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CHAPTER II - Laplace and Z transforms

Laplace transform

Laplace transform

The Laplace transform of the function f (t) : R → C denoted
as f̂ (s) or L(f ) is a function of complex variable

f̂ (s) : D(f̂ ) → C

where D(f̂ ) is its domain and

f̂ (s) =

∫ ∞

−∞

f (t)e−stdt (1)

D(f̂ ) := {s ∈ C : f̂ (s) exists } (2)

It is important to keep in mind that f̂ (s) exists means that the
integral in (1) converges and is finite.
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Laplace transform

Laplace transform

Generally D(f̂ ) is a strict subset of C. In this case, there

exists s ∈ C such that s /∈ D(f̂ ) and hence, the determination

of the domain D(f̂ ) is an essential issue when dealing with
Laplace transform.

Important : The domain of the Laplace transform D(f̂ )
strongly depends on the domain of the function f (t). As it will
be clear in the sequel :

t ∈ [0,+∞) =⇒ Re(s) ∈ (α,∞)

t ∈ (−∞, 0] =⇒ Re(s) ∈ (−∞, β)

t ∈ (−∞,∞) =⇒ Re(s) ∈ (α, β)

for some α, β ∈ R.
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Laplace transform

Laplace transform

For each function the Laplace transform (if any) is given :

f (t) = e−at : R → C and D(f̂ ) = ∅.
f (t) = e−at : [0,+∞) → C and

f̂ (s) =
1

s + a
, D(f̂ ) = {s ∈ C : Re(s) > −Re(a)}

f (t) = e−at : (−∞, 0] → C and

f̂ (s) = − 1

s + a
, D(f̂ ) = {s ∈ C : Re(s) < −Re(a)}

f (t) = e−a|t| : (−∞,+∞) → C and

f̂ (s) = − 2a

s2 − a2
, D(f̂ ) = {s ∈ C : |Re(s)| < Re(a)}
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Definition and domain determination

Definition and domain determination

The exponential function e−λt : R → C for any λ ∈ C does
not admit a Laplace transform. Hence, for functions with
domain t ∈ R the Laplace transform is too restrictive, being
useless for solving linear differential equations. To circumvent
this difficulty, let us restrict our interest to functions defined
for t ∈ [0,+∞), in which case we have

f̂ (s) :=

∫ ∞

0
f (t)e−stdt

with domain of the general form

D(f̂ ) := {s ∈ C : Re(s) > α}

for some α ∈ R to be adequately determined.
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Definition and domain determination

Definition and domain determination

Important class : There exists sf ∈ C such that the limit

lim
τ→∞

∫ τ

0
|f (t)e−sf t |dt

exists and is finite.

Lemma (Domain characterization)

For the functions of this class the following hold :

Any s ∈ C satisfying Re(s) ≥ Re(sf ) belongs to D(f̂ ).

There exists M finite such that |f̂ (s)| ≤ M for all s ∈ D(f̂ ).
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Definition and domain determination

Definition and domain determination

General form : Functions defined for all t ≥ 0 :

D(f̂ ) := {s ∈ C : Re(s) > α}

Domain determination : Given a function f (t), determine the
minimum value of α ∈ R such that

lim
τ→∞

∫
τ

0

|f (t)e−αt |dt < ∞

Domain determination : Given a function f̂ (s), determine the
minimum value of α ∈ R such that f̂ (s) remains analytic in all
points of the complex plane belonging to D(f̂ ).
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Definition and domain determination

Definition and domain determination

The function f̂ (s) = e−s

s
is not analytic at s = 0. Its Laurent

series is

f̂ (s) =
1

s
− 1 +

s

2
− s2

6
+ · · ·

consequently

D(f̂ ) := {s ∈ C : Re(s) > 0}

The function f̂ (s) = 1−e−s

s
is analytic at s = 0. Its Taylor

series is

f̂ (s) = 1− s

2
+

s2

6
− · · ·

consequently

D(f̂ ) := {s ∈ C : Re(s) > −∞} = C
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Definition and domain determination

Definition and domain determination

Rational function :

f̂ (s) :=
N(s)

D(s)
=

∑m
i=0 bis

i

∑n
i=0 ais

i

where m ≤ n, bi ∈ R for all i = 1, · · · ,m and ai ∈ R for all
i = 1, · · · , n. If m = n it is called proper otherwise strictly
proper. It is not analytic at the poles pi , i = 1, · · · , n roots of
D(s) = 0. Hence

