FREQUENCY DOMAIN ANALYSIS OF DYNAMIC SYSTEMS

JOSÉ C. GEROMEL

DSCE / School of Electrical and Computer Engineering UNICAMP, CP 6101, 13083 - 970, Campinas, SP, Brazil, geromel@dsce.fee.unicamp.br

Campinas, Brazil, August 2006

イロン イロン イヨン イヨン 三日

1/52

Contents

1 CHAPTER II - Laplace and ${\mathcal Z}$ transforms

- Laplace transform
- Definition and domain determination
- Time invariant systems
- Time varying systems
- Nonrational transforms
- $\mathcal Z$ transform
- Definition and domain determination
- Time invariant systems
- Time varying systems
- Problems

CHAPTER II - Laplace and *Z* transforms ●oo

Laplace transform

Laplace transform

The Laplace transform of the function f(t) : ℝ → ℂ denoted as f̂(s) or L(f) is a function of complex variable

$$\hat{f}(s):\mathcal{D}(\hat{f})
ightarrow\mathbb{C}$$

where $\mathcal{D}(\hat{f})$ is its domain and

$$\hat{f}(s) = \int_{-\infty}^{\infty} f(t) e^{-st} dt$$
 (1)

$$\mathcal{D}(\hat{f}) := \{ s \in \mathbb{C} : \hat{f}(s) \text{ exists } \}$$
(2)

Laplace transform

Laplace transform

- Generally $\mathcal{D}(\hat{f})$ is a strict subset of \mathbb{C} . In this case, there exists $s \in \mathbb{C}$ such that $s \notin \mathcal{D}(\hat{f})$ and hence, the determination of the domain $\mathcal{D}(\hat{f})$ is an essential issue when dealing with Laplace transform.
 - Important : The domain of the Laplace transform $\mathcal{D}(\hat{f})$ strongly depends on the domain of the function f(t). As it will be clear in the sequel :

$$\begin{array}{ll} t \in [0, +\infty) & \Longrightarrow & \operatorname{Re}(s) \in (\alpha, \infty) \\ t \in (-\infty, 0] & \Longrightarrow & \operatorname{Re}(s) \in (-\infty, \beta) \\ t \in (-\infty, \infty) & \Longrightarrow & \operatorname{Re}(s) \in (\alpha, \beta) \end{array}$$

for some $\alpha, \beta \in \mathbb{R}$.

 $\begin{array}{l} \mathsf{CHAPTER II - Laplace and } \mathcal{Z} \text{ transforms} \\ \mathbf{000} \bullet \mathbf{000} \bullet$

Laplace transform

Laplace transform

• For each function the Laplace transform (if any) is given :

•
$$f(t) = e^{-at} : \mathbb{R} \to \mathbb{C}$$
 and $\mathcal{D}(\hat{f}) = \emptyset$.
• $f(t) = e^{-at} : [0, +\infty) \to \mathbb{C}$ and
 $\hat{f}(s) = \frac{1}{s+a}, \quad \mathcal{D}(\hat{f}) = \{s \in \mathbb{C} : \operatorname{Re}(s) > -\operatorname{Re}(a)\}$
• $f(t) = e^{-at} : (-\infty, 0] \to \mathbb{C}$ and
 $\hat{f}(s) = -\frac{1}{s+a}, \quad \mathcal{D}(\hat{f}) = \{s \in \mathbb{C} : \operatorname{Re}(s) < -\operatorname{Re}(a)\}$
• $f(t) = e^{-a|t|} : (-\infty, +\infty) \to \mathbb{C}$ and
 $\hat{f}(s) = -\frac{2a}{s^2 - a^2}, \quad \mathcal{D}(\hat{f}) = \{s \in \mathbb{C} : |\operatorname{Re}(s)| < \operatorname{Re}(a)\}$

Definition and domain determination

The exponential function e^{-λt}: ℝ → C for any λ ∈ C does not admit a Laplace transform. Hence, for functions with domain t ∈ ℝ the Laplace transform is too restrictive, being useless for solving linear differential equations. To circumvent this difficulty, let us restrict our interest to functions defined for t ∈ [0, +∞), in which case we have

$$\hat{f}(s) := \int_0^\infty f(t) e^{-st} dt$$

with domain of the general form

$$\mathcal{D}(\hat{f}) := \{ s \in \mathbb{C} : \operatorname{Re}(s) > \alpha \}$$

for some $\alpha \in \mathbb{R}$ to be adequately determined.

Definition and domain determination

• Important class : There exists $s_f \in \mathbb{C}$ such that the limit

$$\lim_{\tau\to\infty}\int_0^\tau |f(t)e^{-s_f t}|dt$$

exists and is finite.

