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Reynolds Stress Models

Deriving the uiuj equation

Set up the momentum equation for the instantaneous ve-
locity Ui � �Ui � ui � Eq. (1)

Time average � Eq. (2)

Subtract Eq. (2) from Eq. (1) � Eq. (3)

Do the same procedure for Uj � Eq. (4)

Multiply Eq. (3) with uj and Eq. (4) with ui, time average
and add them together� Eq. for uiuj

The uiuj-equation (Reynolds Stress equation) has the form:
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which symbolically can be written:

Cij �Dij � Pij ��ij � �ij
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The k equation

The turbulent kinetic energy is the sum of all normal Reynolds
stresses, i.e.
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By taking the trace (setting indices i � j) in the equation
for uiuj we get the equation for the turbulent kinetic energy
equation:
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which symbolically can be written:

Ck �Dk � Pk � �

Modelling assumptions

Now we’ll model the unknown terms in the uiuj equation.
This will give us the Reynolds Stress Model (RSM) where
a (modelled) transport equation is solved for each stress.
Later on, we will introduced a simplified algebraic model,
which is called the Algebraic Stress Model (ASM)

Physical meaning:

– Pij� Pk are production terms of uiuj and k
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– �ij is the pressure-strain correlation term, which pro-
motes isotropy of the turbulence

– �� �ij are dissipation (i.e. transformation of mechanical
energy into heat in the small-scale turbulence) of k and
uiuj, respectively.

Production term, RSM, ASM:
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� �Uj

�xk
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Production term, k � �:
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Diffusion term in the k & �-equations, RSM, ASM:
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Diffusion term in the k & �-equations, k � �:
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Dissipation term:
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Pressure-Strain Redistribution term:

�ij � �ij�� ��ij�� � ��
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ij�� (86)

where
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Wall correction
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The modeled uiuj equation

The models for diffusion, pressure-strain and dissipation
(see Eqs. 85,86,87 and page 103) gives
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ASM

Algebraic Reynolds Stress Model is a simplified Reynolds
Stress Model

The RSM and k � � models are written in symbolic form
(see pages 100 & 101) as:

RSM � Cij �Dij � Pij � �ij � �ij

k � � � Ck �Dk � Pk � �

The assumption in ASM is that the transport (convective
and diffusive) of uiuj is related to that of k, i.e.
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RSM versus ASM

Their ability to model turbulence is for many flows is very
similar.

ASM has (had) an reputation of being simple and easy to
implement: true for boundary layer flow where
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For elliptic, recirculating flow, ASM is fairly unstable.
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As a consequence an implementation of ASM is more diffi-
cult than of RSM.

Explicit ASM

Pope (1975) managed to derive an explicit expression for
ASM in 2D (at page 105 it is implicit): Later this was
extended to 3D by Gatski & Speziale (1993)

This new explicit ASM is considerable more stable from a
numerical point of view than the old implicit ASM

Simple shear flow

n
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x1 x1
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Let us study simple shear flow where �U� � �� �U� � �U�	x�


In general the production Pij has the form (see page 100):
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� �Uj

�xk
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� �Ui
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In this special case we get:
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Is u�
�

zero because its production term P�� is zero?
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The sympathetic term �ij which takes from the rich (i.e.
u�
�
) and gives to the poor (i.e. u�

�
) saves the unfair situation!

�ij�� has the form (see page 103):

�ij�� � �c�
�

k

�
uiuj �

�

�
k�ij

�
and we get:
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Note also that the dissipation term for the u�u� is zero, but
it takes the value �

�
� for the u�

�
and u�

�
equations (see page

100)

Curvature effects

0 0
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B B
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A polar coordinate system r �  with � locally aligned
with the streamline is introduced. The radial momentum
equation degenerates to

�U�

�

r
�

�p

�r
� � (88)
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If the fluid is displaced by some disturbance (e.g. turbulent
fluctuation) outwards to level A, it encounters a pressure
gradient larger than at r � r�, as 	U�
A � 	U�
�, which from
Eq.(1) gives 	�p��r
A � 	�p��r


�
. Hence the fluid is forced

back to r � r�.

Streamlines are often curved (see figure below) either due
to flow phenomena (e.g. separation) or due to curved bound-
aries (e.g. airfoils)

The turbulence is strongly affected by curvature; Reynolds
stress models (ASM/RSM) respond correctly to streamline
curvature, whereas eddy viscosity models such as k � � don’t

x

y
streamline

Weak Curvature: � �V ��x � �	��� � �U��y, u� � �v�

The production terms due to rotational strains (� �U��y� � �V ��x)
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for ASM/RSM (see page 100) are:
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The k � � model does not model the normal stresses prop-
erly,whereas ASM/RSM do. The production for RSM/ASM
and k � � model due to � �U�dx and � �V �dy is:
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Since u� and v� will not differ drastically and since � �U�dx �
�� �V �dy due to continuity the production term with RSM/ASM
will be zero; with k � �, however, the production will be
large!

RSM/ASM versus k � � models

� Advantages with k � � models (or eddy viscosity models):

i) simple due to the use of an isotropic eddy (turbulent)
viscosity

ii) stable via stability-promoting second-order gradients
in the mean-flow equations

iii) work reasonably well for a large number of engineer-
ing flows

� Disadvantages:

i) isotropic, and thus not good in predicting normal stresses
(u�� v�� w�)

ii) as a consequence of i) it is unable to account for curva-
ture effects

iii) as a consequence of i) it is unable to account for irrota-
tional strains

� Advantages with ASM/RSM:

i) the production terms need not to be modelled
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ii) thanks to i) it can selectively augment or damp the
stresses due to curvature effects, buoyancy etc.

� Disadvantages with ASM/RSM:

i) complex and difficult to implement, especially ASM

ii) numerically unstable because small stabilizing second-
order derivatives in the momentum equations (only laminar
diffusion)

iii) CPU consuming

Conclusions

Reynolds stress models can model many flows where sim-
ple k � � models fail; examples are:

i) flows where streamline curvature – or curvature of solid
boundaries – is important

ii) flows affected of buoyancy

iii) flow near stagnation points

iv) rotating flows
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