α = max
i=1,··· ,n

Re(pi )

Unitary (Dirac) impulse :

δ̂(s) = 1 , D(δ̂) = C
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Definition and domain determination

Definition and domain determination

Several calculations involving Laplace transform depend on
the precise determination of its domain :

Integral : The integral of a function f (t) defined for all t ≥ 0
can be determined from

∫ ∞

0

f (t)dt = f̂ (0)

whenever 0 ∈ D(f̂ ).
Limit : The limit of a function f (t) defined for all t ≥ 0 can be
determined from

lim
t→∞

f (t) = lim
s→0

sf̂ (s)

whenever 0 ∈ D(sf̂ ).
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Definition and domain determination

Properties

Basic properties for dynamic systems analysis, valid for
functions defined in the time domain t ≥ 0 and scalars
θ1, θ2, · · · .

Linearity :

L
(
∑

i

θi fi (t)

)

=
∑

i

θi f̂i (s)

Continuous time convolution :

L(f (t) ∗ g(t)) = f̂ (s)ĝ (s)

Time derivative :

L(ḟ (t)) = sf̂ (s)− f (0)
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Definition and domain determination

Properties

Since the functions we are dealing with are only defined for all
t ≥ 0, the time derivative property must be better qualified at
t = 0.

Time derivative : Defining the function

h(t) :=

{

ḟ (t) , t > 0
finite value , t = 0

generally h(0) = limt→0+ ḟ (t) = ḟ (0+) < ∞.

Lemma (Time derivative)

The Laplace transform of h(t) defined above is such that :

ĥ(s) = sf̂ (s) − f (0) , D(ĥ) = D(sf̂ )
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Definition and domain determination

Properties

Unfortunately, the previous result does not take into account
the possibility that f (t) varies arbitrarily fast at t = 0. That
is, f (t) is not continuous at t = 0, which implies that
f (0) 6= 0. Let us consider this situation using the sequence of
functions :

fn(t) := f (t)− f (0)

(

1 +
t

τn

)

e−t/τn , ∀ t ≥ 0

where τn > 0 and goes to zero as n goes to infinity.

fn(0) = 0 for all n ∈ N.
limn→∞ fn(t) = f (t) for all t > 0, consequently

lim
n→∞

f̂n(s) = f̂ (s), ∀s ∈ D(f̂ )
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Definition and domain determination

Properties

Denoting the time derivative of f (t) and of fn(t) with respect
to t > 0 as h(t) and hn(t) respectively, from the previous
Lemma we obtain ĥn(s) = sf̂n(s)− fn(0) for all n ∈ N and

lim
n→∞

ĥn(s) = sf̂ (s)

= (sf̂ (s)− f (0)) + f (0)

= ĥ(s) + f (0)

yielding
lim
n→∞

hn(t) = h(t) + f (0)δ(t)

The quantity limn→∞ hn(t) is called generalized derivative of
f (t). It coincides with the time derivative for ∀ t > 0 and is
different at t = 0 whenever f (0) 6= 0.
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Definition and domain determination

Properties

The Laplace transform of the generalized derivative is
obtained by multiplying its Laplace transform by s. Let us
make clear this concept using the step function defined as
υ(t) = 1 for all t ≥ 0

υ̂(s) =
1

s
, D(υ̂) = {s ∈ C ; Re(s) > 0}

Time derivative : ĥ(s) = sυ̂(s)− 1 = 0 in accordance to the
fact that h(0) = 0 and h(t) = υ̇(t) = 0 for all t > 0.
Generalized derivative : limn→∞ ĥn(s) = sυ̂(s) = 1 in
accordance to the fact that limn→∞ hn(t) = δ(t) for all t ≥ 0.
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Time invariant systems

Consider a time invariant system defined by the following
input-output model

n∑

i=0

ai
d iy

dt i
(t) =

m∑

i=0

bi
d ig

dt i
(t)

with given initial conditions d iy

dt i
(0), for all i = 0, · · · , n − 1. It

is assumed that all coefficients are real, n ≤ m and that
an 6= 0. The Laplace transform, taking into account the
impulse effect on the right hand side, yields

ŷ(s) = H0(s)
︸ ︷︷ ︸

initial conditions

+H(s)ĝ(s)
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Time invariant systems

Time invariant systems

The main facts are as follows :

h0(t) := L−1(H0(s)) is the part of the solution depending
exclusively on the initial conditions.
h(t) := L−1(H(s)) is the impulse response (under zero initial
conditions). The function h(t) ∗ g(t) is the part of the solution
depending exclusively on the input.