Lemma (Domain characterization)

For the functions of this class the following hold :

• Any $s \in \mathbb{C}$ satisfying $\operatorname{Re}(s) \geq \operatorname{Re}(s_f)$ belongs to $\mathcal{D}(\hat{f})$.

• There exists M finite such that $|\hat{f}(s)| \leq M$ for all $s \in \mathcal{D}(\hat{f})$.

Definition and domain determination

• General form : Functions defined for all $t \ge 0$:

$$\mathcal{D}(\hat{f}) := \{ s \in \mathbb{C} : \operatorname{Re}(s) > lpha \}$$

• Domain determination : Given a function f(t), determine the minimum value of $\alpha \in \mathbb{R}$ such that

$$\lim_{\tau\to\infty}\int_0^\tau |f(t)e^{-\alpha t}|dt<\infty$$

Domain determination : Given a function *f*(s), determine the minimum value of α ∈ ℝ such that *f*(s) remains analytic in all points of the complex plane belonging to D(*f*).

CHAPTER II - Laplace and *Z* transforms

Definition and domain determination

Definition and domain determination

• The function $\hat{f}(s) = \frac{e^{-s}}{s}$ is not analytic at s = 0. Its Laurent series is

$$\hat{f}(s) = \frac{1}{s} - 1 + \frac{s}{2} - \frac{s^2}{6} + \cdots$$

consequently

$$\mathcal{D}(\hat{f}) := \{s \in \mathbb{C} : \operatorname{Re}(s) > 0\}$$

• The function $\hat{f}(s) = \frac{1-e^{-s}}{s}$ is analytic at s = 0. Its Taylor series is

$$\hat{f}(s) = 1 - \frac{s}{2} + \frac{s^2}{6} - \cdots$$

consequently

$$\mathcal{D}(\hat{f}) := \{ s \in \mathbb{C} : \operatorname{Re}(s) > -\infty \} = \mathbb{C}$$

9 / 52

CHAPTER II - Laplace and Z transforms

Definition and domain determination

• Rational function :

$$\hat{f}(s) := \frac{N(s)}{D(s)} = \frac{\sum_{i=0}^{m} b_i s^i}{\sum_{i=0}^{n} a_i s^i}$$

where $m \leq n$, $b_i \in \mathbb{R}$ for all $i = 1, \dots, m$ and $a_i \in \mathbb{R}$ for all $i = 1, \dots, n$. If m = n it is called proper otherwise strictly proper. It is not analytic at the poles $p_i, i = 1, \dots, n$ roots of D(s) = 0. Hence

$$\alpha = \max_{i=1,\cdots,n} \operatorname{Re}(p_i)$$

• Unitary (Dirac) impulse :

$$\hat{\delta}(s) = 1 \;, \;\; \mathcal{D}(\hat{\delta}) = \mathbb{C}$$

10 / 52

Definition and domain determination

- Several calculations involving Laplace transform depend on the precise determination of its domain :
 - Integral : The integral of a function f(t) defined for all $t \ge 0$ can be determined from

$$\int_0^\infty f(t)dt = \hat{f}(0)$$

whenever $0 \in \mathcal{D}(\hat{f})$.

 Limit : The limit of a function f(t) defined for all t ≥ 0 can be determined from

$$\lim_{t\to\infty}f(t)=\lim_{s\to0}\hat{sf}(s)$$

whenever $0 \in \mathcal{D}(s\hat{f})$.

Definition and domain determination

Properties

- Basic properties for dynamic systems analysis, valid for functions defined in the time domain $t \ge 0$ and scalars $\theta_1, \theta_2, \cdots$.
 - Linearity :

$$\mathcal{L}\left(\sum_{i} heta_{i}f_{i}(t)\right)=\sum_{i} heta_{i}\hat{f}_{i}(s)$$

• Continuous time convolution :

$$\mathcal{L}(f(t) * g(t)) = \hat{f}(s)\hat{g}(s)$$

• Time derivative :

$$\mathcal{L}(\dot{f}(t)) = s\hat{f}(s) - f(0)$$

Definition and domain determination

Properties

- Since the functions we are dealing with are only defined for all $t \ge 0$, the time derivative property must be better qualified at t = 0.
 - Time derivative : Defining the function

$$h(t) := \left\{ egin{array}{cc} \dot{f}(t) &, t > 0 \ ext{finite value} &, t = 0 \end{array}
ight.$$

generally $h(0) = \lim_{t \to 0^+} \dot{f}(t) = \dot{f}(0^+) < \infty$.

