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to other well-known equations. 

The theoretical results for the fastest growing waves are compared with the ex- 
perimental results concerning velocities, wave numbers, and growth rates of the 
waves in the inception region. The validity of the theoretical assumptions is also 
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Vertical falling liquid films are extensively used in interphase 
heat and mass transfer processes in chemical technology and 
energetics. It is well known that on the surface of these films 
there practically always exist waves that can influence the 
transfer processes. In the case of short test sections and mod- 
erate liquid flow rates these waves are ordered and two-di- 
mensional. To estimate the transfer coefficients for the wave 
flows of films one should be able to calculate the nonlinear wave 
regimes, because it is the nonlinear waves that are dominating 
in wave formation on the surface of the above films. 

Most known publications on nonlinear waves are devoted to 
calculations of either nonstationary or stationary waves at low 
and moderate flow rates, respectively. However, there is no 
general-purpose nonlinear, nonstationary equation which would 
generalize the available approaches and be valid in a wide 
range of conditions. The aim of the present study has been to 
derive a general-purpose model equation for nonlinear, non- 
stationary waves on the film surface and to substantiate the 
validity of this approach on the basis of the existing experi- 
mental data and theoretical results. 

CONCLUSIONS AND SIGNIFICANCE 

A universal model equation to describe nonlinear, nonsta- 
tionary waves on the surface of liquid films in the range of Re 
numbers 1 I Re i: tP2 (6  is the long-wave process parameter) 
is derived by the method of integral relations by using self- 
similar velocity profiles. The equation has a two-wave structure, 
which implies that at low Re(-I), kinematic waves can be ob- 
served, to which the energy is transferred by means of a 
higher-order wave mechanism. At Re - 1/c2 >> 1, the higher- 
order waves grow at the expense of the kinematic waves. In the 
limiting cases of low and high Re numbers and in the particular 
case of stationary waves, the above two-wave equation can be 
reduced to the well-known equations of Gjevik (1970), Nakor- 
yakov and Shreiber (1973), and Shkadov (1967). 

In terms of the derived equation, a linear analysis of the sta- 
bility has been carried out. Analytical expressions to describe 
neutral disturbances, the fastest growing waves, and capillary 
ripples observed in front of the large solitary waves have been 
obtained. 

An experimental setup has been developed to measure the 
instantaneous velocity profiles in a wave liquid film and the 
wave characteristics in the region of their formation. The as- 

sumed validity concerning the self-similarity of the instanta- 
neous velocity profiles has been corroborated by the data on the 
instantaneous velocity field in a film for two-dimensional, 
moderate-amplitude waves. 

The data on the wave characteristics in the region of wave 
formation have been generalized in the universal coordinates 
obtained from the analysis of the above two-wave equation. I t  
has been shown that the behavior of linear growing waves on 
the film surface can be described by the linear theories of the 
fastest growing waves. The calculations carried out according 
to these equations are in good agreement with the other known 
theories in a wide range of the Re/Fi'/" values, apart from very 
high Re numbers. 

The results of the experimental investigation of nonlinear 
stationary periodic waves and the evolution of initial solitary 
disturbances are presented. Various types of two-dimensional 
waves have been discovered. 

The results provide hope that the solutions of the full two- 
wave equations will describe all the two-dimensional nonlinear 
wave regimes observed on the surface of falling liquid films. 
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INTRODUCTION 

The stability of vertical falling liquid films was studied in terms 
of the Orr-Sommerfeld equation by Benjamin (1957), Yih (1963), 
Whitaker (1964), and Krantz and Goren (1971). Kapitza (1948), 
Shkadov (1967, 1968), Krylov et al. (1969), and Lee (1969) per- 
formed such an analysis on the basis of the boundary layer equa- 
tions. 

The dependencies of the growth rate and of the phase velocity 
of waves have been obtained, the neutral curves have been plotted, 
and the characteristics of the fastest growing waves have been 
calculated. 

Despite the fact that vertical falling films are unstable, the ex- 
periments point to the existence of stationary wave movement, the 
amplitude of the waves being constant. The finite-amplitude wave 
flow can be analyzed in terms of nonlinear equations only. It is very 
convenient to perform such an analysis by using one equation, e.g., 
for the film thickness, the flow rate, or the flow velocity. 

The nonlinear wave studies are conditionally subdivided into 
two groups in which low (Re - 1) and high (Re 5 400) Reynolds 
numbers, respectively, are considered for the laminar wave film 
flow regime alone. 

Kapitza (1948) was the first to analyze film surface stationary 
waves at moderate Reynolds numbers. His approach is based on 
the boundary-layer-type equations, as well as on the method of 
integral relations. The finite equation actually represents an 
equation for the theory of long capillary waves on shallow water, 
written for the case of neutral waves. As a matter of fact, Kapitza 
found a condition when neutral wave regimes (i.e., those that are 
neither growing nor damped) exist, and obtained expressions for 
the velocity and the length of neutral waves propagating on a film. 
He also tried to predict the equilibrium wave amplitude from the 
balance between the energy dissipation rate and the gravitational 
work, as well as from an additional hypothesis concerning the 
minimum dissipation function for the actual wave flow regime. 
This theory does not appear to be rigorous in many respects. To a 
considerable extent it is based on physical arguments rather than 
on a strict derivation. 

The paper by Kapitza resulted in many contributions by his 
followers, among whom one should mention Shkadov (1967,1968, 
1973) and Lee (1969) particularly. Shkadov studied nonlinear 
stationary waves at moderate Reynolds numbers (Re - 30) also on 
the basis of the boundary-layer-type equations for long waves and 
of the method of integral relations. Periodic solutions were found 
as expansions in harmonics. Having retained the first two har- 
monics in the solution, Shkadov showed that using additional 
harmonic amplitude equations and a minimum film thickness 
hypothesis, similar to that proposed by Kapitza, enables us to cal- 
culate all the basic wave characteristics, including amplitude. The 
nonlinearity of the process manifests itself both in deviation of the 
waveform from the harmonic one and in alteration of the mean 
film thickness. A similar study was performed by Lee (1969), who 
solved the problem of stationary nonlinear waves on the basis of 
Kapitza’s equations by using the Bogolyubov-Krylov method. 

Thus, all the research dealing with the analysis of nonlinear wave 
regimes at moderate Reynolds numbers has been performed on 
the basis of Kapitza’s equations obtained as a boundary layer ap- 
proximation. The dynamic and continuity equations are reduced 
to one equation on the assumption that the waves are stationary 
and the solution is a simple wave. 

Beginning with Ivanilov’s study (1961), the “narrow bands” 
method consisting in an expansion of the solution in h/X powers, 
where h is the film thickness and X the wavelength, is used to an- 
alyze long waves at low Reynolds numbers. Since the equations 
comprise the products h/X. Re,  the condition Re - 1 is necessary 
to insure the convergence of the expansion. 