⇓

y(t) = h0(t) +

∫ t

0

h(t − τ)g(τ)dτ , ∀ t ≥ 0

From the state space realization (A,B,C ,D) we get

H0(s) := C (sI − A)−1x0 , H(s) := C (sI − A)−1B + D
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Time varying systems

Time varying systems

We consider the class of time varying systems characterized by

n∑

i=0

ai (t)
d iy

dt i
(t) = 0 , ∀ t ≥ 0

where :

The time varying coefficients are such that ai(t) = αi t + βi

with αi , βi ∈ R for all i = 1, · · · , n and αn 6= 0.

The initial conditions d iy

dt i
(0), i = 0, · · · , n− 1 are not all zero.

The Laplace transform reveals that whenever s ∈ D(f̂ ) it is
true that

L(tf (t)) = − d

ds
f̂ (s)
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Time varying systems

Time varying systems

Hence, taking into account that

L
{

n∑

i=0

αi t
d iy

dt i
(t)

}

= − d

ds
L
{

n∑

i=0

αi
d iy

dt i
(t)

}

and not considering for the moment the initial conditions, the
Laplace transform provides

Q(s)ŷ(s)− P(s)
d

ds
ŷ(s) = 0

where

P(s) :=

n∑

i=0

αis
i , Q(s) :=

n∑

i=0

βi s
i −

n∑

i=1

iαis
i−1
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Time varying systems

Time varying systems

Assuming that the roots p1, · · · , pn of P(s) = 0 are distinct,
partial decomposition yields

Q(s)

P(s)
= d0 +

n∑

j=1

dj

(s − pj)

where d0, · · · dn ∈ C. Consequently

1

ŷ(s)

d

ds
ŷ(s) = d0 +

n∑

j=1

dj

(s − pj)

gives

ln(ŷ(s)) = d0s +

n∑

j=1

dj ln(s − pj)
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Time varying systems

Time varying systems

The Laplace transform of the solution is

ŷ(s) = ed0s
n∏

j=1

(s − pj)
dj

Important facts :

If d1, · · · , dn ∈ Z with
∑n

j=1 dj ≤ 0 and d0 ≤ 0, the above
product denoted H(s) is a rational function which provides

y(t) =

{
0 0 ≤ t ≤ −d0

h(t + d0) t > −d0

The above solution ŷ (s) may hold even though the initial
conditions are not null.
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Time varying systems

Time varying systems

Consider the Bessel differential equation

tÿ(t) + ẏ(t) + ty(t) = 0 , y(0) = 1, ẏ(0) = 0

From the same algebraic manipulations we get

1

ŷ(s)

d

ds
ŷ(s) =

−1/2

(s + j)
+

−1/2

(s − j)

⇓

ŷ(s) =
1√

s2 + 1
, D(ŷ) = {s ∈ C : Re(s) > 0}

and finally y(t) = J0(t) for all t ≥ 0 - the Bessel function.
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Time varying systems

Time varying systems

Important facts :
J0(t) is determined numerically by series expansion or by
solving the Bessel differential equation.
The Bessel function has the following convolutional property

J0(t) ∗ J0(t) = sin(t) , ∀ t ≥ 0

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

J
0

t
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Nonrational transforms

Nonrational transforms

An important function on this matter is the Γ-function,
defined for all r > 0 by

Γ(r) :=

∫ ∞

0
ξr−1e−ξdξ

Hence Γ(1) = 1 and

Γ(r + 1) = ξre−ξ
∣
∣0
∞ + r

∫ ∞

0
ξr−1e−ξdξ

= rΓ(r)

shows that for r ∈ N, Γ(r +1) = r !. It generalizes the factorial
to positive real numbers. A particularly important value is

Γ(1/2) =
√
π
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Nonrational transforms

