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Summary  
 
This chapter reviews the definition of a Newtonian fluid and main topics associated to 
the Newtonian fluid behavior, including the estimation of Newtonian viscosities. Once 
revised the Newton law of viscosity as originally stated in the Principia Mathematica, 
the concept of viscosity is introduced by means of the classical simple shear experiment 
and, afterwards, the three-dimensional form of Newton’s law is analyzed. The mass and 
momentum conservation principles have been discussed in some detail. The study of 
these equations has been carried out from both macroscopic and microscopic points of 
view. The macroscopic approach results in relatively simple integral equations which 
are frequently applied to solve input/output macroscopic flow problems. On the 
contrary, the differential equations, like for instance the classical Navier-Stokes 
equation, were deduced from the microscopic approach. In this case, differential 
expressions have been directly obtained from the integral forms by applying the 
divergence theorem and the Leibnitz rule. Finally, existing methods in the literature to 
predict the viscosity of Newtonian fluids (gases and liquids) have been revised by 
emphasizing the influence of pressure and temperature on this property. In the case of 
gases, some molecular theories have been discussed. In particular, the treatment based 
on the elementary kinetic theory of gases has been detailed in order to better illustrate 
the concept of gas viscosity. In the case of liquids, some experimental correlations or 
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straightforward methods to evaluate the viscosity as a function of temperature and/or 
pressure have been considered. 
 
1. Introduction 
 
The great majority of most common fluids (liquids and gases) such as water, organic 
solvents, oils, air, steam, nitrogen or rare gases are Newtonian in wide temperature and 
pressure ranges. This fact justifies that classical textbooks on Fluid Mechanics are 
devoted to the study of Newtonian fluid dynamics. However, it must be taken into 
account that the Newtonian flow behavior, together with the Hookean elastic solid, 
represents the simplest extreme situation from a rheological point of view and 
frequently is considered a very particular case in the wide spectrum of rheological 
behaviors. Certainly, the three-dimensional form of Newton’s law is one of the multiple 
constitutive equations which may be used to describe the flow and deformation of 
matter (Larson, 1988) but it is the most applied to solve flow problems. Thus, as Barnes 
(2002) pointed out in the preface of his book, most of the flow problems found in 
industrial applications deals with a proper estimation or accurate measurement of 
viscosity. It is evident that the Newtonian flow behavior is mainly linked to the 
viscosity concept. In contrast to that found for non-Newtonian fluids, the Newtonian 
viscosity is a physical property which is only a function of pressure and temperature. 
 
However, even considering the Newtonian fluid behavior, the effect of viscosity appears 
to be the main difficulty to solve the equations of motion, especially when they must be 
applied to complex geometrical configurations. In fact, in spite of the much earlier 
formulation of the Newton’s law of viscosity, up to the end of the nineteenth century, 
when Navier and Stokes included the viscous friction term in the equation of motion 
and Ludwig Prandtl formulated the boundary-layer theory, theoretical attempts to model 
the different flow problems were based on the assumption of a frictionless or inviscid 
fluid, which evidently led to unrealistic predictions. The difficulty extremely increases 
in the case of turbulent flows. In this chapter, discussions have been limited to the 
laminar flow regime in which the viscosity concept makes sense. Otherwise, in the 
turbulent flow regime, the concept of eddy viscosity must be introduced, which is out of 
scope here. 
 
Finally, it must be emphasized that classical Fluid Mechanics is based on the concept of 
continuum or, in other words, the fluid is usually considered a continuous distribution of 
matter. However, the concept of viscosity is inevitably linked to the fundamentals of 
molecular momentum transport and, therefore, the molecular scale must be occasionally 
considered to better understand the concept of viscosity. 
 
2. Newton’s Law of Viscosity 
 
2.1. The Principia Mathematica 
 
In 1687, Isaac Newton in the Philosophiae Naturalis Principia Mathematica (Figure 1), 
probably the greatest and more influencing work in the history of science, paid attention 
to fluid flow and shear, among many other physical phenomena. In the second book of 
the Principia, in Section IX “The circular motion of fluids”, the following hypothesis is 
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enunciated in the original Latin language: 
 
Resistentian, quae oritur ex defectu lubricitatis partuim fluidi, caeteris paribus, 
proportionalem esse velocitati, qua partes fluidi separantur ab invicem. 