Lemma (Time derivative)

The Laplace transform of h(t) defined above is such that :

$$\hat{h}(s) = s\hat{f}(s) - f(0)$$
, $\mathcal{D}(\hat{h}) = \mathcal{D}(s\hat{f})$

Properties

Unfortunately, the previous result does not take into account the possibility that f(t) varies arbitrarily fast at t = 0. That is, f(t) is not continuous at t = 0, which implies that f(0) ≠ 0. Let us consider this situation using the sequence of functions :

$$f_n(t) := f(t) - f(0) \left(1 + rac{t}{ au_n}\right) e^{-t/ au_n} , \hspace{0.2cm} orall \hspace{0.1cm} t \geq 0$$

where $\tau_n > 0$ and goes to zero as *n* goes to infinity.

- $f_n(0) = 0$ for all $n \in \mathbb{N}$.
- $\lim_{n\to\infty} f_n(t) = f(t)$ for all t > 0, consequently

$$\lim_{n\to\infty}\hat{f}_n(s)=\hat{f}(s), \,\,\forall s\in\mathcal{D}(\hat{f})$$

(日) (四) (三) (三) (三)

CHAPTER II - Laplace and *Z* transforms

Definition and domain determination

Properties

• Denoting the time derivative of f(t) and of $f_n(t)$ with respect to t > 0 as h(t) and $h_n(t)$ respectively, from the previous Lemma we obtain $\hat{h}_n(s) = s\hat{f}_n(s) - f_n(0)$ for all $n \in \mathbb{N}$ and

$$\lim_{n\to\infty} \hat{h}_n(s) = s\hat{f}(s)$$

= $(s\hat{f}(s) - f(0)) + f(0)$
= $\hat{h}(s) + f(0)$

yielding

$$\lim_{n\to\infty}h_n(t)=h(t)+f(0)\delta(t)$$

The quantity lim_{n→∞} h_n(t) is called generalized derivative of f(t). It coincides with the time derivative for ∀ t > 0 and is different at t = 0 whenever f(0) ≠ 0.

Definition and domain determination

Properties

 The Laplace transform of the generalized derivative is obtained by multiplying its Laplace transform by s. Let us make clear this concept using the step function defined as v(t) = 1 for all t ≥ 0

$$\hat{v}(s) = \frac{1}{s}$$
, $\mathcal{D}(\hat{v}) = \{s \in \mathbb{C} ; \operatorname{Re}(s) > 0\}$

- Time derivative : $\hat{h}(s) = s\hat{v}(s) 1 = 0$ in accordance to the fact that h(0) = 0 and $h(t) = \dot{v}(t) = 0$ for all t > 0.
- Generalized derivative : $\lim_{n\to\infty} \hat{h}_n(s) = s\hat{v}(s) = 1$ in accordance to the fact that $\lim_{n\to\infty} h_n(t) = \delta(t)$ for all $t \ge 0$.

Time invariant systems

Time invariant systems

 Consider a time invariant system defined by the following input-output model

$$\sum_{i=0}^{n} a_i \frac{d^i y}{dt^i}(t) = \sum_{i=0}^{m} b_i \frac{d^i g}{dt^i}(t)$$

with given initial conditions $\frac{d'y}{dt'}(0)$, for all $i = 0, \dots, n-1$. It is assumed that all coefficients are real, $n \leq m$ and that $a_n \neq 0$. The Laplace transform, taking into account the impulse effect on the right hand side, yields

$$\hat{y}(s) = \underbrace{H_0(s)}_{s} + H(s)\hat{g}(s)$$

initial conditions

Time invariant systems

Time invariant systems

- The main facts are as follows :
 - h₀(t) := L⁻¹(H₀(s)) is the part of the solution depending exclusively on the initial conditions.
 - h(t) := L⁻¹(H(s)) is the impulse response (under zero initial conditions). The function h(t) * g(t) is the part of the solution depending exclusively on the input.

∜

$$y(t)=h_0(t)+\int_0^t h(t- au)g(au)d au\;,\;\;\forall\;t\geq 0$$

• From the state space realization (A, B, C, D) we get

$$H_0(s) := C(sI - A)^{-1}x_0 , \ \ H(s) := C(sI - A)^{-1}B + D$$

Time varying systems

Time varying systems

• We consider the class of time varying systems characterized by

$$\sum_{i=0}^n a_i(t) \frac{d^i y}{dt^i}(t) = 0 \ , \ \forall \ t \ge 0$$

where :

