TDMA Solver

In this chapter we'll derivetheTDMA (Tri-Diagonal Matrix Algorithm). The solver is really a formula for recursive use of solving a matrix equation using Gauss-Elimination. The finite volume discretization gives a tri-diagonal (the diagonal plus two off-diagonals) equation system in 1D, a pentadiagonal system in 2D, and a septa-diagonal system in 3D. Some discretization schemes give more diagonals; for example, QUICK gives seven in 2D. In this case one can simply put the two outermost diagonals in the source term, so that a penta-diagonal equation system is retained.

Below the TDMA for 2D is given in detail, and the extension to 3D is straight forward.

The 2D discretized equation reads

$$
\begin{equation*}
a_{P} T_{P}=a_{E} T_{E}+a_{W} T_{W}+a_{N} T_{N}+a_{S} T_{S}+S_{U} \tag{22}
\end{equation*}
$$

We rewrite it as

$$
\begin{equation*}
a_{i} T_{i}=b_{i} T_{i+1}+c_{i} T_{i-1}+d_{i} \tag{23}
\end{equation*}
$$

and identification gives

$$
\begin{aligned}
a_{i} & =a_{P}, b_{i}=a_{E}, c_{i}=a_{W} \\
d_{i} & =a_{N} T_{N}+a_{S} T_{S}+S_{U} .
\end{aligned}
$$

Equation 23 is solved from $i=2$ to $i=n i-1$, and $i=1$ and $i=n i$ are boundary nodes. We want to write Eq. 23 on the form

$$
\begin{equation*}
T_{i}=P_{i} T_{i+1}+Q_{i} . \tag{24}
\end{equation*}
$$

In order to derive Eq. 24 we write Eq. 23 on matrix form so that

$$
\left[\begin{array}{cccccc}
a_{2} & -b_{2} & 0 & \ldots & & \tag{25}\\
-c_{3} & a_{3} & -b_{3} & 0 & \ldots & \\
0 & -c_{4} & a_{4} & -b_{4} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
T_{2} \\
T_{3} \\
T_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
d_{2}+c_{2} T_{1} \\
d_{3} \\
d_{4} \\
\vdots
\end{array}\right]
$$

Start by dividing the first row by a_{2} so that (see Eq. 24)

$$
\left[\begin{array}{cccccc}
1 & -P_{2} & 0 & \ldots & & \tag{26}\\
-c_{3} & a_{3} & -b_{3} & 0 & \ldots & \\
0 & -c_{4} & a_{4} & -b_{4} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
T_{2} \\
T_{3} \\
T_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
Q_{2} \\
d_{3} \\
d_{4} \\
\vdots
\end{array}\right]
$$

where

$$
\begin{equation*}
P_{2}=\frac{b_{2}}{a_{2}}, Q_{2}=\frac{d_{2}+c_{2} T_{1}}{a_{2}} . \tag{27}
\end{equation*}
$$

Now we want to eliminate the $c^{\prime} s$. Multiply row 1 by c_{3}, add it to row 3 and after that divide row 3 by $a_{3}-c_{3} P_{2}$. We obtain

$$
\left[\begin{array}{cccccc}
1 & -P_{2} & 0 & \ldots & & \tag{28}\\
0 & 1 & -P_{3} & 0 & \ldots & \\
0 & -c_{4} & a_{4} & -b_{4} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{c}
T_{2} \\
T_{3} \\
T_{4} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
Q_{2} \\
Q_{3} \\
d_{4} \\
\vdots
\end{array}\right]
$$

where

$$
\begin{equation*}
P_{3}=\frac{b_{3}}{a_{3}-c_{3} P_{2}}, \quad Q_{3}=\frac{d_{3}+c_{3} Q_{2}}{a_{3}-c_{3} P_{2}} . \tag{29}
\end{equation*}
$$

We see that Eq. 29 becomes an recursive equation for P_{i} and Q_{i} on the form

$$
\begin{equation*}
P_{i}=\frac{b_{i}}{a_{i}-c_{i} P_{i-1}}, \quad Q_{i}=\frac{d_{i}+c_{i} Q_{i-1}}{a_{i}-c_{i} P_{i-1}} . \tag{30}
\end{equation*}
$$

Now the P_{i} and Q_{i} coefficients can be computed.

1. for $i=2$: use Eq. 27.
2. for $i=3$ to $i=n i-1$: use Eq. 30.

Compute T from Eq. 24 starting from $i=n i-1$ to $i=2$.