 

 
 

Figure 1. Title page of the first edition of Newton's Philosophiae Naturalis Principia 
Mathematica, located at the Wren Library in the Trinity College, Cambridge. 

 
This hypothesis in the first English edition, translated by Andrew Motte in 1729, 
appears as: 
 
The resistance arising from the want of lubricity in the parts of a fluid, is, others things 
being equal, proportional to the velocity with which the parts of the fluid are separated 
from one another. 
 
Later on, in other English translations the expression want of lubricity was replaced by 
lack of slipperiness. In summary, in Section IX of the Principia, Newton postulated the 
idea of what a viscous fluid is, illustrated with some basic experiments or theorems 
(propositions LI and LII). Thus, we can assume that the lack of slipperiness (or the want 
of lubricity) in the parts of a fluid is what we associate with the term “viscosity”, the 
resistance is the stress and the velocity with which the parts of the fluid are separated 
from one another clearly refers to the velocity gradient. Therefore, as Barnes et al. 
(1989) pointed out, the viscosity concept is related to the measure of internal friction 
and the resistance to flow since 1687. 
 
2.2. The Viscosity Concept 
 
The viscosity concept as it was formulated by Newton arises when a layer of fluid is 
made to move in relation to another layer. Thus, the greater the internal friction, the 
greater the stress (force per unit area) required to promote this movement. The viscosity 
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concept is generally illustrated by means of the simple shear experiment (Figure 2). In 
the simple shear experiment the fluid is confined between two large parallel plates of 
area A , in order to ignore edge effects, separated by a distanceY . At a certain time, a 
force, F , is exerted on the lower plate so that it moves relative to the other with a 
constant velocity,V . Immediately, assuming that the flow is laminar, the layers of fluid 
closer to the lower plate start to flow and a transient (time-dependent) velocity profile is 
established. Afterwards, if the force, F , is kept constant to maintain the motion of the 
lower plate, the steady-state velocity profile, ( )xu y , is attained that, in this particular 
case, is linear: 
 

xu y
V Y

=   (1) 

 

 
 

Figure 2. The simple shear experiment. 
 
An intuitive analysis of this experiment suggests the basic idea that the force per unit 
area applied on the lower surface is proportional to velocity, V , and inversely 
proportional to the distance Y : 
 
F V
A Y

μ=    (2) 

 
where the proportionality constant is the viscosity. Since the velocity profile between 
the two plates is linear, every infinitesimal segment is represented by the same 
relationship. Therefore, Eq. (2) may be written in the differential form 
 

( )/yx xdu dyτ μ= −   (3) 
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given that the force is exerted to the area perpendicular to the y axis in the positive 
direction of the x axis and, consequently, the only component of the stress tensor is yxτ . 

Here, we have applied the criteria followed in the book of Bird et al (2002) of 
considering positive the stress in the directions of the coordinate axis and, consequently, 
the velocity gradient is negative, i.e. xu  decreases as y  increases. It must be noticed 
that, according to Bird et al (2002), the shear stress acting on every differential volume 
of the fluid can be interpreted as the flux (flow per unit area) of momentum in the 
positive y  direction, since the layers of fluid in motion impart a certain momentum to 
the adjacent layers of lower velocity. In this sense, the negative velocity gradient can be 
considered the driven force for momentum transport. 
 