- The time varying coefficients are such that $a_i(t) = \alpha_i t + \beta_i$ with $\alpha_i, \beta_i \in \mathbb{R}$ for all $i = 1, \dots, n$ and $\alpha_n \neq 0$.
- The initial conditions $\frac{d^i y}{dt^i}(0)$, $i = 0, \dots, n-1$ are not all zero.
- The Laplace transform reveals that whenever $s \in \mathcal{D}(\hat{f})$ it is true that

$$\mathcal{L}(tf(t)) = -\frac{d}{ds}\hat{f}(s)$$

Time varying systems

Time varying systems

• Hence, taking into account that

$$\mathcal{L}\left\{\sum_{i=0}^{n}\alpha_{i}t\frac{d^{i}y}{dt^{i}}(t)\right\} = -\frac{d}{ds}\mathcal{L}\left\{\sum_{i=0}^{n}\alpha_{i}\frac{d^{i}y}{dt^{i}}(t)\right\}$$

and not considering for the moment the initial conditions, the Laplace transform provides

$$Q(s)\hat{y}(s) - P(s)\frac{d}{ds}\hat{y}(s) = 0$$

where

$$P(s) := \sum_{i=0}^{n} \alpha_i s^i \ , \ Q(s) := \sum_{i=0}^{n} \beta_i s^i - \sum_{i=1}^{n} i \alpha_i s^{i-1}$$

20 / 52

Time varying systems

Time varying systems

• Assuming that the roots p_1, \dots, p_n of P(s) = 0 are distinct, partial decomposition yields

$$rac{Q(s)}{P(s)}=d_0+\sum_{j=1}^nrac{d_j}{(s-p_j)}$$

where $d_0, \dots d_n \in \mathbb{C}$. Consequently

$$\frac{1}{\hat{y}(s)}\frac{d}{ds}\hat{y}(s) = d_0 + \sum_{j=1}^n \frac{d_j}{(s-p_j)}$$

gives

$$\ln(\hat{y}(s)) = d_0 s + \sum_{j=1}^n d_j \ln(s - p_j)$$

21 / 52

Time varying systems

Time varying systems

• The Laplace transform of the solution is

$$\hat{y}(s)=e^{d_0s}\prod_{j=1}^n(s-p_j)^{d_j}$$

Important facts :

• If $d_1, \dots, d_n \in \mathbb{Z}$ with $\sum_{j=1}^n d_j \leq 0$ and $d_0 \leq 0$, the above product denoted H(s) is a rational function which provides

$$y(t) = \left\{ egin{array}{cc} 0 & 0 \leq t \leq -d_0 \ h(t+d_0) & t > -d_0 \end{array}
ight.$$

• The above solution $\hat{y}(s)$ may hold even though the initial conditions are not null.

Time varying systems

Time varying systems

• Consider the Bessel differential equation

$$t\ddot{y}(t) + \dot{y}(t) + ty(t) = 0$$
, $y(0) = 1$, $\dot{y}(0) = 0$

From the same algebraic manipulations we get

$$\frac{1}{\hat{y}(s)}\frac{d}{ds}\hat{y}(s) = \frac{-1/2}{(s+j)} + \frac{-1/2}{(s-j)}$$

$$\downarrow$$

$$\hat{y}(s) = \frac{1}{\sqrt{s^2+1}} , \ \mathcal{D}(\hat{y}) = \{s \in \mathbb{C} : \operatorname{Re}(s) > 0\}$$

and finally $y(t) = J_0(t)$ for all $t \ge 0$ - the Bessel function.

Time varying systems

Time varying systems

- Important facts :
 - J₀(t) is determined numerically by series expansion or by solving the Bessel differential equation.
 - The Bessel function has the following convolutional property

$$J_0(t) * J_0(t) = \sin(t) , \quad \forall t \ge 0$$

Nonrational transforms

Nonrational transforms

 An important function on this matter is the F-function, defined for all r > 0 by

$$\Gamma(r) := \int_0^\infty \xi^{r-1} e^{-\xi} d\xi$$

Hence $\Gamma(1) = 1$ and

$$\Gamma(r+1) = \xi^r e^{-\xi} \Big|_{\infty}^0 + r \int_0^\infty \xi^{r-1} e^{-\xi} d\xi$$

= $r \Gamma(r)$

shows that for $r \in \mathbb{N}$, $\Gamma(r+1) = r!$. It generalizes the factorial to positive real numbers. A particularly important value is

 $\Gamma(1/2) = \sqrt{\pi}$

(ロ)、(型)、(E)、(E)、(E)、(O)(O)

Nonrational transforms

Nonrational transforms

• Considering the function $g(t) := t^r$ defined for all t > 0, and $\xi := st$ we have

$$\hat{g}(s) = \int_0^\infty t^r e^{-st} dt$$

$$= \frac{\Gamma(r+1)}{s^{r+1}}$$

For all $r > -1 \in \mathbb{R}$ the Laplace transform of g(t) is given by

$$\hat{g}(s) = rac{\Gamma(r+1)}{s^{r+1}}$$
, $\mathcal{D}(\hat{g}) = \{s \in \mathbb{C} : \operatorname{Re}(s) > 0\}$

This property holds even though r + 1 is not an integer number. In this case $\hat{g}(s)$ is not rational.

