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Two Equation Models

The k£ — ¢ Model

The k£ — ¢ is an eddy-viscosity model. The dimensions of the
laminar (kinematic) viscosity v = u/p is [m?/s], which also
must be the dimensions for the turbulent viscosity. Thus,
we can write

vy o< UL [m?/s]

where U/ and / denote a turbulent velocity and length scale,
respectively. The turbulent length scale is taken as the
square-root of the turbulent kinetic energy k [m?/s?], i.e.

VtOC\/%é

For finding k a transport equation will be used. We could
also use a transport equation for the turbulent length scale
¢, but it has been found that it is better to solve an equation
for the dissipation ¢ of k. Thus we want to express v; in k
and ¢, I.e.

v = cuk‘“sb

where ¢, is a constant to be determined, and where a and b
will be determined by dimensional analysis. The dimension
of ¢ is [m?/s?]. The dimensions for the above equation must
be the same on the left-hand and the right-hand side, and
this will give us a and b. The dimensions are:

b
m? m2\?* /m?
s  \ g2 3 )
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This gives us one equation for meter ([m]) and one for sec-
onds ([s]), i.e.

m: 2 =2a+2b
s: —1 = —2a— 3b,

which has the solution a = 2, b = —1. We get the following
expression for v,

k2
vy = Cu?, Viot = V + V4 (70)

The turbulent kinetic energy k£ and its dissipation ¢ are
determined from their transport equations.

From the Navier-Stokes equations we can derive an ex-
act equation for £ (below it is given in boundary-layer form):
oUk N oVk _oU 01 — 0k Ou; Ou;

= —U— — — |-po+ vk —v—| — :
or dy “ Jdy Oy ppv+v V@y V@xj Oz;

On the left-hand side: convection. On the right-hand side:
production, diffusion and dissipation. The diffusion has
three parts: due to pressure, velocity fluctuations and vis-
cosity.

We see that the above equation includes unknown terms
such as ww, pv and pvk’; the last term in the k equation rep-
resents dissipation and it is obtained from its own trans-
port equation. The unknown terms must be modelled.

e Production term P, = —puvdU /dy: the shear stress is
modelled in the same way as for the momentum equations,
I.e. using Boussinesq assumption so that

U\ 2
P.=v | —
" t<3y>
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¢ Diffusion term: for the velocity correlations a gradient
hypothesis, i.e. we assume that the term transports £ from
regions of high £ to regions of low & (cf. Fourier’'s law for
conduction of energy ¢, = —k07/0x)
—_— Vy ok

="
v Ok (9y

The diffusion by pressure is usually negligible.
Now we can write the modelled k equation

(9Uk+8‘7k_2 V—l-ﬁ % +v @ 2—8 (71)
ox oy Oy o) Oy t Ay '

An exact equation for ¢ can be derived, but it is very com-
plicated. From the exact equation we do get some informa-
tion: as the k£ equation, the production term in the £ equa-
tions includes both mean flow gradients (such as oU/dy)
and turbulent quantities, and the destruction term includes
only turbulent quantities. Thus we derive the modelled ¢
equation by looking at the modelled k& equation. We write
the right-hand side as

0 n v\ Oe
i Y PRI i
dy o.) Oy

In the diffusion term we have simply added a constant which
represent a turbulent Prandtl number for . Similarly two
additional constants have been added for the source terms,
one in front of the production term and one in front of the
dissipation (destruction) term. Furthermore, a time scale
has been added to make sure that correct dimensions are
recovered. This time scale should be a turbulent one, and
thus 7 = k/e [s]. We can now write the modelled ¢ equation

1
+ ; (Cg]_Pk — 6526) .
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e Ve 0 7( wm\oe] ef (0U\"
Ox oy Oy o.) Oy k| oy =1
(72)

Equations 70, 71 and 72 form the k — ¢ model (see 3.5.2
INnV & M and Section 3.3 in LD). It includes five universal
constants: c,, c.1, c.2, o and o..

e Boundary layer flow:

k equation = ¢,
e equation = ¢.; = func{cz, 0., ¢, }

e Decaying turbulence

Udk/dz = —¢
Ude/dr = —c.0e?/k ¢ = ce2 = func(m)
exp : kocax™™

e 0, and o. determined from computer optimization

The ¢, constant

In the log-law of the boundary layer we know from experi-
ments that the production term P, and the dissipation ¢ in
the k& equation are much larger than the other terms (see
Section 3.1 in LD), and consequently the &£ equation reads

0=PF, —=.
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The turbulence is in local equilibrium, since transport ef-
fects are negligible. The production is equal to B, = v,(0U /oy)>.
Multiply the equation above by »; so that

oU\”
(Vta_y> = €.

The Boussinesq assumption

v = U
=g,
gives
(W)2 = y€.

Insert the expression for the turbulent viscosity (Eq. 70) so
that

172 _ [uol
[ k-

From experiments it is found that in the log-region, the
ratio between |zo| and k is 0.3, which gives ¢, = 0.09.

