in deconvolution consists in the fact
that �lters with compact support in Fourier-space are non-invertible, since their application results in
loss of information. This implies that the deconvolution can only be approximate, in the sense that one
can only obtain an approximation u�i of the total velocity ui = ui + u0i from the resolved one ui.

Given an approximation u�i of the total velocity ui, the SGS stresses to be modeled directly in terms
of the estimated total velocity as

�ij = u�i u
�

j � uiuj or �ij = u�i u
�

j � u�i u
�

j : (5.32)

The scale-similar model (5.17) can be interpreted as a deconvolution model in which u�i = ui.
Recently, several models have been developed that use approximate deconvolution methods. Shah

and Ferziger (1995) de�ned the inverse �lter in terms of a Taylor-series expansion of the �ltered velocity
(Leonard 1974). They calculated plane-channel 
ows and obtained improved results compared with the
plane-averaged dynamic model.

Domaradzki and co-workers (1997,1999,2000) developed the \Subgrid-scale estimation model". Al-
though their approach was originally developed in Fourier space; Domaradzki and Loh (1999) extended
it to the physical representation of the velocity. In physical space the subgrid-scale estimation model
consists in estimating the velocity on a �ner grid than the LES one by using an approximate deconvolu-
tion procedure, an exact inversion of the top-hat �lter (which does not give any additional information
about the scales below the cuto�), followed by a \dynamic step", a correction that generates smaller-
wavelength 
uctuations. The dynamics step consists of an approximate integration of the non-linear term
of the Navier-Stokes equations computed using the deconvolved velocity. This model also gave improved a
priori and a posteriori results in the LES of plane-channel 
ow (Domaradzki and Loh 1999) and isotropic
turbulence (Domaradzki and Yee 2000).

Stolz and co-workers (1999,2001) have also proposed a model based on approximate deconvolution,
in which they de�ne an inverse �ltering operator, QN , as a truncated series of �ltering operations:

QN =

NX
n=1

(I �G)
n
' G�1: (5.33)

The transfer function of this operator shows that the highest wave-numbers contained in the resolved �eld
are signi�cantly ampli�ed. They include a relaxation term that e�ectively acts as a dissipative component.
They also obtained improved results in channel-
ow calculations. Their method is less computationally
expensive than either the dynamic computation of the eddy-viscosity coeÆcient, or the subgrid-scale
estimation model; however, it should, however, be pointed out that, among the deconvolution methods
discussed here, the subgrid-scale estimation model is the only one in which new information (i.e., shorter-
wavelength eddies) is introduced; the methods used both by Shah and Ferziger (1995) and Stolz and
co-workers (1999,2001) only modify the existing modes.
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Chapter 6

LES { APPLICATIONS

6.1 Building-block 
ows

The initial applications of LES were to simple, building-block 
ows: homogeneous turbulence, mixing
layers, plane channel 
ows. Despite the fact that DNS and experiments have been used extensively to
investigate these 
ows, the application of LES to study them can be justi�ed: �rst, the availability of
high-quality DNS data makes them ideally suited as test beds for subgrid-scale modeling ideas. Secondly,
LES can be performed at a fraction of the cost of DNS; parametric studies, in which many computations
are required, are feasible by LES, not by DNS. As usual, the following should not be construed as a
complete review of calculations in this area, but only as a brief panorama of some issues that, in the
author's view, are particularly relevant.

6.1.1 Wall-bounded 
ows

The presence of a solid boundary a�ects the physics of the subgrid scales in several ways. First, the
growth of the small scales is inhibited by the presence of the wall. Secondly, the exchange mechanisms
between the resolved and unresolved scales are altered; �nally, in the near-wall region the subgrid scales
may contain some signi�cant Reynolds-stress producing events, and the SGS model must account for
them. As mentioned before, two approaches are possible: the wall layer may be resolved, or modeled.
These approaches have substantially di�erent modeling requirements, and allow di�erent degrees of detail
and accuracy in the solution.

In simulations in which the wall layer is resolved, the phenomena described before were usually
included by decreasing the length scale in the eddy viscosity by the addition of damping functions of
the van Driest (1956) type. Substantial progress was achieved with the introduction of the dynamic
eddy-viscosity model (Germano et al. 1991), which ensures the correct near-wall behavior of the SGS
stresses without the need for ad hoc adjustments or wall damping functions. This results in reduced SGS
dissipation in the near-wall region compared with the Smagorinsky model, and more accurate prediction
of the turbulence physics there.

Figure 6.1: Comparison of dynamic model and Smagorinsky model length scales. `d (dynamic model);

`s (Smagorinsky model); `p (Smagorinsky model with correct asymptotic behavior). From Piomelli

(1993).
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Figure 6.3: (a) Mean velocity pro�le in fully developed channel 
ow at Rec = 109 410. LES on 9-zone

embedded grid; � Experiment, Rec = 120 000. (b) Subgrid-scale shear stresses in the LES of fully developed

channel 
ow at Rec = 46 300. Zonal boundaries. Reproduced with permission from Kravchenko et al. (1996).

A comparison of the length scales used in the dynamic model, `d = (C�
2
)1=2, and in the Smagorinsky

model, `s = 0:1�[1�exp(�y+=25)] is shown in Fig. 6.1. The length scale `s is almost ten times larger than
`d in the near-wall region, resulting in a subgrid-scale dissipation that is one hundred times larger. Even
if the damping function in the expression for `s is changed to account for the near-wall behavior of �12 as
recommended by Piomelli et al. (1988), where the length scale used is `p = 0:1�[1� exp(�y+

3
=253)]1=2,

the Smagorinsky model remains more dissipative than the dynamic model.

A similar decrease of the eddy viscosity in the near-wall region is achieved when using the �ltered
structure-function model (Ducros et al. 1996). Although the near-wall behavior is incorrect (the decrease
of the eddy viscosity in this case is too fast near the wall) the results remain accurate, as long as the grid
resolution is suÆcient. This result points out an interesting paradox: the SGS models that give the most
accurate results in the LES of wall-bounded 
ows are those in which the wall-layer is treated by DNS.

As discussed in Section 3.1.2, resolv-
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Figure 6.2: Zonal embedded grid with �ne grid zones near the

walls and coarse zones in the middle of the channel. Reproduced

with permission from Kravchenko et al. (1996).

ing the wall layer requires extremely �ne
meshes. If a single structured mesh is used,
this resolution requirement results in an ex-
cessively �ne resolution of the outer 
ow:
the use of block-structured meshes may alle-
viate this problem. Kravchenko et al. (1996)
used zonal embedded meshes and a numer-
ical method based on B-splines to compute
the 
ow in a plane channel by DNS and LES.
The use of the B-splines allows use of an ar-
bitrarily high order of accuracy for the dif-
ferentiation, and accurate interpolation at
the interface between the zones. A typi-
cal grid for the channel 
ow simulations is
shown in Fig. 6.2. The use of zonal grids
allowed Kravchenko et al. (1996) to perform
an LES of the 
ow at Rec = 109 410 using

9 embedded zones allowed them to resolve the wall (the grid spacing was �x+ ' 130, �z+ ' 20) using
a total of 2 million points. A single-zone mesh with the same resolution would have under-resolved the
wall layer. The mean velocity pro�le was in excellent agreement with the experimental data (Fig. 6.3a).

