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Turbulence Models

The Navier-Stokes equations can be solved numerically by
resolving all turbulent scales. This, however, requires ex-
tremely large computer resources, and can only by carried
out for low Re numbers. Sofar, it has been done for backward-
facing step at Re � ���� [3].

In the forseeable future, we have to rely to the Reynolds
decomposition, where we employ turbulence models.

The Navier-Stokes equations for 1D, incompressible re-
ads
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where U is the instantaneous velocity.

In turbulent flow we divide the instantaneous velocity U
into a mean (time-averaged) part �U and a fluctuating part
u so that (see Chapter 2.1 in LD, Chapter 3.3 in V & M, Fig.
3.1 in V & M)

U � �U � u� (63)

This is called Reynolds decomposition. The time-averaged
velocity is obtained from
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Insert Eq. 63 into Eq. 62, and since u � � we have the
following relations: (see p. 50 in V & M)

�Uu � �Uu � �� �U � u � �U � u � �U� (64)

LD Chapter 2: Turbulence Models



Lars Davidson: Numerical Methods for Turbulent Flow
http://www.tfd.chalmers.se/gr-kurs/MTF071 77

Time averaging gives
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Using Eq. 64, the two terms on the right-hand side of Eq. 65
can immediately be written as
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The left-hand side of Eq. 65 can, using Eq. 64, be written
as
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When this is inserted into Navier-Stokes equation we ob-
tain the Reynolds equations. Below the steady, Reynolds
equation for �U in boundary layer flow is given
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In Table 3.1 in V & M the full three-dimensional equations
are given on component form and in Section 2.1 in LD on
tensor notation. On the right-hand side a new unknown
term appear (��uv), which can be regarded as an additio-
nal stress due to the decomposition; it is called a Reynolds
stress. Since it is unknown it must be modeled: we must
introduce a turbulence model.
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The total stress is now the sum of the viscous and the
turbulent stress, i.e.

�tot � �
� �U

�y
� �uv�

Near the wall the turbulent stress goes to zero. In the fully
turbulent region, the turbulent stress is several magnitu-
des larger than the viscous one. The total stress is constant
from the wall out in the logarithmic region, see the figure
below
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Eddy-Viscosity Model

We’d like to model the turbulence by adding an additional
viscosity (a turbulent viscosity �t) to the viscous one. We
rewrite the right-hand side of Eq. 66 as
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Identification of Eqs. 66 and 67 gives

��uv � �t

� �U

�y
� (68)

This is called the Boussinesq assumption (cf. Section 3.5 in
V & M and Section 2.2 in LD). Note that this is an assump-
tion. The turbulent viscosity �t, unlike the laminar one �,
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depends on the flow, and it can be written as a product of a
turbulent length and velocity scale, i.e.

�t � �U� (69)

Physical interpretation of uv

Let’s study the flow in a boundary layer where � �U	�y 
 �.
A fluid particle at level y� is moving downwards (v � �)
to level y�, shown with solid line in the figure below. It is
moving to a region where the velocity in average is smaller
than from where it comes from, i.e. �U�y�� � �U�y��. Thus,
when it comes to level y� the fluid particle carries higher
U momentum than its new surrounding, and hence u 
.
Consequently uv � �.
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If we now take a particle moving from level y� to level
y�, shown with dashed line in the figure above. It’s mo-
ving upwards (v 
 �). When is comes to the new level, it
carries lower U momentum than its new surrounding, i.e.
u � U�y��� U�y�� � �. Thus, uv � �.

If we would change the sign of the gradient of � �U	�y,
we’d find the opposite, i.e. uv 
 �. We have found that the
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velocity gradient � �U	�y and the turbulent shear stress uv
have opposite signs. The reason for this can be explained by
the production term in the k equation (see a later lecture).
This is mostly true, but not always. One exception is the
wall jet in the region of the velocity maximum, where the
velocity gradient and the turbulent shear stress have the
same sign.

The log-law

Below the velocity profile in a boundary layer is shown (cf.
3.11 in V & M)
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We have three main regions:

1. The viscous sublayer: y� � � where u� � y� (u� �
�U	u�, y� � u�y	�);

2. The logarithmic region: �� � y� � ��� (the upper limit
depend on Re number) where u� � ln�Ey��	� (E � �,
� � ���);

3. Wake region: above (higher y�) the logarithmic region

The buffert region � � y� � �� is an intermediate region
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between the viscous sublayer and the logarithmic region,
where neither the linear law nor the log law are valid.

The k equation

An exact equation can be derived for the turbulent, kinetic
energy k which is defined as
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It is derived from Navier-Stokes as follows (for greater de-
tail, see Section 2.4 in LD):

1. N-S: ��Ui	�t� ��UjUi��j � � �

2. Time averaged N-S: ���Ui	�t� �� �Uj
�Ui��j � � �

3. Subtract Eq. 1 from Eq.2, multiply by ui and time ave-
rage.

The exact k equation reads on boundary-layer form
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The terms have the following physical meaning:

I Unsteady and convective term;
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II Production term; as discussed on p. 80 this term is
mostly positive, since the velocity gradient and the shear
stress mostly have different signs. This term is respon-
sible of extracting energy from the mean flow, and this
term is large for the large, energy-containing eddies
(Region I in the figure on p. 73).

IIIa Turbulent diffusion by velocity fluctuations and pressure;
dominated by large scales.

IIIb Viscous diffusion.

IV Dissipation. This term is large for small scales (Region
III in the figure on p. 73).

In the log-region the two largest terms are the produc-
tion and the dissipation, and they are in balance, i.e.
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If we estimate uv employing the Boussinesq assumption
(Eq. 68) and the estimate of the turbulent viscosity in Eq. 69
we get
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For fully turbulent flow, the turbulent Reynolds number
Re� � U�	� � �. Hence�����ui
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In the previous Chapter we emphasised that the dissipa-
tion takes place at the smallest scales, the main reason be-
ing that the dissipation term is large for these scales, since
the velocity gradient is large for these scales, as we’ve just
indicated.
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