Nonrational transforms

Nonrational transforms

- Particular cases :
 - For r = 0, g(t) = v(t) is the unit step function and the formula provides

 $\hat{g}(s) = \frac{1}{s}$

• For r = -1/2, $g(t) = 1/\sqrt{t}$ and the formula provides

$$\hat{g}(s) = rac{\sqrt{\pi}}{\sqrt{s}}$$

It can also be concluded that $g(t) = 1/\sqrt{\pi t}$ exhibits the following convolutional property

$$g(t) * g(t) = v(t) , \forall t > 0$$

${\mathcal Z}$ transform

${\mathcal Z}$ transform

• The \mathbb{Z} transform of the function $f(k) : \mathbb{Z} \to \mathbb{C}$ denoted as $\hat{f}(z)$ or $\mathcal{Z}(f)$ is a function of complex variable

$$\hat{f}(z): \mathcal{D}(\hat{f}) \to \mathbb{C}$$

where $\mathcal{D}(\hat{f})$ is its domain and

$$\hat{f}(z) = \sum_{k=-\infty}^{\infty} f(k) z^{-k}$$
(3)

$$\mathcal{D}(\hat{f}) := \{ z \in \mathbb{C} : \hat{f}(z) \text{ exists } \}$$
(4)

${\mathcal Z}$ transform

$\mathcal Z$ transform

- Generally $\mathcal{D}(\hat{f})$ is a strict subset of \mathbb{C} . In this case, there exists $z \in \mathbb{C}$ such that $z \notin \mathcal{D}(\hat{f})$ and hence, the determination of the domain $\mathcal{D}(\hat{f})$ is an essential issue when dealing with \mathcal{Z} transform.
 - Important : The domain of the Z transform D(f) strongly depends on the domain of the function f(k). As it will be clear in the sequel :

$$k \in [0, +\infty) \implies |z| \in (\beta, \infty)$$

$$k \in (-\infty, 0] \implies |z| \in (0, \alpha)$$

$$k \in (-\infty, \infty) \implies |z| \in (\beta, \alpha)$$

for some positive $\alpha, \beta \in \mathbb{R}$.

${\mathcal Z}$ transform

${\mathcal Z}$ transform

• Define the complex sequence $\{z^0, z^1, z^2, \cdots\}$ where $z \in \mathbb{C}$ and notice that

$$\sum_{k=0}^{i-1} z^k = \frac{1-z^i}{1-z} , \ \forall \ i \ge 1$$

Using this we get the following result which is of particular importance on ${\cal Z}$ transform calculations :

Lemma (Fundamental lemma)

Consider $z \in \mathbb{C}$. The equality

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$$

holds and is finite if and only if |z| < 1.

30 / 52

CHAPTER II - Laplace and *Z* transforms

${\mathcal Z}$ transform

${\mathcal Z}$ transform

• For each function the $\mathcal Z$ transform (if any) is given :

•
$$f(k) = a^k : \mathbb{Z} \to \mathbb{C} \text{ and } \mathcal{D}(\hat{f}) = \emptyset.$$

• $f(k) = a^k : [0, +\infty) \to \mathbb{C} \text{ and}$
 $\hat{f}(z) = \frac{z}{z-a}, \quad \mathcal{D}(\hat{f}) = \{z \in \mathbb{C} : |z| > |a|\}$
• $f(k) = a^k : (-\infty, 0] \to \mathbb{C} \text{ and}$
 $\hat{f}(z) = -\frac{a}{z-a}, \quad \mathcal{D}(\hat{f}) = \{z \in \mathbb{C} : |z| < |a|\}$
• $f(k) = a^{|k|} : (-\infty, +\infty) \to \mathbb{C} \text{ and}$
 $\hat{f}(z) = \frac{(a-1/a)z}{(z-a)(z-1/a)}, \quad \mathcal{D}(\hat{f}) = \{z \in \mathbb{C} : |a| < |z| < 1/|a|\}$

Definition and domain determination

The geometric function µ^k: Z → C for any µ ∈ C does not admit a Z transform. Hence, for functions with domain k ∈ Z the Z transform is too restrictive, being useless for solving linear difference equations. To circumvent this difficulty, let us restrict our interest to functions defined for k ∈ [0, +∞), in which case we have

$$\hat{f}(z) := \sum_{k=0}^{\infty} f(k) z^{-k}$$

with domain of the general form

$$\mathcal{D}(\hat{f}) := \{ z \in \mathbb{C} : |z| > \beta \}$$

for some positive $\beta \in \mathbb{R}$ to be adequately determined.