Defining the strain as 
 

/ /dx dy x Yγ = =   (4) 
 
the strain rate for simple shear can be easily related with the velocity gradient 
 

( ) ( )/ / xd dx dy d dx dt dud
dt dt dy dy
γγ

⎛ ⎞
= = = = −⎜ ⎟

⎝ ⎠
  (5) 

 
and Eq. (3) can be written in a more popular form for rheologists in terms of the strain 
rate 
 

yxτ μ γ=   (6) 
 
Since Eq. (3) expresses mathematically the basic ideas pointed out in the Principia, it is 
called the Newton’s law of viscosity which is frequently used to define the viscosity as 
the ratio between the shear stress and the velocity gradient. This means that a high 
viscous fluid requires a higher stress to achieve the same velocity gradient than a low 
viscous fluid. Then, μ is a material property which, in words of Newton, takes into 
account the want of lubricity (or the lack of slipperiness) in the parts of a fluid. Fluids 
which obey this law are called Newtonian. The viscosity of Newtonian fluids is affected 
by temperature and pressure. The effect of pressure and temperature will be discussed in 
Section 4. 
 

( , )P Tμ μ=   (7) 
 
Units of viscosity in the SI and cgs systems are Pa s (Pascal second) and Poise (1P=1 g 
cm-1 s-1), respectively. Another common unit employed is the centipoise (1 cP = 10-2 P= 
1 mPa s) because the viscosity of water at 20ºC is approximately 1cP. The viscosity 
values at 20ºC for more common Newtonian fluids (gases and liquids) are compared in 
the book of Barnes (2002). Thus, for instance, it is interesting to point out that some of 
the most usual gases like air, steam or ammonia have a viscosity of around 100 times 
inferior than water or, on the contrary, glycerin and honey have a viscosity of around 
1500 and 104 times higher than water, respectively. 
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Going back to the concept of momentum transport, Eq. (3) is frequently found for 
incompressible fluids in the form 

x
yx

d u
d y
ρτ ν

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  (8) 

 
where /ν μ ρ=  is called the kinematic viscosity, which, by analogy with the heat and 
mass transport, is considered the momentum diffusivity (Bird et al, 2002; Welty et al., 
2001). The usual unit employed for the kinematic viscosity is the centistoke (1 cSt = 1 
mm2s-1 = 10-6 m2s-1; 1 Stoke=1 cm2s-1). 
 
2.3. The 3-D Newton’s Law 
 
We have shown that Newton’s hypothesis about “The circular motion of fluids”, stated 
in the Principia in 1687, is in agreement with the one-dimensional relationship between 
stress and shear rate deduced from the simple shear experiment. However, it was not 
until 1845 when Stokes, based on the works of Navier (1821) and Poison (1831), 
formulated the three-dimensional mathematical form of Newton’s law. The 3-D 
generalization of Newton’s law of viscosity is, in fact, the set of nine relations between 
stresses and velocity gradients, which are usually called the Stokes relations: 
 

( ) ( )T 2
3

u u u Iτ μ μ κ⎡ ⎤ ⎛ ⎞= ∇ + ∇ + − ⋅ ∇ ⋅ ⋅⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦
  (9) 

 

where u∇  is the velocity gradient tensor, ( )Tu∇  is the transpose of the velocity 

gradient tensor, u∇⋅  is the divergence of velocity, I  is the identity tensor and κ  is the 
so called “dilatational” viscosity. κ   takes into account the contribution to stress as a 
consequence of density changes during the flow. It is demonstrated that κ  is zero for 
ideal monoatomic gases. On the other hand, as detailed in Section 3.1., for 
incompressible fluids 
 

0u∇⋅ = (10) 
 
and, consequently, the term containing this divergence, which affects the normal stress 
components, can be removed, 
 

( )Tu uτ μ ⎡ ⎤= ∇ + ∇⎢ ⎥⎣ ⎦
  (11) 

 
which is valid for most of liquids. The term in brackets is what rheologists know as the 
strain rate tensor (Macosko, 1994) 
 
τ μ γ=   (12) 
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which takes exactly the same form of Eq. (6) but expressed in three dimensions. Eq. (9), 
or the simplification for incompressible fluids (Eq. (12)), is called the Newtonian 
constitutive equation and represents the complete flow behavior for a Newtonian fluid, 
i.e. the relationship between stress and strain rate under any type of flow. 
 
 
- 
- 
- 
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