Kravchenko et al. (1996) used the dynamic eddy viscosity model in the formulation proposed by Lilly
(1992); it is interesting to observe the behavior of the SGS stresses near the zonal boundaries (Fig. 6.3b).
Since in coarser meshes more energy resides in the subgrid-scale motions, the eddy viscosity increases
near the boundary between a �ner and a coarser zone. In each zone, moreover, the SGS stress is very
close to the value obtained from a single-zone calculation in which the resolution of the embedded zone
is matched.
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6.1.2 Free-shear 
ows

Both wall-bounded and free-shear 
ows have been useful testing grounds for models and numerical meth-
ods. Among the latter, the mixing layer has received much attention. LES of temporally developing
mixing layers have been performed by Vreman et al. (1995a,1997) and others, and spatially developing
ones by Comte et al. (1998), de Bruin et al. (1999) and Li et al. (2000). A recent calculation by Balaras et
al. (2000) shows how the lower computational cost of LES can be used to advantage to perform parametric
studies that are not feasible by DNS.

In this calculation the e�ect of the initial conditions and the size of the computational box on the
turbulent statistics and structures were examined in detail. A series of calculations was initialized using
two di�erent realizations of a spatially developing turbulent boundary layer with their respective free
streams moving in opposite directions. Computations initialized with mean 
ow plus random pertur-
bations with prescribed moments were also conducted. In all cases, the initial transitional stage, from
boundary-layer turbulence or random noise, to mixing-layer turbulence, was followed by a self similar
period. The self-similar periods, however, di�ered considerably: the growth rates, turbulence intensities
and vorticity magnitudes showed di�erences ranging between 10 and 40%, and were a�ected both by
the initial condition and by the computational domain size. In all simulations the presence of quasi two
dimensional spanwise rollers is clear, together with `braid' regions with quasi-streamwise vortices. The
development of these structures, however, was di�erent: if strong rollers were formed early (as in the
cases initialized by random noise), a well-organized pattern persisted throughout the self-similar period
(Fig. 6.4). The presence of boundary-layer turbulence, on the other hand, inhibited the growth of the
inviscid instability, and delayed the formation of the roller-braid patterns. Increasing the domain size
also tended to make the 
ow more three-dimensional.

6.2 Transitional and relaminarizing 
ows

Many 
ows include regions of transition or relaminarization. Subgrid-scale models, usually based on
high Reynolds number dynamics, often have diÆculty in these regions. The eddy viscosity predicted by
the Smagorinsky model or the structure-function model, for instance, is non-zero in laminar 
ows; the
dissipation introduced by the model during transition is unphysical, and has the e�ect of damping the
growth of the small perturbations. To force the SGS stresses to zero in laminar 
ows, intermittency
factors or low-Reynolds-number corrections have been used (Piomelli et al. 1990). In the dynamic eddy-
viscosity model, however, the coeÆcient vanishes in laminar 
ow, where Lij is identically zero; this results
in better prediction of transition without ad hoc adjustments.

An additional diÆculty in transitional 
ows is that, during the nonlinear interaction stages of the
breakdown, very small structures (thin shear layers, for instance) are generated, that must be resolved
even in an LES. Figure 6.5 shows the resolved vertical shear @u=@y in an xy-plane during subharmonic
transition in a 
at-plate boundary layer. One can observe the development of a shear layer (at x ' 640
in Fig. 6.5a) that is lifted from the wall and develops the kinks characteristic of the multiple-spike stages.
The eddy viscosity (Fig. 6.6) is essentially zero in the laminar region, begins to rise at x ' 700, and
becomes signi�cant where the resolution is marginal. Between the shear layers, the eddy viscosity is
small, whereas sharp peaks can be observed where the shear layers are stronger and small scales are
being generated. With much coarser resolution than in DNS both the development of the transitional
structures and the statistical quantities could be predicted.

Situations in which the perturbations decay leading to a laminar or quasi-laminar state, also occur in
engineering applications; in turbulent channel 
ow, for example, system rotation acts to stabilize the 
ow
near one wall, de-stabilize it near the other. Piomelli & Liu (1995) applied a localized dynamic model to
the study of rotating channel 
ow, and found that the use of a coeÆcient that was allowed to vary in all
space directions, as well as in time, gives better prediction of the turbulent 
uctuations than the plane-
averaged model, especially on the stable side of the channel where the turbulent activity is concentrated
in the down-wash region of the longitudinal roll cells that are formed in this 
ow. Lamballais et al. (1998)
also performed DNS and LES of rotating channel 
ow using the spectral-dynamic model. They explored
a range of rotation numbers Rob = 2
Æ=Ub (where Ub is the average velocity in the channel, Æ the
channel half-height and 
 the rotation rate) between 0 and 1.5 (compared with the range 0 � Rob � 0:21
examined by Piomelli & Liu 1995). They obtained results in fairly good agreement with DNS data and
with previous LES calculations.
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Figure 6.4: Iso-surfaces of P and Q during the self-similar period. (a) Small box calculation initialized with

random noise; (b) large box calculation initialized with boundary-layer turbulence. The large domain is repeated

twice in the spanwise direction, and the small one three times in the spanwise direction, twice in the streamwise

one, for clarity. The iso-surface levels are P = 0:04�U2 (lighter gray) and Q = 0:05�U2=�2o (darker gray).
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Figure 6.5: Resolved vertical shear @u=@y contours. Subharmonic transition in a 
at-plate boundary layer. (a)

to; (b) to + T=4; (c) to + T=2; (d) to + 3T=4. T = 136 is the period of the fundamental wave, and to = 756.

Reproduced with permission from Huai et al. (1997).

Figure 6.6: Eddy viscosity contours. Subharmonic transition in a 
at-plate boundary layer. (a) to; (b) to+T=4;

(c) to + T=2; (d) to + 3T=4. T = 136 is the period of the fundamental wave, and to = 756. Reproduced with

permission from Huai et al. (1997).
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Figure 6.7: Friction velocity in rotating channel 
ow. �, , Experiments (Johnston et al. 1972); + DNS

(Kristo�ersen & Andersson 1993); DNS (Lamballais et al. 1998); resolved LES (Lamballais et al. 1998);

� resolved LES (Piomelli & Liu 1995); 4 LES with wall models (Balaras et al. 1996).

