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6.1 Introduction

So far we’ve studied the diffusion (heat conduction) equa-
tion
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and the convection–diffusion equation
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Now we will look at the Navier-Stokes (momentum) equa-
tions and the continuity equation. In 1D, and in unsteady
form we have
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We see that we have three unknowns and two equations;
the third equation is the equation of state. Thus, from the
continuity equation we get the density, from the momen-
tum equation we get U , and the equation of state gives the
pressure P . The above equation system is used for com-
pressible flow, i.e. high-speed flow when the Mach number
Ma � ���. Methods to solve this equation system will be
treated in a later lecture.

If the fluid is (nearly) incompressible, the equation sys-
tem above reads
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where we allow changes in � due to variation in tempera-
ture and concentration of species, but not due to pressure
variations (i.e. ����p � �). Now we have two equations
and two unknowns. The problem is that we don’t have any
equation for pressure. Instead we have to use the continu-
ity equation as an indirect equation for pressure.

Note that in the convective term above we have UU (a
non-linear term); we’ll treat one explicitly (i.e taking it from
the old iteration level) and one implicitly (the one we solve
for). This is quite similar to the convection-diffusion equa-
tion for temperature where we had UT in the convection
term: U was supposed to be known, and we solved for T .

6.2 The staggered grid

Let’s discretize the pressure gradient for the control volume
below, assuming equidistant mesh (�x � �xe � �xw)
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Figure. 1D control volume. Node P located in the middle of
the control volume.
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We find that the pressure gradient at control volume P does
not ”feel” the pressure PP at node P , i.e. the discretized
pressure gradient is independent of PP . This means that a
highly oscillating pressure field as that below can occur.
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although P is highly oscillating. A pressure field like that
in the figure above is called checker-board pressure field.

A remedy it to stagger the grid for the velocities.

� The U momentum equation includes �P��x and is thus
staggered in the x direction;

� The V momentum equation includes �P��y and is thus
staggered in the y direction;

� The W momentum equation includes �P��z and is thus
staggered in the z direction,

see figure below.
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I� J
I � �� J

I � �� J

I� J � �

Ui�J

VI�j

U control volume
V control volume

P control volume

Note that the pressure (main) control volume is denoted
by upper-case indices (I� J), whereas a lower-case i-index
means that the control volume has been staggered in the x
direction (i� J), i.e. it is a U control volume. A lower-case
j-index means that the control volume has been staggered
in the y direction (I� j), i.e. it is a V control volume.

Let’s discretize �P��x and �P��y over the U and V con-
trol volume, respectively; we obtainZ
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(33)

see the figure above. As is seen, all pressure nodes are
used, which prevents oscillating pressure.
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6.3 The Momentum Equations

Discretize the 2D U equation over its control volume, see
the figure below.
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As mentioned at p. 41, the convective, non-linear term
must be linearized so that one U is treated as known, and
one is solved for; to differ between these two we denote the
U which we solve for by , so that the U momentum equa-
tion reads (see Eq. 31 and Eq. 6.1 in M & V)
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with  � U . The diffusion and convection terms are dis-
cretized as in Chapter 4 and 5, except that now the control
volume is staggered in the negative x direction. Term I is
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discretized asZ
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A suitable discretization scheme has to be chosen for  at
the faces [�I� J� and �I � �� J�] as in Chapter 5.

The diffusion term in the x direction (Term II) is dis-
cretized asZ
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The pressure term is discretized as in Eq. 33, i.e.Z
�Vi�J
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The discretized U momentum equation can now be written
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as (where we replace  by U )

ai�JUi�J �
X
nb

anbUnb � �PI�	�J � PI�J��y

X
nb

anbUnb � aWUi�	�J � aEUi
	�J � aSUi�J�	 � aNUi�J
	

ai�J � aW � aE � aS � aN

6.4 The SIMPLE Algorithm

As mentioned in the beginning of this chapter, the continu-
ity equation will be used as an indirect equation for pres-
sure. First the momentum equations are solved, using an
”old” pressure (old values denoted by an asterix as super-
script), to give U� and V � (see Eqs. 6.12-13 in M & V)
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(34)