Some long-wave theory equations of various degrees of accuracy 

were obtained from the complete system of the Navier-Stokes 
equations by Ivanilov (1961), Benney (1966), Pashinina (1966), 
Gjevik (1970), and Maurin et al. (1977). Detailed analysis of the 
solutions and of their stability is given by Nepomnyshchii (1974, 
1977). Petviashvili and Tzvelodub (1978) and Tzvelodub (1980) 
obtained solutions both for stationary periodic waves and stationary 
two- and three-dimensional solitons on a liquid film at Re - 1. A 
typical equation of the above-mentioned theories for the case of 
low Re numbers turns out to be nonstationary, being of the fourth 
order along a coordinate and containing the second derivative, 
responsible for the instability of the smooth flow. 

Thus the present situation in the theory is as follows. The flow 
stability has been studied on the basis of the Orr-Sommerfeld 
equation, as well as on the basis of the boundary layer equations. 
The nonlinear wave motion at low Re numbers has been analyzed 
by means of the Benney-Gjevik-type equation which allows us to 
investigate both the nonstationary effects and the stationary wave 
solutions. 

For moderate Re numbers no model equation of this type is 
known. There exist only those of the Kapitza-type equations that 
are suitable for the analysis of stationary wave regimes. One at- 
tempt to obtain a model equation for high Re numbers was made 
by Nakoryakov and Shreiber (1973). 

There is a certain objective necessity to derive a general-purpose 
nonstationary, nonlinear wave equation which would make it 
possible to generalize the existing approaches. One may formulate 
a priori the requirements which should be met by these equations. 
It should insure the analysis of stability and be reduced to the 
Benney-Gjevik equation at low Re numbers. In the stationary case, 
it should coincide with the Kapitza-type equation and at high Re 
numbers be reduced to the Nakoryakov and Shreiber equation 
(1973). An attempt to derive such an equation is reported in the 
present paper. 

As far as the experimental studies are concerned, only a few 
publications whose results may be compared with the theoretical 
models should be mentioned. These are the papers by Kapitza and 
Kapitza (1949), Jones and Whitaker (1966), Strobe1 and Whitaker 
(1969), Krantz and Goren (1971), Portalski and Clegg (1972), 
Pierson and Whitaker (1977) and Nakoryakov et al. (1975, 1976, 
1977). This is due to the fact that the film wave theory has been 
fairly well developed only for two-dimensional periodic waves of 
small amplitude and of almost sinusoidal form. In practice, the 
two-dimensional regular wave regimes are usually observed at Re 
= 5-20, near the wave inception line. In all the other cases the film 
waves turn out to be three-dimensional and irregular, and their 
form may noticeably differ from the sinusoidal one. Therefore, 
almost all the experimental studies actually resolve themselves into 
statistical analyses of wave characteristics without two- and 
three-dimensional, stationary and nonstationary waves being 
separated. This information surely cannot provide complete ver- 
ification of the theoretical models nor help us discover the physical 
regularities of wave motion. 

In the above experimental studies it turned out to be possible to 
investigate the two-dimensional regular wave regimes either near 
the wave inception line within a limited range of variations in flow 
rates, properties of liquids, and wave characteristics, or using the 
artificial regularization method (superposition of external distur- 
bances). To verify the stability theories, Krantz and Goren (1971) 
excited waves by wire vibrations at the initial film section. In the 
paper by Kapitza and Kapitza (1949), as well as in our research, 
the stationary wave regimes were mainly studied via wave exci- 
tation by pulsations of the liquid flow rate. 

The experiments dealing with the investigation of waves in the 
inception region show that the behavior of natural growing waves 
can be described by the linear theories of the fastest growing waves. 
The majority of the studies, however, provide us with data for 
velocity and wave number only, often without mentioning that it 
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Figure 1. Schematic representation of a vertical falling liquid film. 

is the two-dimensional flow that is under study. The theories of 
steady finite amplitude waves are in agreement with the experi- 
mental results for almost sinrisoidal waves within the range of 
numbers Re 5 20. 

Experimental data on instantaneous velocity profiles in a wave 
liquid film are completely absent from the literature, although such 
measurements are considered to be of extreme importance, since 
many theories utilize varioils velocity distribution hypotheses. This 
paper presents experimental data of wave characteristics and of 
instantaneous velocity profiles for strictly two-dimensional waves 
only. 

DERIVATION OF THE WAVE EQUATION 

Let the Navier-Stokes equations and the boundary conditions 
for a vertical falling liquid film (Figure 1) be written in the di- 
mensionless form 

a t y = h ,  

at y = 0, 

a t y = h ,  

(7)  

where is the dimensionless longitudinal velocity component for 
the film surface. 

The conditions in Eqs. 4 and 5 mean the absence of the tangential 
and normal stresses from the film surface, Eq. 7 being a common 
kinematic boundary condition on a free surface. Here the following 
dimensionless values have been introduced, i.e., 

U = u/uo, V = (v /uo)  * L/ho, j2 = x/L, ij = y / h o  

t = tuo/L, = P(pu:) ,  = ho/L, Re = g o / u  

and the film number Fi = 6 / ( p 3 g u 4 ) ,  where t is the time, L the 
characteristic longitudinal scale whose order is the same as with 
the wavelength A, P the pressure, Po the atmospheric pressure, go 
the volume liquid flow rate per unit widt, g the free fall accelera- 
tion, Y the kinematic viscosity, p the density, F the liquid surface 
tension, and ha and U, can be determined from the Nusselt for- 
mulae for a smooth laminar film flow 

Re = g 0 / u  = ghz/(3u2) = houo/u 

Let a long-wavelength process be considered, provided that 
<< 1 and Re - 116 >> 1. Let the disturbed part U' of the longitu- 
dinal velocity U beseparated, assuming that U' N tlUo, t l  - E .  In 
so doing, having retained the terms of orders 1 and c in Eqs. 1-7, 
we arrive at the boundary layer type equations which can be 
written in the dimensional form, i.e., 

(8 )  

bu dv 
(9) - + - = o  

dx dy 

W / d y  = 0 (10) 

- + u - + v - = v - + g - - -  du du du d2u 1 dP 
at ax dy dy2 P ax 

the boundary conditions being as follows: 
at y = h, 

dh dh v = - + u -  
dt dr 

dufdy=O 

at y = 0, 

u = u = o  (13) 
a t y = h ,  

P - Po = -U  - d2hf 3x2 (14) 

While deriving the system of Eqs. 8-14, it was taken into con- 
sideration that for real liquids, Fi1/3 is high (e.g., for water, Fill3 
= 104). 

It should be noted that with the properly chosen relation between 
6 and €1, the final system of Eqs. 8-14 remains the same within the 
range of Reynolds numbers 1 5 Re 5 @. 

The method of integral relations (the Karman-Polhausen 
method) is used below. Its main disadvantage is that the film in- 
stantaneous velocity profile should be specified a priori. It is dif- 
ficult to estimate its possible error, although it seems to be evident 
that it cannot be too high for long waves. The experimental results 
concerning the direct determination of instantaneous velocity 
profiles in a wavew liquid film (partially given in the present paper) 
testify to a fair approximation to the velocity profile by a self- 
similar polynomial for two-dimensional waves, at least, of moderate 
amplitude. 

