Low-Re Number Models

In low-Re number models (LRN models) many grid lines should be located in the near-wall region (see Chapter 4 in LD). Usually the first node should be located at $y^+ \simeq 1$, and 5 - 10 nodes up to $y^+ \simeq 20$. N.B.: the term "low Reynolds number" refers to the local, turbulent Reynolds number

$$Re_{\ell} = \frac{\mathcal{U}\ell}{\nu} \propto \frac{\nu_t}{\nu}.$$

That Re_{ℓ} is small means that viscous effects are important. It has nothing to with the global Re numbers Re_D , Re_L , Re_x , etc.

In LRN models we want to make sure that the modelled terms in the k and ε equations behave in the same way as their exact counterparts when $y \to 0$. Taylor expansion of the fluctuating velocities (also valid for the time averaged \overline{U}_i and the instantaneous velocities U_i)

$$u = a_0 + a_1 y + a_2 y^2 \dots$$

$$v = b_0 + b_1 y + b_2 y^2 \dots$$

$$w = c_0 + c_1 y + c_2 y^2 \dots$$
(76)

At the wall vi have no-slip, i.e. u = v = w = 0, which gives $a_0 = b_0 = c_0 = 0$. Furthermore, at the wall

$$\frac{\partial u}{\partial x} = \frac{\partial w}{\partial z} = 0. \tag{77}$$

The continuity equation for the fluctuating velocities (incompressible flow) reads

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$

which, together with Eq. 77 gives $\partial v / \partial y = 0$. Equation 76 now gives $b_1 = 0$. Thus we have the following behavior of the velocities near a wall

$$u = a_1 y + a_2 y^2 \dots v = b_2 y^2 \dots w = c_1 y + c_2 y^2 \dots$$
(78)

Now we proceed to compare modelled and exact terms when $y \rightarrow 0$.

The production term

exact
$$-\overline{uv}\frac{\partial \bar{U}}{\partial y} = \mathcal{O}(y^3) \times \mathcal{O}(y^0) = \mathcal{O}(y^3)$$

modelled $\nu_t \left(\frac{\partial \bar{U}}{\partial y}\right)^2 = \mathcal{O}(y^4) \times \mathcal{O}(y^0) = \mathcal{O}(y^4)$ (79)

The first line in the above equation is obtained directly by insertion of Eq. 78. For the second line, we first need to establish how $\nu_t \propto k^2/\varepsilon$ varies near the wall. tThe dissipation is defined as

$$\varepsilon = \nu \overline{\frac{\partial u_i}{\partial x_j} \frac{\partial u_i}{\partial x_j}}.$$

As $y \to 0$ we have that $\partial/\partial y \gg \partial/\partial x$, $\partial/\partial z$ so that the dissipation can be written as

$$\varepsilon \simeq \nu \overline{\frac{\partial u_i}{\partial y} \frac{\partial u_i}{\partial y}}.$$

From Eq. 78 we find that the two largest terms are the derivatives of u and w, i.e.

$$\varepsilon \simeq \nu \left(\overline{a_1^2 + c_1^2 + \ldots}\right) = \mathcal{O}\left(y^0\right).$$
 (80)

LD Chapter 4: Low-Re Number Models

Furthermore, Eq. 78 gives

$$k = \frac{1}{2} \left(\overline{u^2} + \overline{v^2} + \overline{w^2} \right) = \frac{1}{2} \left(\overline{a_1^2 y^2} + \overline{b_2^2 y^4} + \overline{c_1^2 y^2 + \dots} \right) = \mathcal{O} \left(y^2 \right),$$
(81)

and thus

$$\nu_t = c_\mu \frac{k^2}{\varepsilon} = \mathcal{O}\left(y^4\right)$$

which gives line two in Eq. 79.