Note that U and V are not solved for the same control vol-
umes, see figure on p. 43. Now we discretize the continuity
equation over the main control volume (see figure below
and compare with figure on p. 43)
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Note that index �I � ���� J� is equal to �i� J�, and index �I �
���� J� is equal to �i� �� J�, and so on. Introduce

U � U� � U �� V � V � � V �� P � P � � P � (35)

where U� and V � have been obtained from the momentum
equations, and P � was obtained at the previous iteration.
Replace U and V in the continuity equation using Eq. 35 so
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that n
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(36)

where b� is the continuity error, and should, when conver-
gence has been reached, be zero. We want to turn the equa-
tion above into an equation for P �. We use the momentum
equations to obtain a relation between U�, V � and P �. The U
momentum equation (Eq. 34) is also valid for U� so that
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We’re interested in a direct relation between U � and P �, and
thus we rewrite the above equation as
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In the same way we obtain an relation between V � and P �

V �

I�j � dI�j


P �

I�J�	 � P �

I�J

�
� dI�j �

�x

aI�j
� (39)
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Insert Eqs. 38,39 into Eq. 36
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(40)

It should be stressed that the pressure-correction equa-
tion is a correction equation; the object is only to satisfy
the continuity equation, i.e. to make the source term b� in
Eq. 40 vanish. Thus, the fact that the pressure-correction
equation was rewritten (from Eq. 37 to Eq. 38) does not
influence the results at all.

The solution procedure for the equation system consist-
ing of the continuity and the Navier-Stokes equation can be
summarized as:

��� Guess the pressure P�

��� Solve the Navier-Stokes equations (Eq. 34) � U�, V �

��� Solve the pressure-correction equation (Eq. 40) � P �

��� Correct the velocities (see Eqs. 38, 39) and the pres-
sure as
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VI�j � V �
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I�J

(41)
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�	� Repeat Step 2–4 till convergence.

Boundary Conditions

What are the boundary conditions for the P � equation? Usu-
ally the normal velocity component at a boundary is given
(the exception is when a pressure boundary condition is
used, see Section 9.5 in M & V). On a west (low x) boundary,
for example,

U	 U�
� � �

boundary

Since U	 is given, U	 � U�

	 , i.e. U	 should not be corrected.
From Eq. 41 we see that this is satisfied if the coefficient be-
tween the near-boundary node and the boundary is set to
zero; in this case aW � �. Thus the boundary conditions
where the normal velocity is given is homogeneous Neu-
mann boundary conditions, which we implement by setting
aW � � (west boundary), aE � � (east boundary), and so on.

Near a west boundary, for example, the U momentum
equations are solved for U�, see the figure above. The pres-
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sure gradient in the U momentum equation is conveniently
computed using the pressure at nodes � and �. We find that
we don’t need any boundary condition for P . This is actu-
ally a result of that the velocity grid does not fully cover
the computational domain, but stops half a control volume
inside the physical boundary.

An Example

Consider a one-dimensional configuration with only two main
control volumes, see figure below. The discretized pressure
correction equation in one dimension can be written as

aPP
�

P � aEP
�

E � aWP �

W � b

aE � ��d�i
	� aW � ��d�i� aP � aE � aW

b � ��U��i � ��U��i
	 � �m�

i � �m�

i
	

(42)

Assume constant density � � �, viscosity � � ��� and
�x � �. The boundary conditions for the velocities are
U� � U� � � (note that U	 is never used since the U grid
is staggered half a control volume to the left). We solve
the one-dimensional U momentum equation using upwind
differencing

aUi U
�

i � aUEU
�

i
	 � aUWU�

i�	 � P �

W � P �

P � b

aUi � aUE � aUW
(43)

We solve the equation for face 3. From the initial, guessed
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U� U� U�

� � � �

inlet outlet

Figure 1: A 1D grid for velocity U and pressure P .

conditions U�

� � P �

� � P �

� � � we have

aUW�� �
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�x
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� ���

aUE�� �
�

�x
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�
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�
�U�

� � U�

� �


� ���

aU� � aUE�� � aUW�� � ��
� b� � ����	

where b� is a retarding force (� ���	 per unit length) due to
wall-friction. We obtain U�

� � ���� � � � ��� � � � ���	����
 �
�����.