Integrating Eqs. 8 and 9 over the film thickness by using ex- 
pressions 10-14 and considering that h = h(x,t), we have 

d S h u ~ y + d S h ~ 2 d y = - u ( ~ ) y = U + g h + - -  ah d3h 
at 0 bx 0 p dx3 

(15) 
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Such a system has been obtained in a number of papers, but 
unlike that research our objective consists in deriving one nonlinear, 
nonstationary equation for the film thickness disturbance. 

Following the method of integral relations and resting on our 
own experimental results, let the velocity profile be presented as 

u = U-f(v), 9 = Y/h 

Now we introduce the instantaneous liquid flow rate in a film 
and express it as a function off: 

In a similar way, we have 

Using these expressions and introducing the coefficients 

we rewrite 15 and 16 as the thickness and the flow rate equa- 
tions: 

b s + 2 x - - - x x Q  q d q  -=---  a?u ah d3h (17) 
at h bx h2dx 6 h2 p bx3 

dh dq - + - = o  
dt  dx 

We represent the overall flow as 

q = qo + 9‘. h = h, + h’, (19) 

where prime denotes the disturbed part of the value, and substitute 
these expressions into Eqs. 17 and 18. Assuming that q‘ << qo,h‘ << 
h, and retaining those terms of the equations whose order is 
(h’)2,(q’)2 or higher, we obtain nonlinear equations for the thickness 
and flow rate disturbances, the nonlinear terms being on the 
righthand side: 

dh’ldt + bq’fbx = 0 (21) 

Now we pass from the system of Eqs. 21 and 22 to one nonsta- 
tionary equation for thickness disturbances. With this end in view, 
let Eq. 20 be differentiated with respect to x and the derivative 
dq‘fdx in the linear terms be replaced via the continuity equation 
Eq. 21: 

b2h’ 2xqo d2h’ q,” d2h’ a?u dh‘ dh’ - +-- + x - - + - - + 3 g -  
dt2 h, dxdt h f  bx2 6h,” bt dX 

+ - - = - % h ’ - + - -  ah, d4hf dh’ 2 d h f -  bq’ 
h, dx h, a x (  d t )  p dx 

To exclude q‘ and dq’ldt from the nonlinear terms, the fol- 
lowing considerations will be used. Let the variables x and t in the 
continuity equation be substituted by [ and t ,  where [ = x-ct and 
c is the wave velocity assumed to be constant for the case of 
quasistationary waves. As follows from the experiments (see, for 
instance, Figures 9 and lo), in many cases the observed waves may 
be considered as weak-dispersive and weak-nonlinear. Then 

dh’ ah’ bq’ 
c - + - = o  _- 

dt a t  d t  
In the case of the quasistationary process, the wave profile in a 

moving coordinate system deforms only slightly. As a result, we 
pass from Eq. 23 to the approximate equation cdh‘ ld t  = b q ‘ / d t ,  
from which the relations 

q’ = ch’ (24) 
b 

(25) 
b 
at dX 

follow. In the case of stationary waves, expressions 24 and 25 turn 
out to be exact. 

Now substitute Eq. 24 into the nonlinear terms of Eq. 22, which 
at 1 I Re I P a r e  always on a lower order of magnitude than the 
main terms. The derivatives of the form c d l d r  that have appeared 
in the nonlinear terms will be substituted according to Eq. 25. As 
a result, we obtain the following nonlinear, nonstationary equation 
for the case of the thickness disturbances: 

- -c - - _  

6 h 2  b ($ + c, $) h’ + ; f ( + c1 &)( + c2 &) h’ 

+ 
6 aha b4h’ 
a? p u  dr 

+ ---y-= 0 (26) 

where 

co = %o/ho, ci = qo(x + @-xi/h, 

cz = qo(X - -)/ho 
Equation 26 has a typical two-wave structure. It means that the 

wave process on a liquid film includes a lower-order wave, whose 
velocity is c,, and the waves described by the higher-order deriv- 
atives that propagate at velocities C I  and c2. The technique for 
deriving and analyzing such equations is discussed in detail by 
Whitham (1974). 

Equation 26 may be successfully used as a basis in analyzing the 
falling film stability and the process of nonlinear wave forrna- 
tion. 

In further considerations, the parabolic velocity profile f (q)  = 
(29 - 92) in a gravitational vertical falling liquid film will be used. 
Therefrom the following coefficients will be calculated: 

6 = 213, z = 2, x = 1,2, ~1 = 1.69u0, 

~2 = 0.71u0, U, = qo/ho = ghi j (3v)  

After having substituted these coefficients into Eq. 26, we obtain 
in the dimensionless form 
($+ 3 $ ) H +  ~ H ~ - E X P ~ ( R ~ )  b H  2 b b H  

b4H 
df H + We 7 df = 0 (27) 

Here H = h’/h,, f = x/h,, t = tUo/ho, and We = u/pghz is the 
Weber number. Now let the obtained equation be analyzed. 

a )  Stationary Waves. Assuming that h’ = h’(r - ct ) ,  we inte- 
grate Eq. 27 over x: 

(3  - E)H + 3H2 + c2 - 2.42 + 1.2 - i E 2 )  
3 

b 3 H  
bf3 

+ W e - =  0 (28) 

The dimensionless phase velocity C = c/Uo.  Equation 28 com- 
pletely coincides with the Shkadov (1967) equation, apart from the 
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capillary term nonlinearity which has been neglected from the very 
beginning. 

b) Let Re - 1. As is seen from Eq. 27, it is the kinematic wave 
described by the equation 

dH dH - + 3 - = 0  

that underlies the wave process. According to Whitham (1974), let 
the term dldt in the higher-order derivatives be substituted by 
-3dldf and the second nonlinear term be neglected. As a result, 
we obtain 

dt df 

This type of equation (however, with the coefficient 1.2 R e  
before the second derivative) has been used recently by Gjevik 
(1970), Maurin et al. (1977), Nepomnyashchii (1974), and Pet- 
viashvili and Tzvelodub (1978) as the basic equation for the analysis 
of nonlinear waves on vertical falling films. 

c) Re >> 1. The second-order waves are the basis of the wave 
process. Separate the wave that preliminarily prop_agates along the 
flow and can be described by the equation dH/dt-+ 1.69dHldf 
= 0. In all the other derivatives of Eq. 27, let dldt be substituted 
by -1.69dldf. Having integrated it over x ,  we obtain 

H 9.2 
4.01 - - - H 2  

dH dH dH - + 1.69 - + 2.07H - - at df df R e  Re 
We d3H 
Re df3 

-3 .06--=0 (30) 

This equation was obtained by Nakoryakov and Shreiber (1973) 
as a model to describe film surface waves at high Re numbers. 

Thus in the case of a long-wave process at low Re numbers, the 
energy transfer from the mean flow to the kinematic wave follows 
the higher-order wave mechanism. This corresponds to the ap- 
pearance of the energy source term (or “negative” viscosity term) 
in Eq. 29, beginning with the second derivative. 

At high Re numbers the energy is transferred into a higher-order 
wave (which can conditionally be referred to as “inertial”) by the 
kinematic wave. This corresponds to the appearance of the “low- 
frequency” energy source linear term in Eq. 30. 