Nonrational transforms

Considering the function g(t) := tr defined for all t > 0, and
ξ := st we have

ĝ(s) =

∫ ∞

0
tre−stdt

=
Γ(r + 1)

sr+1

For all r > −1 ∈ R the Laplace transform of g(t) is given by

ĝ(s) =
Γ(r + 1)

sr+1
, D(ĝ) = {s ∈ C : Re(s) > 0}

This property holds even though r + 1 is not an integer
number. In this case ĝ(s) is not rational.
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Nonrational transforms

Nonrational transforms

Particular cases :

For r = 0, g(t) = υ(t) is the unit step function and the
formula provides

ĝ(s) =
1

s

For r = −1/2, g(t) = 1/
√
t and the formula provides

ĝ(s) =

√
π√
s

It can also be concluded that g(t) = 1/
√
πt exhibits the

following convolutional property

g(t) ∗ g(t) = υ(t) , ∀ t > 0
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Z transform

Z transform

The Z transform of the function f (k) : Z → C denoted as
f̂ (z) or Z(f ) is a function of complex variable

f̂ (z) : D(f̂ ) → C

where D(f̂ ) is its domain and

f̂ (z) =

∞∑

k=−∞

f (k)z−k (3)

D(f̂ ) := {z ∈ C : f̂ (z) exists } (4)

It is important to keep in mind that f̂ (z) exists means that the
sum in (3) converges and is finite.
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Z transform

Z transform

Generally D(f̂ ) is a strict subset of C. In this case, there

exists z ∈ C such that z /∈ D(f̂ ) and hence, the determination

of the domain D(f̂ ) is an essential issue when dealing with Z
transform.

Important : The domain of the Z transform D(f̂ ) strongly
depends on the domain of the function f (k). As it will be clear
in the sequel :

k ∈ [0,+∞) =⇒ |z | ∈ (β,∞)

k ∈ (−∞, 0] =⇒ |z | ∈ (0, α)

k ∈ (−∞,∞) =⇒ |z | ∈ (β, α)

for some positive α, β ∈ R.
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Z transform

Z transform

Define the complex sequence {z0, z1, z2, · · · } where z ∈ C

and notice that
i−1∑

k=0

zk =
1− z i

1− z
, ∀ i ≥ 1

Using this we get the following result which is of particular
importance on Z transform calculations :

Lemma (Fundamental lemma)

Consider z ∈ C. The equality

∞∑

k=0

zk =
1

1− z

holds and is finite if and only if |z | < 1.
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Z transform

Z transform

For each function the Z transform (if any) is given :

f (k) = ak : Z → C and D(f̂ ) = ∅.
f (k) = ak : [0,+∞) → C and

f̂ (z) =
z

z − a
, D(f̂ ) = {z ∈ C : |z | > |a|}

f (k) = ak : (−∞, 0] → C and

f̂ (z) = − a

z − a
, D(f̂ ) = {z ∈ C : |z | < |a|}

f (k) = a|k| : (−∞,+∞) → C and

f̂ (z) =
(a− 1/a)z

(z − a)(z − 1/a)
, D(f̂ ) = {z ∈ C : |a| < |z | < 1/|a|}
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Definition and domain determination

The geometric function µk : Z → C for any µ ∈ C does not
admit a Z transform. Hence, for functions with domain k ∈ Z

the Z transform is too restrictive, being useless for solving
linear difference equations. To circumvent this difficulty, let us
restrict our interest to functions defined for k ∈ [0,+∞), in
which case we have

f̂ (z) :=
∞∑

k=0

f (k)z−k

with domain of the general form

D(f̂ ) := {z ∈ C : |z | > β}

for some positive β ∈ R to be adequately determined.
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Definition and domain determination

Definition and domain determination

Important class : There exists zf ∈ C such that the limit

lim
ℓ→∞

ℓ∑

k=0

|f (k)z−k
f |

exists and is finite.

Lemma (Domain characterization)

For the functions of this class the following hold :

Any z ∈ C satisfying |z | ≥ |zf | belongs to D(f̂ ).