Definition and domain determination

Definition and domain determination

• Important class : There exists $z_f \in \mathbb{C}$ such that the limit

$$\lim_{\ell\to\infty}\sum_{k=0}^\ell |f(k)z_f^{-k}|$$

exists and is finite.

Lemma (Domain characterization)

For the functions of this class the following hold :

- Any $z \in \mathbb{C}$ satisfying $|z| \ge |z_f|$ belongs to $\mathcal{D}(\hat{f})$.
- There exists M finite such that $|\hat{f}(z)| \leq M$ for all $z \in D(\hat{f})$.

Definition and domain determination

Definition and domain determination

• General form : Functions defined for all $k \ge 0 \in \mathbb{Z}$:

$$\mathcal{D}(\hat{f}) := \{z \in \mathbb{C} \; : \; |z| > \beta\}$$

 Domain determination : Given a function f(k), determine the minimum value of β ∈ ℝ such that

$$\lim_{\ell\to\infty}\sum_{k=0}^{\ell}|f(k)z_f^{-k}|<\infty$$

• Domain determination : Given a function $\hat{f}(z)$, determine the minimum value of $\beta \in \mathbb{R}$ such that $\hat{f}(z)$ remains analytic in all points of the complex plane belonging to $\mathcal{D}(\hat{f})$.

CHAPTER II - Laplace and \mathcal{Z} transforms

Definition and domain determination

Definition and domain determination

• Rational function :

$$\hat{f}(z) := \frac{N(z)}{D(z)} = \frac{\sum_{i=0}^{m} b_i z^i}{\sum_{i=0}^{n} a_i z^i}$$

where $m \le n$, $b_i \in \mathbb{R}$ for all $i = 1, \dots, m$ and $a_i \in \mathbb{R}$ for all $i = 1, \dots, n$. If m = n it is called proper otherwise strictly proper. It is not analytic at the poles $p_i, i = 1, \dots, n$ roots of D(z) = 0. Hence

$$\beta = \max_{i=1,\cdots,n} |p_i|$$

• Unitary (Schur) impulse : $\delta(k) := 0^k$, $k \in \mathbb{Z}$

$$\hat{\delta}(z) = 1 \;,\;\; \mathcal{D}(\hat{\delta}) = \mathbb{C}$$

35 / 52

CHAPTER II - Laplace and Z transforms

Definition and domain determination

- Several calculations involving *Z* transform depend on the precise determination of its domain :
 - Sum : The sum of a function f(k) defined for all k ≥ 0 can be determined from

$$\sum_{k=0}^{\infty} f(k) = \hat{f}(1)$$

whenever $1 \in \mathcal{D}(\hat{f})$.

 Limit : The limit of a function f(k) defined for all k ≥ 0 can be determined from

$$\lim_{k\to\infty}f(k)=\lim_{z\to 1}(z-1)\hat{f}(z)$$

whenever $1 \in \mathcal{D}((z-1)\hat{f})$.

Definition and domain determination

Properties

- Basic properties for dynamic systems analysis, valid for functions defined in the time domain $k \ge 0$ and scalars $\theta_1, \theta_2, \cdots$.
 - Linearity :

$$\mathcal{Z}\left(\sum_{i}\theta_{i}f_{i}(k)\right)=\sum_{i}\theta_{i}\hat{f}_{i}(z)$$

• Discrete time convolution :

$$\mathcal{Z}(f(k) \bullet g(k)) = \hat{f}(z)\hat{g}(z)$$

• Step ahead :

$$\mathcal{Z}(f(k+1)) = z\hat{f}(z) - zf(0)$$

Definition and domain determination

Properties

Discrete time convolution is essential for dynamic systems analysis, For functions f(k) and g(k) defined for all k ∈ [0, +∞) we have

$$f(k) \bullet g(k) = \sum_{i=0}^{k} f(k-i)g(i)$$
$$= \sum_{i=0}^{k} f(i)g(k-i) , \quad \forall \ k \ge 0$$

applying to the discrete impulse function $\delta(k)$ we obtain :

- $f(k) \bullet \delta(k) = f(k)$ for all $k \ge 0$.
- Step function : $v(k) = \sum_{i=0}^{k} \delta(i)$ for all $k \ge 0$.