The film surface waves within a wide range of Re numbers 
should be analyzed on the basis of Eq. 27. The conclusions con- 
cerning the exact range of its applicability and the possibility of 
the transition, in Eq. 27, to the case of very high Re numbers can 
be drawn only from the comparison between its solutions and the 
experimental results. Such a comparison for the case of linear waves 
is given in the later section on two-dimensional waves in the in- 
ception region. 

LINEAR ANALYSIS OF FILM FLOW STABILITY 

Let the dispersion equations for temporally growing (damped) 
waves be derived. With this end in view, let H be represented 
as 

H - exp[i(kf - fit)] = exp[i(ki - wt) ]  - exppt 
= exp[ik(Z - ~ i ) ]  exppt 

where k = 2 ~ h , / h  i s  the real wave number, D = w + ip the 
complex frequency which is made dimensionless by using h, and 
U,, and C = c/u,  the real part of the phase velocity. After having 
substituted H into the linearized Eq. 27 and having separated the 
real and the imaginary parts, we arrive at 

(31) - C +  3- -EPRe+ 0.8ReP=O 

3p - k2Re(C2 - 2.42 + 1.2) + Rep2 + 3We - k4 = 0 (32) 

2 
3 

Figure 2. Dispersion curves for two-dimensional waves 
on a vertical falling llquld film. 

Similar equations were derived by Shkadov (1968) directly from 
the system of Eqs. 15 and 16, however the dispersion relations were 
not analyzed. 

It follows from Eq. 31 that 

(33) 

Excluding p from Eq. 32, let the quadratic (with respect to 
k2Re2) equation 

(kRe)4 - (kRe)2- (c - Re3 - 
3We - 22) 

- 3Re3(E - 3)(F + 0.6) = 
4We(F - 1.2)* 

where El = 1.69, Fz = 0.71, be derived by means of Eq. 33. 
Its solution is 

Re 
6We 

(kRe)2 = - (F - E I ) ( E  - C,) 

27We(E - 3)(F + 0.6) 
. [ 1 * 6 1 +  Re3@ - 1.2)2(C - E l ) 2 ( C  - C2)2 

Equation 34 has two pairs of roots, to which correspond the two 
nonintersecting branches of the dispersion curve, symmetrical to 
each other relative to the axis F = 1.2. All the above-mentioned also 
refers to the growth rates, whose axis of symmetry is the line 0 = 
-1.5/Re. Later on we will consider solely the upper branches of 
the dispersion curves given in Figure 2. The appropriate values of 
the growth rates are given in Figure 3. 

It follows from Eqs. 32-33 that neutral waves (p  = 0) exist under 
the conditions 

(35) 
Waves with C > 3 are exponentially damped, while those with 

= 3, k l =  d m ,  kz = 0 

3 

0 

-3 
M-’ ro /o ’ YO‘ /03 k Re 

Figure 3. Temporal growth rate of a film. 
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E < 3 grow. The asymptotics of the dispersion curves in the region 
E > 3 is obtained from E q .  34, provided that the righthand term 
in the radicand is neglected: 

25 We c = 1.2 + ?& 41 + ---k2 
5 

For Re - 1 and not very low k (which corresponds to capillary 
ripples in front of large waves propagating over the thin residual 
layer), we have 

(36) 
In the coordinate system moving at the velocity 1.2 U,, ex- 

pression 36 exactly coincides with the dispersion formula for 
capillary waves on shallow water. 

The analysis of Eq. 33 shows that the maximum growth rate 
corresponds to the minimum phase velocity. Hence, the fastest 
growing waves line will intersect the dispersion curves in Figure 
2 at the points of the minimum phase velocities. To accurately 
determine the characteristics of the fastest growing waves, come 
back to Eqs. 32-33. 

E = 1.2 + k d m  

We rewrite Eq.  33 as 

E = 1.2 + 1.8/4 (37) 
where 

2 4 = 1 +-Re@ > 1 
3 

After having substituted Eq.  37 into JZq. 32, we differentiate the 
expression with respect to k and allowing for the extremum con- 
dition d$/dk = 0, we obtain 

Finally, after having substituted Eqs. 37 and 38 into Eq. 32, we 
arrive at 

(39) 
Re3 44(42- 1) 3.103 
We (@ - 13.5)2 6.4 
-= 

The maximum growth rate is 

To pass from the temporal growth rate 0 to the spatial growth 
rate (-a) (these are the rates that are measured in the experiments), 
the known Gaster transformation 

should be used. Here we have taken into account that for the fastest 
growing waves M/ bk = 0. The numerical calculation shows that 
within the framework of the problem formulated, the temporal 
and the spatial growth rates are related by Eq.  41 with a sufficient 
accuracy. 

Thus the system of formulae in Eqs. 37-41 describes all the 
characteristics of the fastest growing waves in the parametric 
form. 

Since Re and We enter the dispersion equation as the ratio 
Re3/We, it should be transformed so that only one flow rate pa- 
rameter, Re, is used: 

EXPERIMENTAL PROCEDURE 

The experiments dealing with the waves in the inception region were 
performed on a setup described by Pokusaev and Alekseenko (1977). Liquid 

R - .  .-• .. .. e .  - .  
e .  - .  .. 

a 8 

Figure 4. Scheme of the film thickness and velocity profile 
measurements. 

from a constant-level tank flowed through a liquid distributor onto the outer 
surface of a test section, which was a I m long, 60 mm dia. Plexiglass tube. 
Due to the experimental requirements, while measuring the instantaneous 
velocity profile we used a stainless steel tube of 60.8 mm dia and high- 
polished (mirror) surface. 

Liquid flowed to the test section through a 70 mm long and 0.5-1 mm 
wide annular orifice. While preparing the experiment, the main difficulty 
was to insure the two-dimensional flow of the wave liquid film. To be 
uniformly wetted, the test section was made strictly vertical and the annular 
gap and the coaxility between the liquid distributor and the test section were 
fine-adjusted until two-dimensional (annular) waves were obtained. This 
adjustment was possible due to the small clearance between the setting 
surfaces of the test section and the liquid distributor. 

Liquid films are extremely sensitive to external disturbances, e.g., to 
vibrations induced by an operating pump. Therefore, the experiments were 
performed only with the pump switched off, and the liquid was pumped 
into the upper tank periodically in an automatic way. 

As a working liquid we used aqueous glycerine solutions, since they are 
less affected by surfactants absorbing on the liquid film as compared to pure 
water. In addition, as follows from our observations, two-dimensional waves 
on a water-glycerine film appear to be more stable to three-dimensional 
disturbances and remain for sufficiently great path lengths. 

Experimentally measured variables were: instantaneous and mean 
thickness of the film, wave amplitudes, velocities and lengths, as well as 
instantaneous velocity profiles in a wave flow regime. 

The film thickness was measured by a shadow method shown in Figure 
4. The gist of the method is as follows. Power light source 1 (mercury lamp) 
via condenser 2 tangentially irradiates test section 3, and liquid film 4 
falling over the outer surface of the vertical tube forms a shadow. Magnified 
film shadow pulsations are projected by objective lens 5 to photoelectron 
multiplier 6 and recorded in analog or digital form. 

The phase velocity of the waves was measured by the phase shift between 
two simultaneous recordings of the instantaneous film thickness which 
corresponded to two different points along the tube. 