The friction velocity u� = (�w=�)
1=2 (where �w is the wall stress and � the 
uid density) is shown

for various rotating-channel cases in Fig. 6.7. The resolved LES of Piomelli & Liu (1995) are in good
agreement with DNS data (Kristo�ersen & Andersson 1993, Lamballais et al. 1998), and with the experi-
mental data on the unstable side of the channel. On the stable side all the numerical calculations predict
signi�cantly higher friction velocity than the experiments, in which full relaminarization was observed.
This may be due to residual pressure gradients that were present in the experiment due to the small
dimensions of the apparatus, which may have increased the tendency of the 
ow to relaminarize. The
resolved LES (Piomelli & Liu 1995, Lamballais et al. 1998) ) are, however, in good agreement with DNS
data (Kristo�ersen & Andersson 1993, Lamballais et al. 1998) on that side. The LES of Lamballais et
al. (1998) under-predicts the wall shear on both sides of the channel, but shows trends in good agree-
ment with the DNS results. At the highest rotation rate (Rob = 1:5, not included in the �gure) even
the unstable side exhibits a signi�cant decrease in u� , predicted by both LES and DNS. Lamballais et
al. (1998) attributed this to a strong tendency of the vortical structures to be re-oriented in the stream-
wise direction on the unstable side of the channel (Fig. 6.8). These elongated vortices on the stable side
cause rotational motions in the yz�plane that result in a decrease in the streamwise rms 
uctuations
(Fig. 6.9), a corresponding increase in the other two components, and an inversion of the 
ow anisotropy.

A turbulent 
ow may revert to a laminar one when a boundary layer is subjected to a strong acceler-
ation (a favorable pressure gradient), a situation that occurs in many technological applications (airfoils,
ducts, etc.). This type of 
ow �elds is not as well understood as the canonical zero-pressure-gradient
boundary layer, due to the much wider parameter space, and to the diÆculty in determining universal
scaling laws similar to those for the zero-pressure-gradient case. A large percentage of the investigations
of accelerating 
ows to date have concentrated on self-similar cases, in which such scaling laws (for in-
stance, the logarithmic law) could be found. Piomelli et al. (2000) were the �rst to perform large-eddy
simulations of spatially turbulent boundary layers in strong favorable pressure gradients. The use of LES
made possible the calculation of the 
ow in a long domain, to allow the study of the region in which the

ow experiences a perturbation due to the mean-
ow acceleration, and the return to equilibrium after the
pressure gradient was removed. A DNS of these con�guration would have been prohibitively expensive.

Two cases were examined, one in which the acceleration is insuÆcient to cause reversion to laminar
state of the initially turbulent 
ow (Fig. 6.10a), and one in which the acceleration is stronger, so that
relaminarization begins to take place; the pressure gradient was not maintained long enough for full
reversion to occur. The mean velocity pro�le deviated signi�cantly from the logarithmic law-of-the-
wall, and showed, in the strongly accelerated case, a tendency to approach the laminar pro�le, and the
turbulent kinetic energy increases less rapidly than the energy of the mean 
ow. This is re
ected in
a signi�cant increase of the shape factor H = Æ�=� (where Æ� and � are respectively the displacement
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Rob = 0 Rob = 0:17

Rob = 0:5 Rob = 1:5

Figure 6.8: Iso-surfaces of the vorticity modulus ! = 3Ub=Æ. Reb = 14 000. Reproduced with permission from

Lamballais et al. (1998).

Figure 6.9: Rms of the 
uctuating velocity components (normalized by Ub). streamwise, wall-

normal, spanwise. Left �gures: DNS, Reb = 5000; right �gures: LES, Reb = 14 000. From top to bottom:

Rob = 0, 0.17, 0.5 and 1.5. h is the channel half-width, Æ. Reproduced with permission from Lamballais et

al. (1998).
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and momentum thicknesses of the boundary layer), shown in Fig. 6.10b. The skin friction coeÆcient
Cf = �w=�U

2
1
, shown in Fig. 6.10c, decreases signi�cantly during the acceleration.

The structure of the inner layer is also signi�cantly altered. In the near-wall region, the streaks
become more elongated, and show fewer undulations, due to a signi�cant decrease of the spanwise 
uc-
tuations relative to the streamwise ones. The coherent eddies also become fewer, more elongated, and
aligned in the streamwise direction, and fewer ejections are observed. In Fig. 6.11, iso-surfaces of Q
(de�ned in Chapter 4) are shown. In the zero-pressure-gradient region, the iso-surfaces of Q highlight the
quasi-streamwise vortices known to populate the wall region of equilibrium boundary-layers (Robinson
1991a,1991b). In the mild-acceleration case, the structure in the favorable-pressure-gradient region is
not signi�cantly di�erent, although fewer structures can be observed. In the strong-acceleration case, on
the other hand, considerably fewer coherent eddies are found. Furthermore, in the zero-pressure-gradient
region the eddies form an angle to the wall, and often extend for several hundred wall units into the outer
layer, while in the favorable-pressure-gradient region (in the strong acceleration case) they become es-
sentially aligned in the streamwise direction, and much more elongated. Their vorticity is approximately
the same as in the zero-pressure-gradient region, despite the presence of an additional vortex-stretching
mechanism. This may be due to increased dissipation of the thinner, more intense vortices due to this
additional vorticity-generating term.

Scotti and Piomelli (2001) performed LES and DNS of pulsating channel 
ow. Inherent unsteadiness
of the driving conditions characterizes many turbulent 
ows, both natural (e.g. the gravity wave induced
in ocean-bottom boundary layers, the blood 
ow in large arteries, the 
ow of air in lungs) and arti�cial
(such as the 
ow in the intake of a combustion engine or the 
ow in certain heat exchangers). To study
the response of turbulence to an oscillating mean 
ow, a plane-channel 
ow driven by an oscillating
pressure gradient was studied. The physical con�guration is illustrated in Fig. 6.12: the 
ow between
two 
at plates that extend to �1 in the streamwise (x) and spanwise (y) directions is simulated. To
drive this periodic 
ow, a pressure gradient per unit length is introduced on the right-hand-side of the
Navier-Stokes equations as a source term. In the case under investigation, this pressure gradient is given
by 1 � 10�4 + ! sin!t, where ! is the angular frequency of the oscillation. The 
ow admits a laminar
solution, which is a trivial extension of the Stokes problem. The 
ow �rst decelerates (as it is subjected
to the adverse pressure gradient during the �rst half of the cycle), then accelerates again. During the
acceleration phase, as observed before, the 
ow tends to relaminarize, whereas the adverse-pressure-
gradient has the opposite e�ect, and makes the 
ow more turbulent.

Since the core of the 
ow, where the velocity is large, is dominated by convective e�ects, while the
regions near the solid boundary, where the velocity gradients are signi�cant, are dominated by di�usive
e�ects, there is a disparity in time-scales between these two regions: the di�usive time-scale being smaller
than the convective one by orders of magnitude. Thus, as the frequency is changed, one would expect a
signi�cantly di�erent coupling between the near-wall region (the inner layer) and the core of the 
ow (the
outer layer). To study this coupling, calculations were carried out for a range of frequencies. Although
the geometry is rather simple, and the grids used relatively coarse, this calculation still requires a large
amount of CPU time, due to the long integration time necessary to achieve convergence. Since phase-
averaged data is required, between eight and ten cycles of the oscillation are needed to obtain converged
statistical samples. If the frequency is low, the equations of motion must be integrated for very long
integration. The Reynolds number based on channel height and the time-averaged centerline velocity was
7500 for all calculations. Simulations were carried out for several values of the frequency of the driving
pressure-gradient, resulting in a Reynolds number, based on the thickness of the laminar oscillating layer,
Æ = (2�=!)1=2 and the oscillating component of the velocity, ranging between ReÆ = 100 and 1000.

