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Diffusion (February 3, 2002)

We start by looking at 1D diffusion, e.g. the 1D heat con-
duction equation (see Eq. 4.3 V & M)
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To discretize (i.e. to go from a continuous differential equa-
tion to an algebraic discrete equation) this equation is in-
tegrated over a control volume (C.V.), see figure below
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Figure 1D control volume. Node P located in the middle of
the control volume.

Z e

w

�
d

dx

�
k
dT

dx

�
� S

�
dx �

�
k
dT

dx

�
e

�

�
k
dT

dx

�
w

� �S�x � �

(1)

where (see the figure above):

P: an arbitrary node

E, W: its east and west neighbour node, respectively

e, w: the control volume’s east and west face, respectively
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�S: volume average of S

The temperature T and the coefficient of heat conducti-
vity k are stored at the nodes W , P and E. Now we need the
derivatives dT�dx at the faces w and e. These are estimated
from a straight line connecting the two adjacent nodes, i.e.�
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These expression are second-order accurate, This will now
be shown using Taylor expansion. We want to show how
exact the expression
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is. Note that we have assumed that �x � �xw � �xw (ot-
herwise, the method is actually not second-order accurate).
Taylor expansion gives

TE � TP ��x

�
dT

dx

�
P

�
��x��

	

�
d�T

dx�

�
P

�
��x��




�
d�T

dx�

�
P

�
��x��

�	

�
d�T

dx�

�
P

� � � �

TW � TP ��x

�
dT

dx

�
P

�
��x��

	

�
d�T

dx�

�
P

�
��x��




�
d�T

dx�

�
P

�
��x��

�	

�
d�T

dx�

�
P

� � � �

(4)

Chapter 4: Diffusion



Lars Davidson: Numerical Methods for Turbulent Flow
http://www.tfd.chalmers.se/gr-kurs/MTF071 9

Eqs. 3 and 4 now give
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which is wanted we wanted to show.

The heat conductivity k is also needed at the faces. It
is estimated by linear interpolation between the adjacent
nodes. For the east face, for example, we obtain

ke � fxkE � ��� fx�kP � fx �
����x

�xe
� (5)

For an equidistant mesh (constant �x � �x � �xw � �xe)
fx � ���.

Insertion of Eq. 2 into Eq. 1 gives (see Eq. 4.11 in V &
M)

aPTP � aETE � aWTW � SU

aE �
ke
�xe

� aW �
kw
�xw

� SU � �S�x� aP � aE � aW
(6)
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AN EXAMPLE
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node number

face number

Constant heat source/unit length, S � 	; k � constant �
�; T ��� � T� � �; T ���� � T� � ��.
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We get the following equation for node 2:
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Node 3
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We get the following equation for node 3:
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We get the following equation for node 4:
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We get the following equation for node 5:

�
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T� � T� � � (10)

Equations 7–10 can be written on matrix form
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(11)

This equation system can easily be solved by inverting
the matrix. However, in CFD (Computational Fluid Dynamics)
the equation systems are never (except in very special ca-
ses) solved by matrix inversion, because of two reasons:

1) for a large problem, the number of grid nodes can be
well over 1 million, which gives a matrix of ���� ��� to
invert. Storage requirement for such a matrix would
be ����� bytes = 4000 GB, which exceeds the capacity
of any existing supercomputer;

2) for fluid flow, which is governed by the Navier-Stokes
equations, the equations are non-linear, which means
that one would need to iterate anyway.

Instead of matrix inversion, iterative solvers are used.
The simplest solver is the Gauss-Seidel solver. A more ef-
ficient solver is TDMA (see Chapter 7 in V & M). In this
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example we use the Gauss-Seidel solver. In this solver the
discretized equation (Eq. 6) is rewritten as

TP �
aETE � aWTW � SU

aP
�

For Eqs. 7–10 we get

T� � �	T� � 	��T� � 	�������

T� � �	��T� � 	��T� � ������

T� � �	��T� � ��T� � 	��	

T� � ���T� � T� � �����
���

(12)

Iteration 1

We start by computing T�. As we don’t have any value for
T� we have to guess one; for simplicity we set T� � �, which
gives

T� � �	 � � � 	�� � � � 	������� � ���

When computing T�, we use the recent computed value
for T�, and we set T� � �, so that

T� � �	�� � ��� � 	�� � � � ������ � ����

When computing T� and T�, we proceed in the same way

T� � �	�� � ���� � �� � � � 	��	 � 	�	�

T� � ��� � 	�	� �  � �� � �����
��� � ��	�

where we’ve used the boundary value of T� (� ��).

Iteration 2

T� � 	�� T� � ���� T� � ��	�� T� � ���
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Iteration 3

T� � 	��� T� � ���
� T� � ����
� T� � ���	�

...

Iteration 13

T� � �	��� T� � �������� T� � ������� T� � ���
	�


Iteration 14

T� � �	��� T� � �������� T� � ������� T� � ���
	��

The differential equation for our example reads

t�� � 	 � �� t�x � �� � �� t�x � ��� � ��

which has the solution

t � 
��x� x� � ��

The exact solution at the nodes is:

t�x � ���� � � t�x � 	� � ��

t�x � ���� � ����� t�x � �	�� � ����
	�

In this example we find that with the Gauss-Seidel sol-
ver we find an approximate solution to Eq. 11 after approxi-
mately 13 iterations. However, is could be sufficient to stop
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the iteration procedure after, say, 8 iterations; or, maybe,
we want to solve Eq. 11 very accurately, and need to do 20
iterations. It is clear that we need some kind of conver-
gence criterion.