The accuracy of the absolute thickness and phase velocity measurements 
is 2-5 and 5-9%, respectively. 

The instantaneous velocity field in a wave liquid film was estimated by 
two synchronized methods: the shadow method for thickness determination, 
and by stroboscopic particle visualization, by means of which velocities 
could be measured. The latter was first used in a similar way by Cook and 
Clark (1971) and Ganchev et al. (1972), who measured the mean velocity 
profile only. The process of measuring the instantaneous velocity profile 
in a wave liquid film is schematically shown in Figure 4. Liquid film 4 with 
small concentrations of 1-5 p round aluminium particles falls over the outer 
surface of stainless steel, high-polished tube 3. If the particles are recorded 
by camera 7 with lateral pulse irradiation by lamp 8, then the film frame 
fixes a discontinuous track of one particle from which, provided that the 
frequency and the magnification factor are known, the particle velocity 
can be determined. The pulse frequency of lamp 8 is set by sonic frequency 
generator 9 triggering stroboscope 10. 

With the mirror surface of the test section being high-polished, in taking 
photographs at an angle B to the normal relative to the surface the camera 
will record not only the track of a real particle, but also that of a particle 
virtual image, formed by the mirror, as illustrated by details a-c in Figure 
4. By simple geometric constructions, the formula 
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Figure 5. Instantaneous Velocity profiles In a wave liquid fllm. 
Wave characteristics as In Table 1; cuwa derlvatlon explained In text. 

TABLE 1. WAVE CHARACTERISTICS, FIGURE 5. 

u-106 ( h )  h,,, x c c o  
Fig. mz/s mm mm mm mm/s q o / ( h )  9 J ( h )  

5a 7.2 0.545 1.12 36 460 2.83 1.27 
5b 7.1 0.56 0.73 11.8 310 1.93 1.48 

is derived, where N is the magnification factor measured without liquid 
in a plane parallel to the film frame, n the liquid refraction, and A the 
distance between the real and the virtual images of the particle on the 
photographic film. 

Figure 4a-c, illustrates typical double tracks of particles, when the 
number of pulses is equal to three. Case (a) corresponds to the smooth film, 
in the presence of a longitudinal velocity component only, calculated by 
the formula 

IJ = (%+l - S)/(Nf) (43) 

where is the longitudinal coordinate of the particle image on the film 
at the ith pulse, f being the pulse frequency. Case (b) corresponds to the 

Figure 6. Dimensionless velocity profile. 
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smooth film, but the transverse velocity component also is available; it is 
equal to 

(44) 
where yd i s  the transverse particle mrdinate calculated by formula 42. Case 
(c) corresponds to the wave liquid film when the surface is inclined at a 
certain angle to the longitudinal axis 2. 

The analysis of the profiles of the two-dimensional waves observed in 
the experiments with low Re numbers, shows that this angle reaches its 
maximum value (23") only in the region of the leading front of the largest 

0 = (Yr+ 1 - Ydf 

C = 280 

8) 
c =285 

4 
C = 280 

Flgure 7. Wave evolution on a vertlcai falling liquid film. 
Y = 2.3&10-ern2/si u/p = 60.2.10-ema/s2; Re = 15.3; Who =(a) 155, (b) 165, (c) 

185, (d) 200. (e) 240. 
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waves. In this case, an additional error in determining y and U amounts 
to 3 and 6.5%, respectively, for the case when 19 = 30". For small and large 
waves (except for their leading front), formulae 42-44 can be used. The 
main experimental errors are: 7% for the absolute values of y, 2% for its 
relative values, and 4 5 %  for the longitudinal velocity. 

The position of a particle in a wave was determined by simultaneously 
recording the thickness of the film and the moments of the lamp pulses. 

As a rule, a photographic film frame contained 5-10 tracks responsible 
for a small part of the film. The velocity field over the total wavelength was 
constructed on the basis of 30-50 frames. It is very important in this case 
that the waves be strict-regular and two-dimensional, since the velocity 
distribution is estimated by a set of data for various waves. 

INSTANTANEOUS VELOCITY PROFILE IN A WAVE LIQUID 
FILM 

Despite the fact that ample data concerning liquid velocities in 
a film are known, the results of measuring the instantaneous ve- 
locity profile in a wave liquid film are absent from the literature, 
although these data are considered to be of special interest in for- 
mulating the theory. 

As has been mentioned above, the method of velocity mea- 
surements requires strict-regular periodic waves. For this purpose, 
artificial disturbances were superimposed on the film flow by 
means of liquid flow rate pulsations, as carried out by Kapitza and 
Kapitza (1949) and Pokusaev and Alekseenko (1977). As a result, 
strict-regular two-dimensional stationary periodic waves were 
formed. The picture of the stationary excited waves at a given Re 
is determined only by the frequency of the superimposed distur- 
bances. If the frequencies of the natural stationary waves and those 
of the superimposed disturbances coincide, the wave pictures are 
identical, i.e., the natural wave regime is a particular case of the 
stationary excited waves. 

The results of measuring the instantaneous longitudinal velocity 
profiles for the characteristic value of Re = 12.4 and the two 
characteristic types of the observed waves are given in Figure 5. 
Above each wave profile the sections are shown for which the ve- 
locity profiles have been constructed. The points correspond to the 
section numbers. Curve I is the self-similar parabolic profile plotted 
according to the maximum thickness and velocity values. Curve 
I1 is the Nusselt velocity profile for a smooth laminar film, plotted 

Q'ho 

according to the residual layer thickness. The dotted line designates 
the wave phase velocity. The other characteristics of the wave re- 
gimes are listed in Table 1. 

The above plots show that in the region of the maximum film 
thicknesses the velocity profile changes insignificantly, while at 
the minimum values of h (sections 1 and 9, Figure 5b, and section 
2, Figure 5a), it undergoes great changes. In the residual layer 
region the flow is purely laminar and can be described by the 
Nusselt theory (curve I1 in Figure 5a). The maximum liquid ve- 
locities in a wave reach the values of the wave phase velocities 
(Figure 5a). 

The analysis of the results shows that for a given wave section, 
the greater values of the longitudinal velocity correspond to the 
higher values of the q coordinate. This points to the absence of a 
stationary vortex even for the waves of so large an amplitude as 
shown in Figure 5a. 

The results of the velocity profile measurements are schemati- 
cally shown in Figure 6 in the dimensionless coordinates [ q / h ;  
u/U], where h is the local thickness, U the local surface velocity 
calculated according to the velocity of particles-marks detected 
near the film surface (curve I is a self-similar parabolic profile). 
The wave profiles here are roughly divided into sections. In section 
I the velocity profile is described by the self-similar parabolic law. 
In section 2 the velocity profile is less filled as compared to the 
parabolic one, and corresponds to region 11, while in section 3 it 
is more filled (region 111). The maximum deviations from the 
parabolic law amount to 15%. For section 4 ,  no velocity profile has 
been plotted due to great scattering of the experimental points. 