The centerline velocity, shown in Fig. 6.13, lags behind the stress at the wall; the phase di�erence is
�=4 at high frequencies, and drops to zero at low frequencies, where the 
ow is essentially in equilibrium.
The good agreement between DNS and LES at the high frequency can also be observed in this �gure. At
high frequencies the response of the system is essentially at the driving frequency, despite the non-linear
character of the equations. As the frequency is lowered, however, higher harmonics are excited.

Di�erent behaviors of the near-wall region as the frequency is decreased are evident in Fig. 6.14,
in which contours of the turbulent kinetic energy are shown. At the highest frequency the inner and
outer layers appear largely decoupled. A thickening of the inner layer can be observed at the end of the
deceleration phase (t=T ' 1), which, however, does not propagate far into the outer layer: by z=H ' 0:2
the contours are nearly undisturbed. At lower frequencies, however, the inner layer has the time to adapt
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energy k.

to the perturbation introduced by the pressure pulse; at the lowest frequencies in particular the 
ow can
be observed to relaminarize, as indicated by the absence of turbulent kinetic energy.

It is interesting to note the asymmetric response of the turbulent kinetic energy at low and intermediate
frequencies: at the lowest frequencies the 
ow at the beginning of the acceleration phase is essentially
laminar (although the velocity pro�le is not, as the viscous time needed to relax to the Poiseuille pro�le
t+ � Re2� exceeds the period). Figure 6.15 shows contours of the streamwise velocity 
uctuations u0

during the cycle. One can observe a nearly quiescent 
ow for t=T = 0. As the 
ow picks up momentum,
very long and smooth streaks develop, which, eventually, become unstable and burst into a localized
turbulent spot, at t = 3T=8, which eventually �lls the whole channel. At high frequencies, the process is
very di�erent (Fig. 6.16). Fairly healthy streaky structures can be observed for the entire period. During
the acceleration phase the 
ow begins to re-laminarize: some very long, nearly straight low-speed streaks
can be observed (1=8 � t=T � 2=8).

6.2.1 Three-dimensional 
ows

It was mentioned before that large-eddy simulations are based on the assumptions that the small scales
are more isotropic, and less a�ected by the boundary conditions, than the large scales. This assumption
justi�es the use of simple, equilibrium-based models, even in 
ows in which the resolved scales are not
in equilibrium. By the same token, LES should be more suitable than the Reynolds-averaged approach
to study highly three-dimensional or separated 
ows, especially those in which the gradient transport
hypothesis, and consequently one- and two-equation models of turbulence, fails.

Piomelli et al. (1997) used the velocity �elds from a DNS of the 
ow in a three-dimensional boundary
layer obtained by imposing an impulsive spanwise motion, with magnitude equal to 47% of the initial
mean centerline velocity, to the lower wall of a fully-developed plane channel 
ow (Coleman et al. 1996)
to study the physics of the SGS stresses subjected to a three-dimensional perturbation. The a priori
tests showed that the SGS stresses react to the imposition of the secondary shear @W=@y more rapidly
than the large-scale ones, and return to equilibrium before the resolved stresses do. The simulations
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Figure 6.14: Contours of the turbulent kinetic energy (normalized by the mean wall stress) in the oscillating

channel. 26 equi-spaced contours between 0 and 12.5 are shown
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Figure 6.17: Time history of the wall shear stress and average turbulent kinetic energy in the three-dimensional

boundary layer 
ow. All quantities are initialized by their initial values. (a) �w=�w;o; (b) K=Ko. Coarse

DNS; Smagorinsky Model; Dynamic Eddy-Viscosity Model; Dynamic Mixed Model; One-

CoeÆcient Lagrangian Mixed Model; Two-CoeÆcient Lagrangian Mixed Model; 4 DNS (Coleman et al. 1996).

of Sarghini et al. (1999) con�rmed the a priori tests results: dynamic and scale-similar models give
more accurate prediction of the transient, non-equilibrium phenomena. Figure 6.17 shows the time-
development of the wall stress �w and turbulent kinetic energy K integrated over the entire computational
domain; both quantities are normalized by their initial values. Several models were tested. Computations
performed without any model are unable to predict the non-equilibrium e�ects, and give the incorrect
time-development of all the quantities examined. The Smagorinsky model also gives signi�cant errors:
before the shear is applied, the model over-predicts the dissipation slightly, especially in the bu�er region.
The imposition of the strain leads to a doubling of the SGS dissipation that results in excessive damping
of the turbulent 
uctuations. Dynamic models predict the initial decrease in the turbulence quantities
and the successive recovery of the turbulent kinetic energy well. The one-coeÆcient Lagrangian mixed
model (5.17) gives the most accurate results, at a minor penalty in terms of computational cost.

A related study was carried out by Kannepalli & Piomelli (2000). They simulated a spatially develop-
ing boundary layer in which a section of the wall was set in motion. A transverse boundary layer develops
on the moving plate, that is is found to be decoupled from the streamwise 
ow. The Reynolds stresses
are drastically modi�ed by the imposition of the shear. Signi�cant decreases in the axial skin-friction and
turbulent kinetic energy are observed at the junctions of the moving wall, despite the fact that additional
energy is delivered to the 
uid by the wall motion. The RANS approach has been rather unsuccessful
in this type of 
ow, due to a strong misalignment between the principal axes of the Reynolds-stress and
strain-rate tensors. LES, on the other hand, gives statistics in good agreement with experimental data
(Lohmann 1976, Driver & Hebbar 1987, Driver & Johnston 1990). The availability of the resolved �eld
allowed Kannepalli & Piomelli (1999) to calculate the Reynolds stress budgets. They found that the
decrease in turbulent kinetic energy at the plate junctions is mostly due to a decrease in production,
while the dissipation and pressure terms play a relatively minor role. Flow visualizations (Fig. 6.18)
showed that at the moving plate junction the additional shear disrupts the near-wall eddies, resulting
in a decrease of the Reynolds stress hu0v0i, and a corresponding decrease in the production of turbulent
kinetic energy, not accompanied by an analogous decrease in the dissipation. As the eddies are regener-
ated, however, the secondary Reynolds stress hv0w0i becomes signi�cant, the production increases again,
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black: positive contours. Reproduced with permission from Liu et al. (1996).

and the 
ow reaches a quasi-equilibrium collateral state, characterized by higher turbulent kinetic energy
and Reynolds stresses.