Time invariant systems

Time invariant systems

 Consider a time invariant system defined by the following input-output model

$$\sum_{i=0}^{n} a_i y(k+i) = \sum_{i=0}^{m} b_i g(k+i)$$

with given initial conditions y(i), for all $i = 0, \dots, n-1$. It is assumed that all coefficients are real, $n \leq m$ and that $a_n \neq 0$. The \mathcal{Z} transform yields

$$\hat{y}(z) = \underbrace{H_0(z)}_{initial \ conditions} + H(z)\hat{g}(z)$$

Time invariant systems

Time invariant systems

• The main facts are as follows :

- h₀(k) := Z⁻¹(H₀(z)) is the part of the solution depending exclusively on the initial conditions.
- h(k) := L⁻¹(H(z)) is the impulse response (under zero initial conditions). The function h(k) g(k) is the part of the solution depending exclusively on the input.

$$y(k) = h_0(k) + \sum_{i=0}^k h(k-i)g(i) , \quad \forall \ k \ge 0$$

• From the state space realization (A, B, C, D) we get

$$H_0(z) := zC(zI - A)^{-1}x_0$$
, $H(z) := C(zI - A)^{-1}B + D$

Time varying systems

Time varying systems

• We consider the class of time varying systems characterized by

$$\sum_{i=0}^n a_i(k)y(k+i) = 0 , \quad \forall \ k \ge 0$$

where :

- The time varying coefficients are such that a_i(k) = α_ik + β_i with α_i, β_i ∈ ℝ for all i = 1, · · · , n and α_n ≠ 0.
- The initial conditions y(i), $i = 0, \dots, n-1$ are not all zero.
- The $\mathcal Z$ transform reveals that whenever $z\in \mathcal D(\widehat f)$ it is true that

$$\mathcal{Z}(kf(k)) = -z\frac{d}{dz}\hat{f}(z)$$

Time varying systems

Time varying systems

• Hence, taking into account that

$$\mathcal{Z}\left\{\sum_{i=0}^{n}\alpha_{i}ky(k+i)\right\} = -z\frac{d}{dz}\mathcal{Z}\left\{\sum_{i=0}^{n}\alpha_{i}y(k+i)\right\}$$

and not considering for the moment the initial conditions, the ${\mathcal Z}$ transform provides

$$Q(z)\hat{y}(z) - P(z)\frac{d}{dz}\hat{y}(z) = 0$$

where

$$P(z) := \sum_{i=0}^{n} \alpha_i z^{i+1}, \quad Q(z) := \sum_{i=0}^{n} \beta_i z^i - \sum_{i=1}^{n} i \alpha_i z^i$$

42 / 52

Time varying systems

Time varying systems

• Assuming that the roots p_1, \dots, p_n of P(z) = 0 are distinct and noticing that P(0) = 0, partial decomposition yields

$$\frac{Q(z)}{P(z)} = \frac{d_0}{z} + \sum_{j=1}^n \frac{d_j}{(z-p_j)}$$

where $d_0, \dots d_n \in \mathbb{C}$. Consequently

$$\frac{1}{\hat{y}(z)}\frac{d}{dz}\hat{y}(z) = \frac{d_0}{z} + \sum_{j=1}^n \frac{d_j}{(z-p_j)}$$

gives

$$\ln(\hat{y}(z)) = d_0 \ln(z) + \sum_{j=1}^n d_j \ln(z - p_j)$$

Time varying systems

Time varying systems

• The $\mathcal Z$ transform of the solution is

$$\hat{y}(z) = z^{d_0} \prod_{j=1}^{n} (z - p_j)^{d_j}$$

Important facts :

• If $d_0, d_1, \dots, d_n \in \mathbb{Z}$ with $\sum_{j=1}^n d_j \leq 0$ and $d_0 \leq 0$, the above product denoted H(z) is a rational function which provides

$$y(k) = \begin{cases} 0 & 0 \leq k < -d_0 \\ h(k+d_0) & k \geq -d_0 \end{cases}$$

• The above solution $\hat{y}(z)$ may hold even though the initial conditions are not null.

Time varying systems

Time varying systems

• Consider the time varying difference equation

$$(k+1)y(k+1) - (k+1/2)y(k) = 0$$
, $y(0) = 1$

From the same algebraic manipulations we get

$$\frac{1}{\hat{y}(z)}\frac{d}{dz}\hat{y}(z) = \frac{1/2}{z} + \frac{-1/2}{(z-1)}$$

$$\downarrow$$

$$\hat{y}(z) = \sqrt{\frac{z}{z-1}} , \ \mathcal{D}(\hat{y}) = \{z \in \mathbb{C} : |z| > 1\}$$

and finally $y(k) \bullet y(k) = v(k)$, $\forall k \ge 0$. The function y(k) for all $k \ge 0$, can be numerically calculated from the above difference equation.