TWO-DIMENSIONAL WAVES IN THE INCEPTION REGION 

A vertical falling liquid film at Re = 5 - 50 can be described 
as follows. In close proximity to the outlet orifice the liquid film 
is smooth. Then, at a certain distance from the orifice edge, due 
to the natural instability of the smooth laminar flow, infinitesimal 
two-dimensional periodic disturbances arise, their amplitude 
growing fast. At sufficiently large amplitudes, nonlinearity can be 
observed and the wave regime becomes stationary and nonlinear. 
The two-dimensional waves are unsteady and soon break into 

0 

0 0 

. - - I  

0 - 2  

too 7550 200 250 s/h 0 

Figure 8. Amplitude of growing waves. 

Y = 2.34.10-6rn2/s; d p  = 60.2-10-0ms/s2; Re = (1) 36.4, (2) 15.3. 
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Figure 9. Wave number (a) and phase velocity (b) of growing 
waves. 

Y = 2.34.10-6 mZ/s; d p  = 60.2.10-" m3/s2. 
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Figure 10. Spatial growth rates. 
Experlmental data: 
1. 0 Y = 2.3440-6m2/s; alp  = 60.2 10-0*m3/s2. 
2. 0 Portalski and Clegg (1972); Fll'll = 5.33. 
3. 0 Krantz and Goren (1971), oil; FI1/l1 = 1.19. 
4. S Krantz and Goren (1971). oil; Fi"" = 1.72. 
Theoretlcai data (curves): 
I Present study, Eqs. 39-41. 
ii Whitaker (1964). water. 
111 Benjamin (1957). 
IV Long-wave approxlmatlon, Benjamln (1957). 
V Nakoryakov and Schreiber (1973), linearized Eq. 30. 
VI Plerson and Whitaker (1977). 

Figure 11. Wave number of growing waves. 
Experimental data (symbols): see Table 3. 
Theories of the fastest growlng waves (curves): 
I Present study, Eqs. 38 and 38. 
ii Whitaker (1964), water. 
111 Plerson and Whltaker (1977). water; N"" = 9.2. 
[IV omitted] 
V Neutral curve, present study, Eq. 35. 

three-dimensional disturbances which are essentially nonsta- 
tionary. 

Data concerning the evolution of the two-dimensional waves in 
their inception region are given in Figures 7-9. The film thickness 
oscillograms were taken at various distances from the outlet orifice 
edge, by moving the optical system along the test section. As follows 
from Figures 7 and 8, the arising waves are sinusoidal and their 
amplitude (a = h,,, - hmin) first grows exponentially with distance 
and then becomes constant. For the sake of convenience, the ve- 
locity and wavelength data are given in Figure 9 as a function of 
the amplitude, whence directly follows the linearity of the waves 
in the inception region. 

It should be noted that the arising waves are not strict-regular; 
therefore, to obtain average wave characteristics the signal should 
be statistically analyzed. However, with the properly organized 
supply of the liquid to the test region and suitable properties and 
flow rates of the liquid, fairly regular two-dimensional waves could 
be observed in the inception region. Where possible, we considered 
just these regimes. 

According to the linear theories of wave instability, the waves 
actually observed near the wave inception line should correspond 
to the fastest growing waves, which has been partially confirmed 
in several publications. Thus Pierson and Whitaker (1977) and 
others reported on the experimental data for wavelengths and 
velocities of water films alone, Krantz and Goren (1971) performed 
measurements at Re 5 1 for oil films only. Figures 10-12 gener- 
alize our and other authors' experimental results on the growth 
rates, the velocities, and the lengths of the growing waves, and 
compare them with the linear theories of the fastest growing waves. 
While plotting, the coordinates were chosen so that our theoretical 
dependencies would be universal curves. 

The growth rate was estimated according to the tangent of the 
inclination angle of the lines in Figure 8, the angle having been 
plotted in the semilog coordinates: 

, 
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TABLE 2. ASYMFTOTIC VALUES OF FASTEST GROWING WAVES AT 
LIMITING RE VALUES WITH FI = CONST. 

Re - 0 Re - m 
Anshus Present Study Anshus Present Study 

-wRe Const Const Re11/3 Const Re2I3 Const 
k.Re Const Const Const Re4I3 Const 
c /U ,  Const = 3 Const = 3 Const = 1.5 Const = 1.69 

The approximating lines were obtained by the least squares 
method. 

In the region of Re > 10, our experimental data for a water- 
glycerine solution are in agreement with those obtained by Portalski 
and Clegg (1972). At Re 5 1, Krantz and Goren's data (1971) for 
oil films are given. 

At  Re/Fil l l l  < 0.5, the experimental points can be well de- 
scribed by various theories, as listed in the curve identifications in 
Figure 10. It should be noted that in the original study by Benjamin 
(1957), the growth rate in formulae 5-10 is erroneous (later he 
corrected the mistake), i.e. 0.224 should be substituted by 0.448. 
In the range of moderate Re numbers, at Re/Fi l / l l  > 2, the ex- 
perimental data can be well generalized by theoretical relations 
I and V I  and partially by 11. 

In Figures 11 and 12, the neutral curves for the wave number 
and the velocity are also presented; however, they significantly 
deviate from the experimental points. The experimental velocities 
are considerably scattered, which is due to the difficulty of mea- 
suring the wave characteristics for small-amplitude waves of very 
smooth slope form. However, reasonable agreement between the 
experiment and the fastest growing waves theories can be ob- 
served. 

The plots given in Figures 7-12 show that in the wave inception 
region, the behavior of the growing waves at the initial stage of their 
evolution can be described by the linear theories of the fastest 
growing waves. Curve I in Figures 10-12, despite the simplicity 
of the equations used for the derivation, fairly well generalizes the 
experimental points and is in agreement with the other theories 
in a wide range of Re/Fil/" variations, which is one of the proofs 
concerning the versatility of two-wave Eq. 27. 

Letting the results of the numerical calculation according to the 
Orr-Sommerfeld equation in Pierson and Whitaker's study (1977) 
be valid in a given range of Re numbers, a more accurate conclu- 
sion on the applicability field of the boundary layer approximation 
for a liquid film can be made from the comparison of curves I and 
VI in Figure 10. As is seen therefrom, the best agreement between 
I and VI can be observed in the range of 1 I Re/Fi1I1l I 10. 
However, at ReJFiLIL1 < 1, the correlation between the theories 
can also be considered as fairly reasonable, since the dependencies 
differ in the constant numerical coefficient only, but have the same 

asymptotics with respect to Re. A more significant discrepancy can 
be observed at Re/Fi'/" > 10, since the theoretical dependencies 
have different asymptotics. Anshus (1972) considered the as- 
ymptotic solutions of the Orr-Sommerfeld equation at Re - m, 

and they are in agreement with the calculations made by Pierson 
and Whitaker (1977). For comparison, in Table 2 we present the 
asymptotic values of the fastest growing waves characteristics for 
two limiting cases of low and high Re numbers, at Fi  = const. 

NONLINEAR STATIONARY WAVES 

AS has been mentioned above, the evolution of the developing 
waves results in a finite-amplitude stationary regime. However, 
to experimentally investigate the two-dimensional stationary waves 
turns out to be very difficult, since the twedimensional waves trend 
toward breaking due to their instability to the three-dimensional 
disturbances. Besides, owing to some stochasticity of the wave 
formation process, strict-regular waves cannot be observed. 