Liu et al. (1996) computed the 
ow in a turbulent boundary layer on which a pair of strong counter-
rotating vortices was superimposed, using a localized dynamic model. The vortices generate the extra
strain components @V=@y, @V=@z, @W=@y and @W=@z. The mean streamwise vorticity development is
predicted much more accurately than when K � " models are used, due to the fact that two-equation
models cannot predict the gradients of the normal stress anisotropy, which play an important role in the
development of 
x. The magnitude of the eddy viscosity that would be used in K� � models is shown in
Fig. 6.20. A dot product is used to produce an eddy viscosity:

�e � �
hu00i u

0

jihSiji

2hSijihSiji
: (6.1)

(using this \least-squares" de�nition, �e is the eddy viscosity that would give the correct production rate,
transferring the correct amount of kinetic energy from the mean 
ow to the turbulence). The �gure
compares this quantity and an eddy viscosity calculated from the K � � formula, �e = C�K

2=�, with
C� = 0:09. The values of �e predicted by the K� � formulation are close to those obtained directly from
the LES away from the vortex; inside the vortex, however, they are roughly double the LES values. This
explains the rapid decay of the streamwise vorticity that is observed in K � � solutions.
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6.2.2 Separated 
ows

Separated 
ows constitute another class of non-equilibrium 
ows in which RANS models have had mixed
success. They present signi�cant challenges for LES calculations as well. Beaudan &Moin (1994) used the
dynamic and Smagorinsky SGS models for the LES of the wake of a circular cylinder at Re = 3900 (based
on cylinder diameter and freestream velocity). The dynamic model gave results in better agreement with
the experiments than the Smagorinsky model, especially in the recirculation region behind the cylinder.
If the boundary layer before separation is subcritical, for instance, along the separation streamline a
shear layer develops that is often inviscidly unstable; the grid, in this region, must be suÆciently �ne
to capture the shear-layer roll-up, and the SGS model must give vanishing eddy viscosity in this region.
The dynamic model correctly predicted zero viscosity along the shear layers following separation, unlike
the Smagorinsky model.

This calculation highlighted an important numerical issue, that of the e�ect of numerical dissipation
on the resolved scales and on the subgrid-scale model. Mittal & Moin (1997) performed calculations
of the same 
ow, using a second-order central scheme instead of the �fth-order upwind-biased method
employed by Beaudan & Moin (1994). They found that the numerical dissipation due to the upwind
scheme a�ected very signi�cantly the spectra (Fig. 6.21). Near the cylinder, the mean velocity and
Reynolds stresses were in only slightly better agreement with the experiments, presumably because they
are mostly due to large scales contained in a small band of frequencies that was well resolved even when
the upwind scheme was used. In the far-wake, on the other hand, the non-dissipative central scheme,
and the B-spline block-structured approach applied on the same geometry by Kravchenko (1998) and
Kravchenko & Moin (2000) gave more accurate results.

Other separated 
ows that have been computed by LES include the backward-facing step (Akselvoll
& Moin 1995, Delcayre & Lesieur 1997, as well as others), and the coaxial jet, a con�guration frequently
used as a combustor (Akselvoll & Moin 1996, Pierce & Moin 1998) and an asymmetric plane di�user
(Kaltenbach et al. (1999). This 
ow is particularly diÆcult to simulate because of the disparity of scales:
due to the expansion, the mean velocity and the Reynolds number in the outlet region are 4.7 times
lower than in the inlet, and the inertial time scale is 4:72 ' 22 times larger. Furthermore, an adverse
pressure gradient exists that leads to an unsteady separation. This simulation highlights the e�ect of
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the boundary conditions on the accuracy of the results. Kaltenbach et al. (1999) found that, when fully
developed channel 
ow was used to supply the in
ow data, the separation point was predicted incorrectly,
a very small reversed-
ow region was observed, and the recovery region was not predicted very accurately .
When an inlet velocity pro�le that more closely matched the measured one was assigned, however, much
improved results were obtained. This numerical experiment pointed out very strongly that, in order
to compare meaningfully experiments and simulations, the boundary conditions must be matched very
carefully. Discrepancies between the computational and experimental results should not be attributed
too hastily to numerical or modeling errors without investigating in detail whether the numerical 
ow
conditions matched the experimental ones.
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Chapter 7

LES { FUTURE DEVELOPMENTS

7.1 Compressible 
ows

The applications of LES to compressible 
ows have been far fewer than for incompressible cases. This
is also an area that will conceivably see enhanced e�ort in the near future. In compressible 
ows, it is
convenient to use Favre-�ltering (Favre 1965a,1965b) to avoid the introduction of subgrid-scale terms in
the equation of conservation of mass. A Favre-�ltered variable is de�ned as:

~f = �f=�; (7.1)

the Favre-�ltered equations of motion can be written in the form:

@�

@t
+

@

@xj
(�euj) = 0; (7.2)

@� eui
@t

+
@

@xj
(�euieuj) + @p

@xi
�
@e�ji
@xj

= �
@�ji
@xj|{z}
I

+
@

@xj
(�ji � e�ji)| {z }

II

; (7.3)

where a perfect-gas equation of state is assumed, and

�ij = 2�Sij +

�
�2 �

2

3
�

�
ÆijSkk (7.4)

e�ij = 2e�eSij +�e�2 � 2

3
e�� Æij eSkk; (7.5)

here eSij is the Favre-�ltered strain-rate tensor, � is the molecular viscosity, and �2 the bulk viscosity;e� = �( eT ) and e�2 = �2( eT ) are their values at the �ltered temperature eT .
Two unclosed terms appear in (7.3): term I, the divergence of the SGS stresses �ij = �(guiuj � euieuj),

and term II, which is due to the nonlinearity of the viscous stresses. While the former is modeled, the
latter is invariably neglected (i.e., it is assumed that �ji � e�ji = 0). The trace of the SGS stresses in
compressible 
ows cannot be included in the modi�ed pressure, and requires separate modeling, although
it is frequently neglected (Zang et al. 1992).

In addition to the momentum and mass conservation equations, an energy equation is required. Several
options are available: one can solve the internal energy, the enthalpy or the total energy equation. Each
of these choices results in a di�erent set of terms that must be modeled. The equation for the internal
energy per unit mass �, for instance, is

@(�e� )
@t

+
@

@xj
(�euje�) + @eqj

@xj
+ peSkk � e�ji eSij = �

@

@xj
[� (fuj�� euje�)]| {z }

III

�
@

@xj
[qj � eqj ]| {z }
IV

�
h
pSkk � peSkki| {z }

V

+
h
�jiSij � e�ji eSiji| {z }

VI

; (7.6)
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here

qj = �k
@T

@xj
; eqj = �ek @ eT

@xj
; (7.7)

are heat 
uxes, and ek = k( eT ) is the value of the thermal conductivity obtained using the �ltered tem-
perature.

