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Convection – Diffusion

The 1D convection-diffusion equation reads (see Eq. 5.3 V
& M)
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We discretize this equation in the same way as the diffusion
equation. We start by integrating over the control volume
(see figure below).
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Figure. 1D control volume. Node P located in the middle of
the control volume.
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We start by the convective term (the left-hand side)Z e

w
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We assume the velocity U to be known, or, rather, obtained
from the solution of the Navier-Stokes equation. How to
estimate Te and Tw? The most natural way is to use linear
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interpolation (central differencing); for the east face this
gives

��UT �e � ��U�e Te

where the convecting part, �U , is taken by central differ-
encing, and the convected part, T , is estimated with differ-
ent differencing schemes. We start by using central differ-
encing for T so that

��UT �e � ��U�e Te� where Te � fxTE � ��� fx�TP

where fx is the interpolation function (see Eq. 5, p. 9), and
for constant mesh spacing fx � ��	. Assuming constant
equidistant mesh (i.e. �xw � �xe � �x) so that fx � ��	,
inserting the discretized diffusion and the convection terms
into Eq. 17 we obtain
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which can be rearranged as

aPTP � aETE � aWTW � SU
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We want to compute aP as the sum of its neighbour coeffi-
cients to ensure that aP � aE�aW which is the requirement
to make sure that the iterative solver converges. We can
add

��U�w � ��U�e � �
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(the continuity equation) to aP so that

aP � aE � aW �

In general we have three requirements for a differencing
scheme. It should be (see Section 5.4 in V & M):

1) conservative, 2) bounded and 3) transportive

� 1. Conservative. The flux out of a cell should be the
same as that into the neighbour cell (e.g. the flux out of cell
i through its face e should be the same as that into cell i��
through its face w). This is automatically satisfied for finite
volume methods.

� 2. Bounded. For the east face, for example, this means
that Te must not be smaller (or larger) than cell values used
to compute Te (see the figure on p. 27). If all coefficients are
positive, this is satisfied.

� 3. Transportive. The scheme should reflect the way
information is transported. The way information is trans-
ported through face e, for example, is dependent on the
ratio between convection and diffusion [the Peclet number
Pee � ��U�x���e]. If Pee is small, the transport is dom-
inated by diffusion, which transports information equally
in all directions. If, on the other hand, jPeej is large, infor-
mation is transported in the direction of U .

Above we have used the central differencing scheme. What
about the three requirements?

Requirement 1: Yes;

Requirement 2: No, the coefficients can be negative (for
example, aE � � if ��U�e�
 � �e��xe); this occurs if the
Peclet number is larger than two (jPej � 
);
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Requirement 3: No, even if U becomes very large Te is
taken as the average of TP and TE.

We see that central differencing is second-order accurate
(easily verified by Taylor expansion), i.e. the error is pro-
portional to ��x��. This is very important. If the number of
cells in one direction is doubled, the error is reduced by a
factor of four. By doubling the number of cells, we can ver-
ify that the discretization error is small, i.e. the difference
between our algebraic, numerical solution and the exact so-
lution of the differential equation.

Central differencing gives negative coefficients when jPej �

; this condition is unfortunately satisfied in most of the
computational domain in practice. The result is that mostly
no convergent solution can be obtained at all, or, if a solu-
tion is obtained, the computed results contain oscillations.
It’s easy to understand why we get oscillations by looking
how the derivative in the convective term is estimated in
central differencingZ e

w

dT

dx
dx � Te � Tw �

TE � TW



�

We see that TP is not used when computing the derivative
at node P . The right-hand side does not ”feel” the value at
P , and thus, as far as the right-hand side is concerned, TP
can take any value, i.e. oscillations are allowed. In order
to avoid this we should use upwind biased discretization
schemes.
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First-Order Upwind Scheme

In this scheme the face value is estimated as

Te �

�
TP if Ue � �
TE otherwise

� first-order accurate

� bounded

The large drawback with this scheme is that it is inac-
curate.

For a derivation of the coefficients, see Section 5.6 in V
& M.

Hybrid Scheme

This scheme is a blend of the central differencing scheme
and the first-order upwind scheme. We learned that the
central scheme is accurate and stable for jPej � 
. In
the Hybrid scheme, the central scheme is used for jPej �

; otherwise the first-order upwind scheme is used. This
scheme is only marginally better than the first-order up-
wind scheme, as normally jPej � 
. It should be considered
as a first-order scheme. For a derivation of the coefficients,
see Section 5.7 in V & M.
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Second-Order Upwind Scheme
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Figure. Constant mesh spacing. U � �.

We use two nodes upstream and assume that the deriva-
tive between W and P is equal to that between P and e, i.e.

TP � TW
�x

�
Te � TP

�

�
�x

� Te �
�



TP �

�



TW (18)

� second-order accurate

� unbounded (negative coefficients), i.e. Te � TW , Te � TP
or Te � TE (see figure below), or vice versa.
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Now we’ll use Taylor expansion to prove that the scheme
is second-order accurate. We want to show that the convec-
tive term term �T��x is second-order accurate, i.e.

�

�x

Z
dT

dx
dx �

Te � Tw
�x

� (19)

Chapter 5: Convection – Diffusion



Lars Davidson: Numerical Methods for Turbulent Flow
http://www.tfd.chalmers.se/gr-kurs/MTF071 28

From Eq. 18 we have
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�
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Insertion into Eq. 19 gives
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(20)

Taylor expansion gives

TW � TP ��x
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Eqs. 20 and 21 now give
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which is what we wanted to show.

QUICK

Quadratic Upwind Interpolation for Convective Kinematics.
Two nodes upstream and one node downstream are used. A
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second-order polynomial is fitted through W , P and E (see
figure on p. 27)

T �x� � ax� � bx� c�

The conditions

T �x � �� � TW � T �x � �x� � TP � T �x � 
�x� � TE

are used to determine the coefficients a, b and c, so that

T �x � ��	�x� � Te �
�


TP �

�

�
TE �

�

�
TW

For a derivation of the coefficients, see Section 5.9 in V &
M.

QUICK is

� third-order accurate

� unbounded

Bounded Second-Order Upwind Scheme

Above a second-order upwind scheme was presented. How-
ever, this scheme was unbounded, and therefore numerical
problems are often encountered for this scheme. Mostly,
bounded second-order upwind schemes are used. One ex-
ample is the Van Leer scheme. This scheme reads as fol-
lows (Ue � � assumed):

Te �

�
TP � TE�TP

TE�TW
�TP � TW � if jTE � 
TP � TW j � jTE � TW j

TP otherwise

If the variation of T is smooth then
TE � TP
TE � TW

�
�



�
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and we find that van Leer scheme gives Te � ��	TP � ��	TW ,
i.e. it returns to the second-order upwind scheme (see p. 27).
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If T has, for example, a minimum at node P (see fig-
ure above), then the second derivative [TE � 
TP � TW �
TE � TW � 
�TW � TP �] is larger than than the derivative
evaluated between P and E (i.e. TE � TW ). When so, the
first-order upwind scheme is used.

The van Leer scheme

� is second-order accurate, except at local minima and
maxima where is only first-order accurate. It can be re-
garded as a second-order scheme.

� is bounded
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