Convergence Criteria

Compute the residual for Eq. 6

R �
X

all cells

jaETE � aWTW � SU � aPTP j

Since we want Eq. 6 to be satisfied, the difference of the
right-hand side and the left-hand side is a good measure
of how well the equation is satisfied. Note that R has the
units of the integrated differential equation. Thus, in the
present case R has the same dimension as heat transfer
rate, i.e. Joule per second �J�s� � �W �. If R � ��W �, it means
that the residual for the computation is �. This does not tell
us anything, since it is problem dependent. We can have a
problem where the total heat transfer rate is �����W �, and
a another where it is only ��W �. In the former case R � �
means that the solutions can be considered converged, but
in the latter case this is not true at all. We realize that
we must normalize the residual to be able to judge whether
the equation system has converged or not. The criterion for
convergence is then

R

F
� �

where ������ � � � ����, and F represents the total flux of
T , i.e. total heat transfer rate.

Regardless if we solve the continuity equation, the Navier-
Stokes equation or the energy equation, the procedure is
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the same: F should represent the total flux of the depen-
dent variable.

� Continuity equation. F is here the total incoming mass
flux �m.

� Navier-Stokes equation. The unit is that of a force,
i.e. Newton. A suitable value of F is obtained from
F � �mU at the inlet.

� Energy equation. F should be the total incoming heat
flux. In a convection-diffusion problem we can take
the convective flux at the inlet i.e. F � �mcpT . In a con-
duction problem we can integrate the boundary flux,
taking the absolute value at each cell, since the sum
will be zero in case of internal source. If there are large
heat sources in the computational domain, F could be
taken as the sum of all heat sources.

Boundary Conditions

The general source S is expressed as

S � SP�P � SU

where � is the general variable (� � U , V , T , etc.).

Sometimes boundary conditions are introduced via the
source term.
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The discretized equation with the general source term
reads (cf. Eq. 6)

aPTP � aETE � aWTW � SU � aP � aE � aW � SP

where E and W denote east and west, respectively. Now
we want to introduce the boundary conditions via SU and
SP (cf. Example 4.1 p. 88 in V & M). We cut off the usual
link between the node P and its west neighbour, T� (not
shown in the figure above) by setting aW � �. We can write
the equation above for node 1 as

aP��T� � aE��T� � � � SU��� aP�� � aE�� � �� SP�� (13)

Identification of Eqs. 13 and 6 gives

SP�� � �aoldW�� � �
kB
�
� SU � aoldW��TB �

kB
�
TB

Sometimes, the boundary node is stored half a control
volume outside the computational domain, see figure below.
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�
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The value at the boundary B is known, but not at node
1. We mirror the variable around the boundary plane, i.e.

TB �
�

	
�T� � T�� � T� � 	TB � T�

where TB is known and T� is taken at its most recent com-
puted value (as in the Gauss-Seidel solver).

For setting homogeneoues Neumann boundary conditions
(i.e. �T��x � �), there are two different ways.

1. Explicit

The most obvious way is to set T� � T� (see figure above)
after each iteration so that �T��x � �. When the equation
system is converged Tn��

� � T n��
� � T n

� , where n � � and n
denote the present and previous iteration, respectively.

2. Implicit

A more efficient way is to manipulate the coefficient matrix.
The 1D discretized heat conduction equation reads (see Eq. 6)
without source term

aPTP � aETE � aWTW

aP � aE � aW
(14)
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which can be rewritten as

� � aE�TE � TP �� 	z 

�qe

� aW �TW � TP �� 	z 

qw

�

The equation expresses balance in diffusion of energy: what
goes in, must come out. We want to set �T��x � �, which
for the explicit procedure above was accomplished by set-
ting TP � TW (node 2 = node P) which gives qw � � in the
above equation. This can also be accomplished by setting
aW � �. Note that this affects both the right-hand side (aW )
as well as the left-hand side (aP ) in Eq. 14.

2D Diffusion
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The two-dimensional heat conduction equation reads (see
Eq. 4.51 in V & M)
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In the same way as we did for the 1D case, we integrate
over our control volume, but now it’s in 2D (see the figure
above), i.e.Z e
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We start by the first term. The integration in x direction is
carried out in exactly the same way as in 1D, i.e.Z e
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Now integrate in the y direction. We do this by estimating
the integralZ n

s

f�y�dy � fP�y �O
�
��y��

�
(i.e. f is taken at the mid-point P ) which is second order
accurate, since it is exact if f is a linear function. For our
equation we getZ n
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Doing the same for the diffusion term in the y direction in
Eq. 15 gives�
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Rewriting it as an algebraic equation for TP , we get (see
also Eq. 4.47 in V & M)

aPTP � aETE � aWTW � aNTN � aSTS � SU

aE �
ke�y

�xe
� aW �

kw�y

�xw
� aN �

kn�x

�yn
� aS �

ks�x

�ys
SU � �S�x�y� aP � aE � aW � aN � aS � SP �

(16)

In this 2D equation we have introduced the general form of
the source term; this could also be done in the 1D equation
(Eq. 6).
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