The under-braced terms must be modeled. Term III is the divergence of the subgrid-scale heat 
ux:

� (fuj�� euje�) = Qj=
: (7.8)

Term IV is usually neglected, as was the analogous term in the momentum equation. Term V is the SGS
pressure-dilatation, and term VI is the SGS contribution to the viscous dissipation. In past applications
(Moin et al. 1991, El-Hady et al. 1994) the subgrid-scale heat-
ux Qi was modeled, while terms V and
VI were neglected (as well as the di�usion nonlinearities IV). Vreman et al. (1995b) performed a priori
tests using DNS data obtained from the calculation of a mixing layer at Mach numbers in the range
0.2{0.6, and concluded that neglecting the nonlinearities of the di�usion terms in the momentum and
energy equations (terms II and IV) is acceptable; they found, however, that the SGS pressure-dilatation
and SGS viscous dissipation are of the same order as the divergence of the SGS heat 
ux, Qj , and that
modeling term VI improves the results, especially at moderate or high Mach numbers.

Similar terms arise if the equation for the enthalpy h = �+ p=� is used:
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VIII

+
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�jiSij � e�ji eSiji| {z }

VI

: (7.9)

Terms IV and VI also appear in the internal energy equation; term VII is equal to the divergence of Qj .
The velocity-pressure gradient term VIII can be decomposed to yield the pressure-dilatation term, and a
pressure-di�usion part that can be related to Qj :

uj
@p

@xj
� euj @p

@xj
=

@

@xj
[puj � p euj ]� hpSjj � peSjji

=

 � 1




@Qj

@xj
�
h
pSjj � peSjji ; (7.10)

where the equation of state has been used to give

puj � p euj = �R
�gTuj � eT euj� = 
 � 1



Qj : (7.11)

The pressure-dilatation term has been neglected in the past (Speziale et al. 1988, Erlebacher et al. 1992).

The third option is to use an equation for the �ltered total energy per unit mass eE = e�+ gujui=2:
@
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In this case the convective term IX gives rise to two unclosed terms:

�
�gujE � �euj eE� = � (fuj�� euje�) + �

�
ûjukuk

2
�
eujeukeuk

2

�
=

Qj



+ �Dj ; (7.13)

where

Dj =
1

2

�
ûjukuk � euj]ukuk� = 1

2

�
ûjukuk � eujeukeuk � euj�kk� (7.14)

is similar to the turbulence di�usion that appears in the subgrid-scale kinetic energy equation. Knight
et al. (1998) proposed that Dj ' �jkeuk. The other two unclosed terms in (7.13) do not require separate
modeling, since they include the already-modeled SGS stresses and heat 
ux. Term IV is usually neglected,
term X can be expressed in terms of the SGS heat 
ux Qj using (7.11); term XI is analogous to the SGS
viscous dissipation VI in the internal energy or enthalpy equations, and is probably not negligible.

Vreman et al. (1995b) derived an equation for a modi�ed total energy, the total energy of the �ltered

�eld, c�E = �(e� + eukeuk=2). In this transport equation the pressure-dilatation term V, the SGS viscous
dissipation VI, and a term of the form euj(@�ij=@xi) require modeling.

In summary, in compressible 
ows the following terms are unclosed:

1. SGS stresses �ij (from I); various models have been proposed, based on incompressible models
such as eddy-viscosity (Yoshizawa 1986), mixed (Speziale et al. 1988), dynamic (Moin et al. 1991,
El-Hady et al. 1994), and structure function (Normand & Lesieur 1992) models. The need to
predict the normal stresses increases the model complexity (an additional model coeÆcient may be
required).

2. SGS heat 
ux Qj (from III, VII or IX); it can be obtained from the SGS stress term by using either a
constant or a dynamically-adjusted turbulent Prandtl number (Moin et al. 1991) or a mixed model
(Speziale et al. 1988).

3. Pressure dilatation, V (the velocity-pressure gradient term can be reduced to the pressure dilatation,
and the pressure di�usion can be modeled directly in terms of Qj). Vreman et al. (1995b) proposed
a scale-similar model for this term.

4. Viscous dissipation (term VI) or viscous work of (term XI), depending on the equation chosen.
Vreman et al. (1995b) proposed a scale-similar model for this term as well.

5. Turbulent di�usion Dj in (7.14). This appears only if the total energy equation is used.

6. Terms arising from the nonlinearity of the di�usive 
uxes (II and V). It is probably safe to neglect
them at low or moderate temperatures.

If the di�usive nonlinearities are neglected, depending on the set of equations chosen, four of the
above terms must be modeled: models for the SGS stresses and heat 
ux are always required, as well
as a model for one of the viscous terms. The internal energy, enthalpy and modi�ed energy equations
require modeling of the pressure dilatation, while the total energy requires modeling of the divergence of
the turbulent di�usion Dj . It is not known whether there are advantages to either approach.

While Vreman et al. (1995b) found most of these terms to be important in a mixing layer, a comparison
of the unclosed terms in the energy equation is shown in Fig. 7.1 for a 1283 simulation of homogeneous
isotropic decay with turbulent Mach number Mt = 0:52, Reynolds number (based on the Taylor micro-
scale �) Re� = 34:5, and a �lter width �=� = 4 (Mart��n et al. 2000). The pressure-di�usion term,
which does not require separate modeling but can be expressed in terms of Qj is signi�cant, while the
pressure-dilatation term is negligible. The viscous terms are also negligible, while the turbulent di�usion
is signi�cant.

Subgrid-scale stress modeling for compressible 
ows is at a much less advanced stage than for incom-
pressible ones, partly due to the lack of suitable databases for a priori tests. Correspondingly, there are
few baseline calculations of building-block 
ows, and very few a posteriori evaluations of SGS models.
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Figure 7.1: Comparison of unclosed terms in the energy equations (Mart��n et al. 2000).
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7.2 Wall layer modeling

Perhaps the most urgent challenge that needs to be met, in order to apply LES to technologically
relevant 
ows, is the modeling of the wall layer. The presence of a solid boundary a�ects the physics of
the subgrid scales in several ways. First, the growth of the small scales is inhibited by the presence of the
wall. Secondly, the exchange mechanisms between the resolved and unresolved scales are altered; in the
near-wall region the subgrid scales may contain some signi�cant Reynolds-stress producing events, and
the SGS model must account for them. Finally, the length scale of the energy-carrying large structures is
Reynolds-number dependent near the wall. If the wall layer is resolved, the important energy-producing
events must be captured; since their dimensions scale with the Reynolds number, so will the cost of
an LES calculation. It was mentioned previously that Chapman (1979) estimated that the resolution
required for the outer layer of a boundary layer is proportional to Re0:4, while for the wall layer (which,
in aeronautical applications, only accounts for approximately 1% of the boundary layer thickness) the
number of points needed increases at least like Re1:8. This requirement makes application of LES to high
(order of 106 � 109) 
ows practically impossible.