There exists M finite such that |f̂ (z)| ≤ M for all z ∈ D(f̂ ).
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Definition and domain determination

Definition and domain determination

General form : Functions defined for all k ≥ 0 ∈ Z :

D(f̂ ) := {z ∈ C : |z | > β}

Domain determination : Given a function f (k), determine the
minimum value of β ∈ R such that

lim
ℓ→∞

ℓ∑

k=0

|f (k)z−k
f | < ∞

Domain determination : Given a function f̂ (z), determine the
minimum value of β ∈ R such that f̂ (z) remains analytic in all
points of the complex plane belonging to D(f̂ ).
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Definition and domain determination

Definition and domain determination

Rational function :

f̂ (z) :=
N(z)

D(z)
=

∑m
i=0 biz

i

∑n
i=0 aiz

i

where m ≤ n, bi ∈ R for all i = 1, · · · ,m and ai ∈ R for all
i = 1, · · · , n. If m = n it is called proper otherwise strictly
proper. It is not analytic at the poles pi , i = 1, · · · , n roots of
D(z) = 0. Hence

β = max
i=1,··· ,n

|pi |

Unitary (Schur) impulse : δ(k) := 0k , k ∈ Z

δ̂(z) = 1 , D(δ̂) = C
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Definition and domain determination

Definition and domain determination

Several calculations involving Z transform depend on the
precise determination of its domain :

Sum : The sum of a function f (k) defined for all k ≥ 0 can be
determined from

∞∑

k=0

f (k) = f̂ (1)

whenever 1 ∈ D(f̂ ).
Limit : The limit of a function f (k) defined for all k ≥ 0 can
be determined from

lim
k→∞

f (k) = lim
z→1

(z − 1)f̂ (z)

whenever 1 ∈ D((z − 1)f̂ ).
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Definition and domain determination

Properties

Basic properties for dynamic systems analysis, valid for
functions defined in the time domain k ≥ 0 and scalars
θ1, θ2, · · · .

Linearity :

Z
(
∑

i

θi fi (k)

)

=
∑

i

θi f̂i (z)

Discrete time convolution :

Z(f (k) • g(k)) = f̂ (z)ĝ (z)

Step ahead :

Z(f (k + 1)) = zf̂ (z)− zf (0)
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Definition and domain determination

Properties

Discrete time convolution is essential for dynamic systems
analysis, For functions f (k) and g(k) defined for all
k ∈ [0,+∞) we have

f (k) • g(k) =
k∑

i=0

f (k − i)g(i)

=

k∑

i=0

f (i)g(k − i) , ∀ k ≥ 0

applying to the discrete impulse function δ(k) we obtain :

f (k) • δ(k) = f (k) for all k ≥ 0.

Step function : υ(k) =
∑k

i=0 δ(i) for all k ≥ 0.
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Time invariant systems

Time invariant systems

Consider a time invariant system defined by the following
input-output model

n∑

i=0

aiy(k + i) =

m∑

i=0

big(k + i)

with given initial conditions y(i), for all i = 0, · · · , n − 1. It is
assumed that all coefficients are real, n ≤ m and that an 6= 0.
The Z transform yields

ŷ(z) = H0(z)
︸ ︷︷ ︸

initial conditions

+H(z)ĝ(z)
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Time invariant systems

Time invariant systems

The main facts are as follows :

h0(k) := Z−1(H0(z)) is the part of the solution depending
exclusively on the initial conditions.
h(k) := L−1(H(z)) is the impulse response (under zero initial
conditions). The function h(k) • g(k) is the part of the
solution depending exclusively on the input.

⇓

y(k) = h0(k) +

k∑

i=0

h(k − i)g(i) , ∀ k ≥ 0

From the state space realization (A,B,C ,D) we get

H0(z) := zC (zI − A)−1x0 , H(z) := C (zI − A)−1B + D
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Time varying systems

Time varying systems

We consider the class of time varying systems characterized by

n∑

i=0

ai(k)y(k + i) = 0 , ∀ k ≥ 0

where :

The time varying coefficients are such that ai(k) = αik + βi

with αi , βi ∈ R for all i = 1, · · · , n and αn 6= 0.
The initial conditions y(i), i = 0, · · · , n − 1 are not all zero.