Problems

Problems

1. Consider the Fibonacci difference equation

$$heta(k+2) - heta(k+1) - heta(k) = 0 \ , \ \ heta(0) = 0 \ , \ \ heta(1) = 1$$

- Determine its solution $\theta(k)$ and the output $\theta(k+1) + \theta(k)$.
- Determine its state space representation.
- Determine the state space matrices such that the same solution, delayed by one step, is obtained from zero initial condition.
- 2. For a discrete time linear system with transfer function

$$G(z) = \frac{(z+1)}{(z+1/2)(z-1/2)}$$

Determine its impulse response.

Problems

3. Consider the second order time varying differential equation

$$\sum_{i=0}^{2} (\alpha_i t + \beta_i) y^{(i)}(t) = 0$$

- Show that if $\beta_2 = 0$ and $\beta_1 \neq \alpha_2$ then the Laplace transform provides a solution satisfying y(0) = 0 and $\dot{y}(0)$ arbitrary.
- Show that if $\beta_2 = 0$ and $\beta_1 = \alpha_2$ then the Laplace transform provides a solution with y(0) and $\dot{y}(0)$ arbitrary.
- 4. From the previous problem, determine a second order time varying differential equation and the initial conditions such that the Laplace transform of its solution is

$$\hat{y}(s) = \frac{1}{\sqrt{(s+1)(s+2)}}$$

47 / 52

Problems

5. Consider $z \in \mathbb{C}$. Prove that the equality

$$\frac{1}{1-z} = \sum_{i=0}^{\infty} z^i$$

holds if and only if |z| < 1. Using this result determine the function f(t) defined for all $t \ge 0$ with Laplace transform given by:

•
$$\hat{f}(s) = \frac{1}{s(1-e^{-s})}$$
.
• $\hat{f}(s) = \frac{1}{(e^{s}-e^{-s})}$.
• $\hat{f}(s) = \frac{e^{-s}}{(s+1)(1-e^{-s})}$

Problems

6. Given $A \in \mathbb{R}^{n \times n}$, determine :

•
$$\mathcal{Z}^{-1}\{(zI - A)^{-1}\}.$$

• $\mathcal{Z}^{-1}\{z(zI - A)^{-1}\}$

- $\mathcal{Z} = \{2(2i A)\}$ • The \mathcal{Z} transform of $f(k) := \sum_{i=0}^{k} A^{i}, \forall k \ge 0$.
- 7. The bilinear transformation is defined by

$$z=\frac{1+s}{1-s}$$

- Show that the mapping of the region Re(s) ≤ 0 in the s-plane is the region |z| ≤ 1 in the z-plane.
- Use this property to generalize the Routh criterion to deal with discrete time invariant linear systems.

Problems

8. Consider the matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Using the Laplace transform, show that the square matrix

$$\Gamma := \left[\begin{array}{cc} A & B \\ 0 & 0 \end{array} \right]$$

is such that

$$e^{\Gamma t} = \left[\begin{array}{cc} e^{At} & \int_0^t e^{At} B dt \\ 0 & I \end{array} \right]$$

9. Define the contour *C* to be used with the Nyquist criterion for discrete time systems stability analysis.

Problems

10. Consider the time delay system

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) + \kappa y(t - T) = u(t)$$

where $\kappa \ge 0$ and T = 0, 1, 2. Using the Nyquist criterion, determine for each T the values of κ preserving asymptotic stability.

11. Consider a time delay system with transfer function

$$H(s) = \frac{1}{s^3 + 4s^2 + 4s + \kappa e^{-Ts}}$$

where $\kappa, T \ge 0$. Determine the stability region (κ, T) using:

- The Nyquist criterion.
- The Routh criterion adopting first and second order approximations to e^{-Ts} .

Problems

12. Consider a time delay system with characteristic equation

$$P(s) + \kappa e^{-Ts} = 0$$

where $\kappa, T \ge 0$. Assuming the roots of P(s) = 0 are in the region $\operatorname{Re}(s) < 0$, using the Nyquist criterion show that asymptotic stability is preserved for all $T \ge 0$, whenever

$$\max_{\omega \ge 0} \frac{\kappa}{|P(j\omega)|} < 1$$

Compare to the Nyquist criterion applied with the zero order approximation $e^{-Ts} = 1$.