Alternatively, approximate boundary conditions, or wall models, may be used. When the grid is not
�ne enough to resolve the near-wall eddies, the wall layer must be modeled by specifying a correlation
between the velocity in the outer 
ow and the stress at the wall. This approach allows the �rst grid
point to be located in the logarithmic layer, and, since the energy-producing vortical structures in the
viscous and bu�er regions do not have to be resolved, it permits the use of coarser meshes in the other
directions as well: �x+ ' 100� 600, �z+ ' 100� 300. The modeling of the wall-layer physics, however,
introduces further empiricism in the calculations. The basic assumption behind this approach is that the
interaction between the modeled, near-wall region, and the resolved, outer region, is weak. Some support
for this assumption can be obtained, for instance, from a recent paper of Brooke & Hanratty (1993), in
which the way the near-wall vortices are born is investigated utilizing DNS databases from a turbulent
channel 
ow. They found that the 
ow structures in the viscous wall region, which are responsible for
most of the shear stress production, regenerate themselves; no interaction with the outer layer structures
was detected.

In general terms, wall models are based on a zonal approach in which the inner and outer layer
are treated using di�erent sets of equations, and di�erent modeling strategies. In the outer layer, the
�ltered Navier-Stokes equations are used. In the inner layer, various alternatives are possible. If one
assumes that only the Reynolds shear stress is signi�cant, and that Prandtl's mixing-length hypothesis
holds, the inner-layer equations can be integrated analytically, yielding the logarithmic law-of-the-wall
(Deardor� 1970, Schumann 1975, Piomelli et al. 1989). With this approach, the stress at the wall can be
computed in terms of the velocity at the �rst inner point, for example by solving the logarithmic law for
u� . This approach assumes that the dynamics of the wall layer are universal, and that some generalized
law-of-the-wall can be imposed.

Another option, which was �rst proposed by Balaras and coworkers (Balaras & Benocci 1994, Balaras
et al. 1996) consists in solving the boundary-layer equations in the inner layer with some turbulence
model. This approach is based on the consideration that, as the Reynolds number increases, a signi�cant
disparity of length and time-scales develops between the near-wall region and the outer 
ow. If the
grid-cell dimensions are large compared to the typical eddy size in the near-wall layer, the cell closest
to the wall will contain a very large number of such eddies (Fig. 7.2), large enough to be considered
a statistically signi�cant sample. Furthermore, since these eddies are small compared to the grid size,
their life-cycle is short compared to the time-step. Thus, the �ltered velocity is not a�ected directly
by each of these eddies, but only by their combined e�ect, and it is not necessary to resolve separately
each Reynolds-stress-producing event that takes place in the wall-layer, but only to account for them
in a statistical sense, through a RANS-like model. In the outer 
ow, then, the �ltered Navier-Stokes
equations are solved using as the wall-boundary condition the wall stress supplied by the inner-layer
calculation. In the inner layer (i.e., from the �rst grid point, to the wall), the boundary-layer equations
for the mean (i.e., averaged over the cell, in the plane parallel to the solid boundary) velocity are solved.
The velocity pro�le obtained in this manner yields the cell-averaged viscous stress at the wall, required
for the calculation of the outer 
ow at the next time-step.

The two-layer model was applied by Balaras et al. (1996) to the 
ow in a plane channel, in a square
duct and in a rotating channel. The model gave better results than models based on the law-of-the-wall,
most notably for the rotating channel 
ow, in which signi�cant deviations from the logarithmic pro�le are
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Figure 7.2: Sketch of the two-layer model concept.
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, experimental data. Reproduced with permission from Balaras et al. (1996).

observed, that were captured well by the two-layer model (see Fig. 6.7). The calculation of the 
ow in the
square duct also gave results in good agreement with the experimental data (Fig. 7.3). Backward-facing
step calculations were performed by Cabot (1996), who used the Balaras et al. (1996) formulation, and
Diurno et al. (2001). The LES gives fairly good prediction of the mean 
ow (Fig. 7.4): the reattachment
region is predicted to within 5% of the value obtained from the resolved LES, at a fraction of the cost
(the simulation that uses the approximate boundary conditions requires about two hours on a Pentium
II 300MHz processor, whereas the resolved LES (Akselvoll and Moin 1996) used 20-30 Cray CPU hours).

An alternative method has been recently proposed by Spalart et al. (1997). It is also a zonal approach,
based on the consideration that RANS model predict attached boundary layers fairly accurately, but fail
to predict the separated 
ow regions well; in particularly, they do not capture adequately the vortex
shedding that is responsible for much of the noise generation in such 
ows, as well as for unsteady
loads. Due to its emphasis on the prediction of the 
ow in separated regions, this technique is known as
\Detached Eddy Simulation" (DES). With DES, not only the wall layer, but the entire boundary layer
is computed using the RANS framework.

In massively separated 
ows, DES has met with some success. Costantinescu & Squires (2000a,2000b)
have performed calculations of the 
ow over a sphere. They compared several approaches: the standard
LES, in which the boundary layer on the sphere is fully resolved, the DES technique, and the unsteady
RANS (URANS) approach, in which the ensemble-averaged Navier-Stokes equations are solved using a
standard turbulence model. URANS are supposed to be able to capture the large-scale unsteadiness of
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the 
ow (in this case, the shed vortices). The LES used the dynamic eddy-viscosity model (Germano et
al. 1991, Lilly 1992). The DES used a modi�cation of the Spalart-Allmaras (1994) model, a one-equation
model based on a single transport equation for the eddy viscosity that is widely used in aerodynamics.
The URANS computations used various models such as the K � " and K � ! two-equation models, the
v2 � f model (Durbin 1991) and the Spalart-Allmaras (1994) model.

In Fig. 7.5 a comparison of the instantaneous out-of-plane vorticity is shown. The unsteady RANS
calculations fail to predict the instability of the separating shear layer that leads to the generation of
vortex tubes in the wake of the sphere, as well as the unsteady eddies in the recirculating region. The
K�" model, in particular, does not predict the shear-layer development with any degree of accuracy. DES
predicts the unsteady, three-dimensional structure of the recirculating region much more accurately. Both
LES and DES predict the energy content and frequency of the shedding much more accurately than any
of the RANS models, although the LES demonstrates a better capability in capturing the development
of the Kelvin-Helmholtz instability in the detached shear layer.

7.3 URANS, LES and commercial codes

The calculations described in the previous Section highlight signi�cant di�erences between the results
obtained with LES and unsteady RANS. These di�erences result from the conceptual development of
the techniques, and a�ect the modeling, the numerics, the resolution requirements and the boundary
conditions to be applied. As commercial codes increasingly include an LES option, it is important to
highlight these di�erences, and to give some words of caution to potential users of such codes.