Now the P �

P equation will be solved.

CELL 2

We have

aW�� � �� di�� �
�

aU�
� ���� � aE�� � �����

and from Eq. 42 we get aP�� � ����, b� � ���
�. The dis-
cretized equation for the P �

P equation for cell 2 thus reads

����P �

� � ����P �

� � ���
� (44)

CELL 3

For cell 3 we have aE�� � �. The west coefficient is the
same as the east coefficient for cell 2, i.e. aW�� � aE��, which
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gives aP�� � ����. The source term b� � ����
�, so the dis-
cretized equation for node 3 can be written

����P �

� � ����P �

� � ���
� (45)

We see that the equation system formed by Eqs. 44 and 45
is singular (the determinant is zero). This is always the
case for the pressure correction equation because we have
zero normal gradient �P ���n � � (dP ��dx � � in this exam-
ple) at all boundaries, which means that P � is determined
up to an arbitrary additive constant. To get around this
problem we fix this constant by setting P � to zero at a cho-
sen cell (cell 2, for instance), and omit this cell’s equation
from the equation system. Here we set P �

� � � and we get
from Eq. 45 P �

� � ����	. The pressure is corrected according
to

PP � P �

P � P �

P � (46)

which gives P� � ����	, and the U�

� velocity is corrected as

U� � U�

� � d��P
�

� � P �

�� � ����� � ���� �� � ���	� � ����
(47)

Thus we see that the pressure correction equation cor-
rects the velocities so that the continuity is satisfied. In
this example, it happens that the momentum equation is
also satisfied, i.e. if the U� momentum equation is solved
once again with new pressure (P�) and new velocity (U�),
we get U� � ����. Thus the momentum and the continuity
equations are satisfied.

It was mentioned above that the equation system for the
pressure correction equation was singular. Note that this
is only a problem for direct solvers (i.e. when we invert
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the matrix); when we use iterative solvers such as Gauss-
Seidel, we solve the pressure correction equations without
worrying about that the system is singular.

Under-relaxation

Since the momentum equations are non-linear, we must
use under-relaxation. This means that when we obtain U
from the solver (for example, Gauss-Seidel or TDMA) we
compute the new U value as a blend of the value from the
solver (Usolver) and the old value U�, i.e.

Ui�J � U�

i�J � 	�U solver
i�J � U�

i�J� (48)

where � � 	 � �. When we’re using small 	’s, the changes
between successive iterations is slowed down (	 � � corre-
sponds to no change at all), and 	 � � corresponds to no
under-relaxation. The U momentum equation can be writ-
ten (see Eq. 34)

ai�JU
solver
i�J �

X
nb

anbUnb � SU

with the pressure gradient included in the source term SU .
Insert this expression into Eq. 48 gives

Ui�J � U�

i�J � 	

�
�

ai�J

�X
nb

anbUnb � SU

�
� U�

i�J

�
�

which can be rewritten as
ai�J
	

Ui�J �
ai�J
	

U�

i�J �
X
nb

anbUnb � SU � ai�JU
�

i�J �
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Rearranging gives

amod
i�J Ui�J �

X
nb

anbUnb � Smod
U

amod
i�J �

ai�J
	

� Smod
U � SU � amod

i�J ��� 	�U�

i�J �

We find that introducing under-relaxation directly into the
equation system is conveniently carried out by modifying
the diagonal coefficient ai�J and the source term SU .
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