(@0)* = ¢,k = ¢

The c.» constant

This constant is obtained from grid-decaying turbulence.
Turbulence is generated when free flow (U,,) goes through
a grid which generates mean-flow gradients oU/dx,0U/0z,
which in turn, via the production term, generates turbu-
lence. Sufficiently far downstream the velocity flow is con-
stant (i.e. the velocity gradients are zero), so that the pro-
duction term in the k& and ¢ equations are negligible. The
diffusion terms are also small, and hence we can write the
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(modelled) £ and ¢ equations as

dk
Up— = —
dx ©
de g2
Usp— = —Coo—.
dz %
Let's assume that k£ decays as k = Cxz~™. From the k equa-
tion we obtain ¢ = —CU. mz"™"!. Insert this into the ¢
equation

(C’Uoomx_m_l)2
Cax—m

mQx—Qm—Q

UsoCUsm(m + 1)x_m_2 = —C.9

= m(m+ 1)z %= —c pm—

which gives c., = (m + 1)/m. Experiments give m = 1.25 +
0.06, and c.o = 1.92 is chosen.

The c¢.; constant

This constant is obtained by looking at the ¢ equation in
the log-region of a boundary layer, which reads
€ 0 (v Os g2
O=ca-Pr+—|——— ) — ca—. 73
Clk k+8y<058y> CQk‘ (73)
Note that in the ¢ equation, the turbulent diffusion term
IS not negligible, whereas in the & it is. The reason is that
while 0k/0y ~ 0 in the log region, the derivative of the
length scale is not negligible. We start by introducing the
usual approximations valid in the log region:

3 3
Pk = LL = &

/ KY (74)
vy ~ UL = kuyy, k= 0;1/2113
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Let's start with the diffusion term (recall that «, o. and u,
are independent of y)

i (o) =5 o ()] -
0y \ 0.0y oy | 0. Oy \ky (75)

WO 0 (1\]_uo y
ooy Yoy \y)| ~

Px M a2 — *
Insertion of Egs. 74 and 75 into Eq. 73 gives

Usy2

w1 Wl ul
RY cu U RYy 0y
/£2
Cy O

The standard values of the coefficients are: ¢, = 0.09,
cc1=144,c,=144,0, =1,0.=1.3

Wall Functions

In industrial CFD wall functions are often used. In this
way the CPU time can be reduced substantially. Using wall
functions means that the boundary near a wall is not re-
solved, but the first node is located in the log-law region
where 30 < y™ < 100 (the upper limit is dependent of the
Reynolds number). The flow between the first node and the
wall is supposed to be as in flat-plate boundary layer flow,
This assumption is often well satisfied, but it many flow
situations it is not true at all.

As mentioned above, the ratio between |uv| and & is 0.3.
And, furtermore, the total (viscous plus turbulent) stress is
constant from the wall out into the log-law region (see the
figure below)
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Tturb

Tot e

ﬁ Tlam

yT ~ 10 Y
A wall-friction velocity u, is defined from the wall-shear
stress 7, as

2
Tw = PUy,

so that uZ/k = 0.3 = , /¢,. This gives us a condition for k at
the first interior node (not the boundary node). The friction
velocity u, is obtained from the log-law (see Eq. 3.21 in V
& M and Section 3.2 in LD)

U 1

—~ =~ In(Ey")

U K
where E is a constant, y* = u,y/v, and Up denotes the ve-
locity component parallel to the wall, computed with our
finite volume method. The equation is solved by rewriting
It so that
. kDp
~In(Buy/v)

Usx

A few iterations are usually sufficient to obtain w,.

As mentioned above, in the log-region we can write the
k equation as

Osz—a.

In the log-region we have from experiments that —uv ~
u? (see Fig. 2.1 in LD). The production term can thus be
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written
_oU  ,0U WP

P = — _— = _— = *
k uv ay U, ay P
where the velocity gradient was taken from the log-law
above. In this way the dissipation is set at the first inte-
rior node as

The velocity component normal to the wall is set to zero.
For the component parallel to the wall we prescribe a force
(cf. when in the temperature equation the heat flux is pre-
scribed rather than the temperature itself). The force per
unit area is the wall shear stress 7,,, which should have op-
posite sign to the velocity component, see the figure below
(an exception is when the wall is moving, driving the flow).

The wall shear stress is put in the Sp part of the source
term (remember that S = Sp®p + Sy, Sp < 0)

TwA B Kpu, A
Up B ln(E?J+)

Sp=—

where A denotes the wall area of the cell; the log-law was
used to obtain the last expression in the above equation.

We can summarize the wall functions:
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1. k is fixed at the near-wall node as k = ¢,"“uZ; the fric-

tion velocity u, is obtained from the log-law
2. ¢ is fixed at the near-wall node as ¢ = u2/(ky)

3. The wall shear stress is used as a force-boundary con-
dition for the velocity component parallel to the wall.

The k — w Model

The k£ — w model is a another two-equation model which is
becoming more and more common. This model was origi-
nally developed by Wilcox [8]. In this model the k£ equation
Is used together with an w equation. The variable w is de-
fined as

. €
= G
and its exact transport equation is derived from the exact
k and ¢ equations (see Peng [5]). As can be seen from the
definition of w its physical meaning is an inverse time scale
([s"']). The k¥ — w model reads in boundary layer form (see
Section 3.4 in LD)
0pUk N 0pV'k _ i (M"‘&) Ik
Ox 0y Jy | oy ) 0y
OpUw N OpVw 0 ( ,ut> ow] w

w

+ P, — f*wk

- o (et Py — conph
o 9 (9y_u+ + — (o1 P — copkw)

o,) 0y| k

The turbulent viscosity is obtained from
k

Vy = —.
w
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