The governing equations for unsteady RANS are the ensemble-averaged Navier-Stokes equations. The
character of these equations is essentially di�erent from that of the �ltered Navier-Stokes equations solved
in LES. First, if the grid size is decreased, since the �lter size is related to the grid, LES tend towards
direct simulations: fewer and fewer eddies are removed by the �ltering operation until, as � ! 0 all
scales of motion are resolved. In the URANS approach, on the other hand, a Reynolds-stress term is
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Figure 7.5: Turbulent 
ow over a sphere. Out-of-plane vorticity contours in an azimuthal plane. Reprinted with

permission from Constantinescu & Squires (2000b).

always present, independent of the grid size, to represent the e�ect of the turbulent 
uctuations that are
removed by the ensemble average. This di�erence is re
ected in the models: a subgrid-scale model should
give (and most do) vanishingly small eddy viscosity as � ! 0. A K � " model, on the other hand gives
Reynolds stresses that become grid-independent (but non-zero) as the grid is re�ned.

Furthermore, geometric symmetry properties can be exploited in URANS to reduce the computational
cost; the sphere calculations described above could have been carried out using an axi-symmetric grid,
for instance; similarly, backward-facing step calculations can be two-dimensional. LES, on the other
hand, are inherently three-dimensional: the energy-carrying eddies that must be resolved are three-
dimensional, and are intensi�ed by the vortex-stretching that that cannot be taken into account in two-
dimensional calculations. For this reason, two-dimensional calculations cannot be described as \large-
eddy simulations", since they are unable to capture correctly the dynamics of the important vortical
structures.

Another important di�erence is in the boundary conditions required by the two techniques. In RANS
and URANS, only the ensemble-averaged velocity (plus whichever turbulent statistics the model requires)
need to be speci�ed at in
ows. In a 
ow with large-scale unsteadiness that is not due to the boundary
conditions (such as the 
ow around the sphere) the in
ow conditions are steady. Not so for the LES: if the
in
ow is turbulent, temporally and spatially varying in
ow conditions must be speci�ed. As mentioned
in Section 3.6, even the use of random noise 
uctuations superimposed on a mean velocity pro�les may
not be suÆcient to ensure an accurate prediction of the 
ow downstream. Similar care must be used
when assigning wall boundary conditions: the wall functions that are used in RANS calculations are not
always suitable for LES.

The grid requirements of the URANS and LES are also substantially di�erent: in RANS or URANS,
only the mean gradients have to be resolved; in LES, all the energy-carrying structures must be computed
accurately. The grids required by LES tend, therefore, to be �ner than those used by RANS calculations.
As a consequence, changing a RANS model to an SGS model on a given grid does not guarantee improved
results. On the contrary, if the mesh is insuÆcient to capture the important three-dimensional structures,
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switching from, say, a K� " model to a Smagorinsky model is likely to decrease the accuracy, unless the
grid is suÆciently �ne.

The di�erent characteristics of the two techniques are re
ected also in the numerical methods that
can be used. RANS and URANS give smooth solutions; the use of upwind schemes in RANS codes is,
therefore, not tremendously damaging. In LES, on the other hand, the numerical dissipation of upwind
schemes a�ects the accuracy of the results substantially. Among its typical symptoms are thickening of
the wall layers (and high values of the intercept of the logarithmic layer); reduced turbulence intensities,
especially in regions of relaminarization; delay, or even suppression, of the onset of transition. Upwind
methods, are often the default in commercial codes, in which the robustness of the method is an important
priority; however, should be avoided when performing LES.
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Chapter 8

CONCLUSIONS

It was the purpose of these Lecture Notes to give an introduction to two methods that have become
increasingly popular for the solution of turbulent 
ow problems, the direct and large-eddy simulation
techniques. It is hoped that they constitute a suitable starting point for more in-depth readings for those
interested in using LES, and that they supply the peruser of the technical literature with the tools to
understand better the power, limitations and achievements of these approaches.

Direct simulations have been mostly an instrument for the study of the physics of turbulence, since
resolution requirements limit their application to relatively low Reynolds numbers. Although engineering
con�gurations are beyond the capabilities of DNS, at least in the near future. DNS, however, allow very
detailed control over the 
ow parameters, which can be used in aeroacoustics, applications involving
reacting 
ows and 
ow control.

The purpose, and range of application, of LES overlaps with the applications suitable for DNS on one
end, those suitable for RANS methodologies on the other. The principal advantage of LES over DNS
is the fact that it allows one to compute 
ows at Reynolds numbers much higher than those feasible in
DNS, or at the same Reynolds numbers but at a considerably smaller expense. One should not expect
to be able to extract from LES the same information that can be extracted from DNS, since modeling
the small scales a�ects high-order statistics more than the lower-order ones. Thus, LES is expected to
be more reliable for �rst and second moments, and to reproduce qualitatively the basic structures of the

ows (existence of shear layers, vortical structures and so on).

Large-eddy simulation is considerably more expensive than RANS techniques for 
ows that are one-
or two-dimensional in the mean and steady. For this reason, it should be applied to problems in which
its cost is comparable to that of the solution of the RANS equations or to problems in which lower-level
turbulence models fail. Such problems include unsteady or three-dimensional boundary layers, vortex{
boundary layer interactions, separated 
ows and 
ows involving geometries with sharp corners (in square
ducts, for example).

Large-eddy simulation has already demonstrated its capabilities in calculations of relatively complex

ows, at Reynolds numbers that could not be reached by DNS. At present, to maximize the returns,
LES should be applied to problems in which its cost is comparable to that of the solution of the RANS
equations, or to problems in which lower-level turbulence models fail. Such problems include unsteady or
three-dimensional boundary layers, vortex-boundary layer interactions, separated 
ows and 
ows involv-
ing geometries with sharp corners. These are problems in relatively simple geometries, that, however,
isolate one (or a few) of the factors that are expected to be relevant in such con�gurations, albeit within
a simpli�ed geometry. Large-eddy simulation of these 
ows can improve the understanding of the turbu-
lence physics, and also be used to provide data for the development of more accurate lower-level models
(especially pressure statistics, which are diÆcult to measure experimentally).

Among its next targets are, �rst and foremost, 
ows that include additional geometric, as well as
physical, complexities. Interest in compressible 
ows and in aeroacoustics is also increasing. The chal-
lenges that need to be faced to achieve signi�cant advancements in these areas include the development of
near-wall models, of accurate non-equilibrium and compressible SGS models, and of high-order methods
in curvilinear coordinates and on unstructured meshes.

Progress in computer technology has made it possible to perform signi�cant calculations on a�ordable
desktop workstations. The simulations that required hundreds of Cray XMP CPU hours when the author
was working on his dissertation, ten years ago, are now routinely carried out by his students on Pentium II
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machines. Further technological advances will bene�t both the a�ordability of run-of-the-mill calculations,
and the possibility of performing larger, leading-edge calculations in parallel environments.

Large-eddy and direct simulations should not be construed as fool-proof tools to obtain answers to
turbulent 
ow problems, nor, yet, as design tools that can be used for real-time optimization. With
these caveats in mind, however, the outlook for these techniques is reasonably bright. The notable
advancements in modeling and numerics over the last few years, and the increasing number of researchers
that are applying their talents in the nnumerical simulation area are both a measure of past achievements,
and a reason for optimism for the future.
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