Note that when we compared the behavior of the exact and modelled production terms, in reality we compared the shear stresses, i.e.

exact
$$-\overline{uv} = \mathcal{O}(y^3)$$

modelled $\nu_t \frac{\partial \bar{U}}{\partial y} = \mathcal{O}(y^4)$ (82)

We want to modify the modelled shear stress so that it behaves like $\mathcal{O}(y^3)$. We can do that by introducing a function f_{μ} . In this case it should be of the form $f_{\mu} = \mathcal{O}(y^{-1})$. The turbulent viscosity should now be computed as

$$\nu_t^{LR} = c_\mu f_\mu \frac{k^2}{\varepsilon},$$

where upper index LR denotes <u>L</u>ow <u>R</u>eynolds number. Note that the damping term should be devised so that $f_{\mu} \rightarrow 1$ in the log region, i.e. for $y^+ > 30$.

The diffusion term

The exact diffusion term includes two parts: triple correlations and pressure diffusion. From experiments and DNS (<u>D</u>irect <u>N</u>umerical <u>S</u>imulations) we know that the first part is much larger than the second. Thus:

exact
$$\overline{vk'}$$
 $\mathcal{O}(y^4)$
modelled $\frac{\nu_t^{LR}}{\sigma_k} \frac{\partial k}{\partial y}$ $\mathcal{O}(y^3) \times \mathcal{O}(y^1) = \mathcal{O}(y^4)$ (83)

where we have used $\nu_t^{LR} = \mathcal{O}(y^3)$. As can be seen, the exact and the modelled term both behave as $\mathcal{O}(y^4)$.

Wall B.C. for ε

Above we found that at the wall $\varepsilon = \mathcal{O}(y^0)$. This presents a problem; how should we specify ε_{wall} ?

• *k* equation

One way is to use the k equation. As $y \rightarrow 0$, only two terms remain in the k equation, namely the viscous diffusion term and the dissipation term so that ($\sigma_k = 1$)

$$0=\nu\frac{\partial^2 k}{\partial y^2}-\varepsilon,$$

which gives

$$arepsilon_{wall} =
u \left(rac{\partial^2 k}{\partial y^2}
ight)_{wall}$$

However, this type of boundary condition can be numerically unstable, since it relies on the evaluation of a second derivative at the wall.

• Taylor expansion

From Eqs. 80 and 81 we have

$$\varepsilon = \nu \left(\overline{a_1^2 + c_1^2}\right)$$

$$k = \frac{1}{2} \left(\overline{a_1^2 y^2} + \overline{c_1^2 y^2}\right).$$
(84)

Take the derivative of \sqrt{k} with respect to *y* which gives

$$\sqrt{k} = \frac{1}{\sqrt{2}} \left(\overline{a_1 y} + \overline{c_1 y} \right)$$
$$\Rightarrow \left(\frac{\partial \sqrt{k}}{\partial y} \right)^2 = \frac{1}{2} \left(\overline{a_1^2} + \overline{c_1^2} \right).$$

From Eq. 84 we now find that

$$\varepsilon_{wall} = 2\nu \left(\frac{\partial\sqrt{k}}{\partial y}\right)^2_{wall}$$

Solving for $\tilde{\varepsilon}$

Another option is to add a term D in the k equation (see Eq. 71)

$$\frac{\partial \bar{U}k}{\partial x} + \frac{\partial \bar{V}k}{\partial y} = \frac{\partial}{\partial y} \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \frac{\partial k}{\partial y} \right] + \nu_t \left(\frac{\partial \bar{U}}{\partial y} \right)^2 - \underbrace{(\tilde{\varepsilon} + D)}_{\varepsilon},$$

where *D* is chosen so that $D_{wall} = \varepsilon_{wall}$, and thus $\tilde{\varepsilon}_{wall} = 0$. In the Launder & Sharma model (see Section 4 in LD)

$$D = 2\nu \left(\frac{\partial\sqrt{k}}{\partial y}\right)^2.$$

The turbulent viscosity is computed as

$$\nu_t = c_\mu \frac{k^2}{\tilde{\varepsilon}},$$

and since $\tilde{\varepsilon} = \mathcal{O}(y)$, we get $\nu_t = \mathcal{O}(y^3)$. As a consequence no damping term f_{μ} is needed, since in this way

$$-\overline{uv}=
u_trac{\partialar{U}}{\partial y}=\mathcal{O}\left(y^3
ight),$$

which is the same as the exact term, see Eq. 82.