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Low-Re Number Models

In low-Re number models (LRN models) many grid lines
should be located in the near-wall region (see Chapter 4 in
LD). Usually the first node should be located at y* ~ 1, and
5 — 10 nodes up to y* ~ 20. N.B.: the term "low Reynolds
number” refers to the local, turbulent Reynolds number

That Re, is small means that viscous effects are impor-
tant. It has nothing to with the global Re numbers Rep,
Rer, Re,, etc.

In LRN models we want to make sure that the modelled
terms in the k£ and  equations behave in the same way as
their exact counterparts when y — 0. Taylor expansion of
the fluctuating velocities (also valid for the time averaged
U; and the instantaneous velocities U;)

u:a0+a1y—|—a2y2...

v=>by+ by +b?... (76)

w:co+cly+02y2...
At the wall vi have no-slip, i.e. v = v = w = 0, which gives
ag = by = ¢p = 0. Furthermore, at the wall

ou Ow

or 0z
The continuity equation for the fluctuating velocities (in-
compressible flow) reads

ou, 0v, ow _
or Oy 0z

0. (77)

0.
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which, together with Eq. 77 gives dv/dy = 0. Equation 76
now gives b; = 0. Thus we have the following behavior of
the velocities near a wall

u = ay+ a2y2 e
v o= boy ... (78)
w = C1y+ 02y2 ce

Now we proceed to compare modelled and exact terms
when y — 0.

The production term

exact —WZ—Z =0 (?/3) x O (?JO) =0 (y3)

(9[7 2 4 0 4
modelled v, (9_3/ :O(Z/)XO(E/):O(y)

The first line in the above equation is obtained directly by
insertion of Eq. 78. For the second line, we first need to es-
tablish how v; o« k%/c varies near the wall. tThe dissipation
Is defined as

(9xj 8$j'

As y — 0 we have that 0/dy > 0/0x,0/0z so that the dissi-
pation can be written as

N 8ul 8uz
EX UV ay ay .
From Eq. 78 we find that the two largest terms are the
derivatives of v and w, i.e.

szy(a%—l—c%—l—...):(’)(yo). (80)

(79)

E=V
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Furthermore, Eq. 78 gives

(a%yQ +05y" + cfy® + .. ) =0 (y),
(81)

1, — .\ 1
k:—(u2+02+w2):§

2

and thus

k2
vp=cp_— =0 (v")

which gives line two in Eq. 79.
Note that when we compared the behavior of the exact

and modelled production terms, in reality we compared the
shear stresses, i.e.

exact —uv =0 (y3)
N (82)
modelled Vta—y =0 (y4)

We want to modify the modelled shear stress so that it be-
haves like O(y?). We can do that by introducing a function
fu- In this case it should be of the form f, = O(y~'). The
turbulent viscosity should now be computed as

v, =cufu—,

where upper index LR denotes Low Reynolds number. Note
that the damping term should be devised so that f, — 1 in
the log region, i.e. for y* > 30.

The diffusion term

The exact diffusion term includes two parts: triple correla-
tions and pressure diffusion. From experiments and DNS
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(Direct Numerical Simulations) we know that the first part
Is much larger than the second. Thus:

exact vk/ @ (y4)
ViR ok (©3

modelled —
Ok (9y

O(y’) x O (y') = 0 (v")

where we have used v/ = O(y3). As can be seen, the exact
and the modelled term both behave as O(y*).

Wall B.C. for ¢

Above we found that at the wall ¢ = O(y°). This presents a
problem; how should we specify ¢,q.;?

e k equation

One way is to use the k£ equation. As y — 0, only two
terms remain in the k& equation, namely the viscous diffu-
sion term and the dissipation term so that (o = 1)

0%k
0= Va_yQ — €&,
which gives

(5)
Ewall =V | 55 .
ayQ wall

However, this type of boundary condition can be numeri-
cally unstable, since it relies on the evaluation of a second
derivative at the wall.

e Taylor expansion
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From Egs. 80 and 81 we have

6:V(a%+c%>

1 —
k=3 (a%y2 - c%yQ) :

(84)

Take the derivative of vk with respect to y which gives

@:%er@)

- (%) -1

From Eq. 84 we now find that

Ewall = 2V | —(—

Oy

wall

Solving for &

Another option is to add a term D in the k& equation (see
Eqg. 71)

Uk  OVk _ 0 [(  —w\ok] (o0 ? (¢4 D)
=—||lv4+—)=—|+wv|—] —
Ox oy Oy o) Oy "\ oy ~—

where D is chosen so that D,,; = swa, and thus &,.; = 0.
In the Launder & Sharma model (see Section 4 in LD)

DQV(a—\/E) .

dy
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The turbulent viscosity is computed as

k2

=G

and since £ = O(y), we get v; = O(y?). As a consequence no
damping term f, is needed, since in this way

—w =y = O ().

which is the same as the exact term, see Eq. 82.
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