To thoroughly investigate precisely the two-dimensional sta- 
tionary waves, artificial disturbances (i.e., periodic flow rate 
fluctuations) were superimposed on the main flow. In so doing, 
within the range of Re numbers 570, at distances up to 300-700 
mm from the inlet, two-dimensional stationary waves existed, 
which will later be on referred to as excited waves. The most re- 
markable peculiarity of these waves is that at a sufficient level of 
flow rate fluctuations the picture of the steady-state waves is de- 
termined by the fluctuation frequency only, but does not depend 
on the amplitude, which means that the wave regime is one- 
parametric. The profiles of the excited waves, depending on the 
frequency of the superimposed fluctuations, are shown in Figure 
13 for Re = 8.05. With high frequencies, the amplitude of the 
waves is small and their form is almost sinusoidal (Figure 13c). As 
fast as the frequency decreases, the phase velocity, the length, and 
the amplitude of the waves grow and their shape becomes asym- 
metric (Figure 13a,b). It has been experimentally shown that re- 
gime (a) may be considered as a sequence of stationary solitary 
waves traveling over a thin residual layer, its thickness being h ~ .  

It seems to be very important to lay emphasis on another ex- 
perimental fact, i.e., that with the frequencies of the natural and 
of the excited waves coinciding, the observed wave pictures are 
identical. It means that the two-dimensional stationary natural 
waves are a particular case of the excited waves, when the fre- 
quency value is due to the conditions of the amplitude growth 
maximum velocity. 

The excited waves exist within a limited frequency range I,,,, 
fmin < f < fmax (at a given Re).  The region of their existence is 
roughly shown in Figure 14 in the coordinates (k.Re,Re/Fill l l) .  
Here the neutral curve and the dependence for the fastest growing 
waves are also given. With f > fmax, the excited waves have a very 
small amplitude and quickly lose their stability As a result, a nat- 
ural wave regime, similar to that without disturbances superposi- 
tion, is realized. With f < fmin, the distance between the solitary 
waves is so great that new waves succeed in having developed on 

TABLE 3. DATA FOR SYMBOLS, mGURES 11 AND 12. 

Symb. y.106 a/p.106 
No. Source Fluid mz/s m3/s2 Fill" Re 

1 Present study Aqueous glycerin solution 2.12 65.3 6.78 10-40 
2 Present study Aqueous ethanol solution 2.12 28.5 5.42 10-27 

Aqueous glycerin solution 3.72 61 5.46 8-48 
4 Present study Aqueous solution of ethanol and glycerin 2.34 60.2 6.4 15-36 
3 Present study 

5 Jones & Whitaker (1966) Water - - 9.54 6.70 
6 Strobel & Whitaker (1969) Water - - 9.54 6.70 

8 Krantz & Goren (1971) Mineral oil 
7 Krantz & Goren (1971) Mineral oil - - 1.72 0.5-5.5 

1.14 0.25-1.2 
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Figure 12. Phase velocity of growing waves. 

Experlmental data (Symbols): see Fig. 11 for numberlng code, see Table 3 for data. 
Theories of the fastest growing waves (curves): 
I Present study, Eqs. 37-39. 
II Whltaker (1964), water. 
111 Krantz and Goren (1971), oil; Fl”” = 1.72. 
IV Krantr and Goren (1971), water: Fil’” = 1.72. 
Neutral curves: 
V Present study, Eq. 35, and long-wave approximation, Benjamln (1957). 
VI Krylov ei al. (1969), water. 

the residual layer due to the natural instability, and the regular 
wave picture is destroyed. 

The characteristics of the stationary waves in the dimensionless 
coordinates are given in Figures 15-16. The independent wave 
parameter is the wave number k. However, the amplitude of the 
waves is presented as a function of the phase velocity to demon- 
strate the rigorous linear relationship between these values. 

It should also be noted that although all the nonlinear theories 
predict the decrease of the mean film thickness in the wave regime, 
this fact, obviously, has been experimentally corroborated in the 
present paper alone (Figure 16). 

The excited-wave theories appear to be a convenient object to 
compare with the stationary-wave theories, since it does not seem 
necessary in this case to involve any hypotheses (typically invalid) 
concerning the choice of one solution between a set of probable 

f5, Pmm c = 254 I- 
Figure 13. Profiles of stationary excited waves. 

Re = 8.05; v = 7.2.10-8 mzls: olp = 57.6.10-6 m3fsz. 

, 

theoretical solutions. Examples of the wave profiles, calculated by 
Tzvelodub (1980) according to Eq. 29 (however, with the coeffi- 
cient 1.2 Re before the second derivative) are given in Figure 17. 
Similar results have also been obtained for Eq. 28. The limit of 
periodic waves fork - 0 is a soliton solution (Figure 17d). Com- 
parison of Figures 13 and 17 shows that the theory and the exper- 
iment are here in qualitative agreement. 

EVOLUTION OF INITIAL STATIONARY DISTURBANCES 

To use Eq. 27 and analyze the wave formation mechanism to 
the full, one can study the evolution of the initial solitary distur- 
bances of the film thickness. With this end in view, we specified 
such a liquid flow rate during the experiments so that the flow 

O f 2 3 4 5  

Figure 14. Exlstence regions of (a) natural, and 
(b) disturbed stationary waves. 

I Neutral curve, Eq. 35, 
II Line of the fadest growing waves, Eq. 38. 
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Figure 15. Dependencies of stationary periodic waves velocity on (a) amplitude, and (b) wave number. 
v = 11.>i0-6 m%; u/p = 55.9-10-6 m’/s’; Re = 12.4(1), 7.85(2), 4.0(3). 

Figure 16. Influence of waves on average thickness of a film. 
Y = 2.0&10-6 m3/s; u/p = 40.3.10-~m3/s2; Re = 30.3( l ) ,  20.4(2). 

would be smooth (Re < Re,  = 3-5, where R e ,  is the conditional 
critical wave formation Re number estimated visually in our ex- 
periments). Then a standard flow rate pulse was generated which 
could be adjusted according to amplitude, length, and form. The 
evolution of the thickness disturbances developes thereby was 
followed by way of recording the film thickness at various distances 

from the inlet. Some experimental results are given in Figures 

In Figure 18 the evolution of the “stepwise” disturbances gen- 
erated by way of sudden increase (positive steps) or decrease 
(negative steps) in the flow rate, are given. Two values of Re 
number are specified, i.e., Re = gh,3/3v2, the Reynolds number 
of the layer over which the disturbance is spread; and Re* = 
gh*3 f 3u2, the Reynolds number of the layer beyond the step 
front. 

The stationary steps are always formed from positive pulses. 
Thereby, at Re* < Re,  the steps are smooth. At Re* - Re,  weak 
fluctuations can be observed to the right and to the left of the step 
front. At Re* > Re,  a developed wave regime appears beyond the 
step front. 

The formation of the stationary smooth step seems evidently to 
take place due to the concurrence of the front nonlinear steepening, 
as well as to the dissipative diffusion owing to the surface tension. 
The negative semiinfinite disturbances are merely nonstationary, 
since both the nonlinearity and the surface tension result in one and 
the same effect, i.e., the diffusion of the front. The velocity of the 

18-21. 

I c I 
I I 

Fig. 17. Theoretical profiles of stationary waves, calculated by Tzvelodub (1980). 

( d )  SolHo~ solution; - - - theoretkal profk?. 
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Figure 18. Evolution of positive steps. 
(8) v = 7.8*10-e m*ir; alp  = 56.7.10-e mais; ae = 0.67; RO- = 2.35. 
(b) Re = 2.35; Re' = 3.66. 
(C) Re = 1.02: Re* = 3.85. 

stationary step can be calculated according to Eq. 29, provided that 
we have passed to the wave-associated coordinate system and in- 
tegrated the equation over r, from +- to --: 

(45) 
C U* -- - 3 + 3 -  
uo ho 

where a* = h* - ho is the amplitude of the wave. 
A similar expression can also be obtained from Eq. 27. However, 

this calculation yields an underrated value of the velocity, as is seen 
from the comparison of the theory and the experiment (Figure 19). 
One can achieve better agreement, considering the flow rate bal- 
ance of the wave 

E 
h - A ,  = 0, Zmm 1 

35 

I 60 

730 

c =HO 

Figure 19. Velocity of solitary disturbances. 
1. 0 Posltlva slops; Y = 6.05*10-' m*& alp  = 56.5.10-' mSls*; Re = 1.1; x = 25 

2.0 Posnlve Y = 7.8.10-e m2is; uip = 56.7-10-e maid; ~e = 0.74 + 4.3; x 

3. A Trlangular wav- (Flg. ma); X > 80 mm, other data as In (2) above. 
4. 0 lrlangular waver; dala aa In (3) above. 
5. * Posltlve locallzed dldurb8nC~ (Fb. 20b): x > 150 mm: oth.r data as In (2) 

6. V N.gatlvO dblurbancO8 (vOloclty ol lh. tralllng fron(; Fb. 21). 

II Eq. 46. 

t 185 nun. 

= 150 nun. 

above. 

I Eq. 45. 

(c - u*)h* = (c - uo )ho 
whence 

a* u* 2 C - = 3 + 3 - +  (3 
210 ho 

Figure 20. Evolution of an inHlai solitary disturbance. 

(46) 
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Figure 21. Evolution of negative disturbances. 
Y = 7.8*10-e m21s; a /p  = 56.7-10-6 m3ls2. 

Here U* = gh*2/3v. In the case of the wave step, the mean film 
thickness beyond the wave front was taken ash*. Thus, as follows 
from the analysis of the given results, the square nonlinearity alone 
is not sufficient to adequately describe the steps in the wave 
propagation differential equations. 

The evolution of the localized positive disturbances is shown in 
Figure 20. Here the characteristic value of the disturbance Reyn- 
olds number Re* = gh*3/3v2 has been plotted according to the 
maximum thickness of the initial disturbance. At low Re and Re*, 
gradual steepening of the leading wave front occurs and the 
waveform assumes the triangular nonsymmetric shape (the Burger 
triangle type). Later on, the width of the disturbance grows and 
the amplitude decreases. The triangular wave velocity determined 
according to the leading front roughly corresponds to the velocity 
of the steps whose amplitude is the same. This can be accounted 
for by the fact that the trailing front is very gently sloping and long, 
therefore the-flow therein is locally in equilibrium, as with the 
region beyond the front of the step. The tail of the wave must 
propagate at the velocity of an infinitely long linear disturbance 
which is equaI to 3-U0. 

At Re* > Re,  (in this case, Re,  = 3), the break of the initial 
solitary disturbance occurs, whereby a train of periodic or solitary 
waves is formed (Figure 20b). Since Re* > Re,  and the initial 
disturbance is rather long (50-loo), the break is due to the same 
mechanism as with the wave formation on a smooth film, i.e., it 
is due to the hydrodynamic instability. In the case of the long initial 
disturbance, the number of waves formed as a result of the break 
can be estimated according to the fastest-growing-waves linear 
theory. 

As can be seen from the oscillograms in Figure ZOb, first of all 
the waves in the leading part of the initial disturbance are formed, 
evolving, similarly, into the waves that naturally develop on a 
smooth film (Figure 7). As fast as the wave packet is formed, the 
waves become nonlinear and their velocity begins to depend on 
their amplitude. As with the sequence of the stationary solitary 

waves (Figures 13a and 15a), the velocity of the solitary waves in 
the train turns out to also be proportional to their amplitude, which 
is shown in Figure 19. However, as a whole the wave formation 
picture is quasistationary. It is connected both with the difference 
in the velocities of separate waves, as well as with the fact that a 
stationary wave of certain amplitude can exist with an appropriate, 
rigorously determined thickness only. If a solitary wave of smaller 
amplitude goes ahead of a wave of greater amplitude, then due to 
the difference in the propagation velocities, nonlinear interaction 
with a newly formed solitary wave, propagating at an even greater 
velocity, ultimately occurs. Such a process considerably differs from 
the interaction between solitons, i.e., solitary waves which can be 
described by the Korteveg-de Vries equation. 

Negative localized disturbances are always essentially nonsta- 
tionary (Figure 21), i.e., their wave characteristics undergo no- 
ticeable alterations at distances whose order is that of the length 
of the disturbance. They evolve similarly into triangular positive 
disturbances. 

NOTATION 

A = particle track spacing 
a - hmax - hmin 
C = phase velocity 
C ,  = 3u0 
c1 = 1.69 Uo 

= 0.71 Uo r"" = frequency 
f(q) = function in the velocity profile expression 
Fi = film number, a3/~3gv4 
g = gravitational acceleration 
H = h'/ho 
h = film thickness 
ho 
k = wave number, 2fho/h  
L = characteristic longitudinal scale 
N = magnification 
n = refraction 
P = pressure 
9 

width of a film 
90 = mean flow rate 
Re = Reynolds number, qo/v  
t = time 
U 
u,o 
W e  = Weber number, cr/pght 
X > Y  

- 

= smooth laminar film thickness 

= instantaneous volume liquid flow rate per unit 

= longitudinal component of surface velocity 
= longitudinal and transverse velocity components 

= longitudinal and transverse coordinates 

Greek Letters 

-a = spatial growth rate factor of amplitude 
P = temporal growth rate 
y,G,ze,x = coefficients in Eq. 17 
€ = long-wave process parameter, ho/ h 
€ 1  = amplitude disturbance parameter 

= Y / h  
= angular coordinate 

l q  e 
h = wavelength 
v = kinematic viscosity 
4 
P 
I7 = liquid surface tension + 
Q 

= x-Ct 
= liquid density 

= function in Eq. 37 
= dimensionless complex frequency, D = w + i p  
= real part of D W 

AlChE Journal (Vol. 31, No. 9) September, 1985 Page 1459 



Subscripts 

R 
rnax = maximum value 
min = minimum value 
* = critical value 

= values relating to residual layer 

Superscrlpts 

/ = disturbed part of a value 

= value of thickness (velocity, R e  number) beyond 

- 
N 

= value made dimensionless by  using L and U, 

= value made dimensionless by using h, and U, 
* 

the front of initial solitary disturbance 
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