The Z transform reveals that whenever z ∈ D(f̂ ) it is true
that

Z(kf (k)) = −z
d

dz
f̂ (z)
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Time varying systems

Time varying systems

Hence, taking into account that

Z
{

n∑

i=0

αiky(k + i)

}

= −z
d

dz
Z
{

n∑

i=0

αiy(k + i)

}

and not considering for the moment the initial conditions, the
Z transform provides

Q(z)ŷ(z)− P(z)
d

dz
ŷ(z) = 0

where

P(z) :=

n∑

i=0

αiz
i+1 , Q(z) :=

n∑

i=0

βiz
i −

n∑

i=1

iαiz
i
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Time varying systems

Time varying systems

Assuming that the roots p1, · · · , pn of P(z) = 0 are distinct
and noticing that P(0) = 0, partial decomposition yields

Q(z)

P(z)
=

d0

z
+

n∑

j=1

dj

(z − pj)

where d0, · · · dn ∈ C. Consequently

1

ŷ(z)

d

dz
ŷ(z) =

d0

z
+

n∑

j=1

dj

(z − pj)

gives

ln(ŷ(z)) = d0ln(z) +
n∑

j=1

dj ln(z − pj)
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The Z transform of the solution is

ŷ(z) = zd0
n∏

j=1

(z − pj)
dj

Important facts :

If d0, d1, · · · , dn ∈ Z with
∑n

j=1 dj ≤ 0 and d0 ≤ 0, the above
product denoted H(z) is a rational function which provides

y(k) =

{
0 0 ≤ k < −d0

h(k + d0) k ≥ −d0

The above solution ŷ (z) may hold even though the initial
conditions are not null.
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Consider the time varying difference equation

(k + 1)y(k + 1)− (k + 1/2)y(k) = 0 , y(0) = 1

From the same algebraic manipulations we get

1

ŷ(z)

d

dz
ŷ(z) =

1/2

z
+

−1/2

(z − 1)

⇓

ŷ(z) =

√
z

z − 1
, D(ŷ) = {z ∈ C : |z | > 1}

and finally y(k) • y(k) = υ(k) , ∀k ≥ 0. The function y(k)
for all k ≥ 0, can be numerically calculated from the above
difference equation.
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1. Consider the Fibonacci difference equation

θ(k + 2)− θ(k + 1)− θ(k) = 0 , θ(0) = 0 , θ(1) = 1

Determine its solution θ(k) and the output θ(k + 1) + θ(k).
Determine its state space representation.
Determine the state space matrices such that the same
solution, delayed by one step, is obtained from zero initial
condition.

2. For a discrete time linear system with transfer function

G (z) =
(z + 1)

(z + 1/2)(z − 1/2)

Determine its impulse response.
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3. Consider the second order time varying differential equation

2∑

i=0

(αi t + βi)y
(i)(t) = 0

Show that if β2 = 0 and β1 6= α2 then the Laplace transform
provides a solution satisfying y(0) = 0 and ẏ(0) arbitrary.
Show that if β2 = 0 and β1 = α2 then the Laplace transform
provides a solution with y(0) and ẏ(0) arbitrary.

4. From the previous problem, determine a second order time
varying differential equation and the initial conditions such
that the Laplace transform of its solution is

ŷ(s) =
1

√

(s + 1)(s + 2)
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5. Consider z ∈ C. Prove that the equality

1

1− z
=

∞∑

i=0

z i

holds if and only if |z | < 1. Using this result determine the
function f (t) defined for all t ≥ 0 with Laplace transform
given by:

f̂ (s) = 1
s(1−e−s) .

f̂ (s) = 1
(es−e−s) .

f̂ (s) = e−s

(s+1)(1−e−s) .
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6. Given A ∈ R
n×n, determine :

Z−1{(zI − A)−1}.
Z−1{z(zI − A)−1}.
The Z transform of f (k) :=

∑k

i=0 A
i , ∀k ≥ 0.

7. The bilinear transformation is defined by

z =
1 + s

1− s

Show that the mapping of the region Re(s) ≤ 0 in the s-plane
is the region |z | ≤ 1 in the z-plane.
Use this property to generalize the Routh criterion to deal with
discrete time invariant linear systems.
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8. Consider the matrices A ∈ R
n×n and B ∈ R

n×m. Using the
Laplace transform, show that the square matrix

Γ :=

[
A B

0 0

]

is such that

eΓt =

[
eAt

∫ t

0 eAtBdt

0 I

]

9. Define the contour C to be used with the Nyquist criterion for
discrete time systems stability analysis.
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Problems

10. Consider the time delay system

ÿ(t) + 3ẏ(t) + 2y(t) + κy(t − T ) = u(t)

where κ ≥ 0 and T = 0, 1, 2. Using the Nyquist criterion,
determine for each T the values of κ preserving asymptotic
stability.

11. Consider a time delay system with transfer function

H(s) =
1

s3 + 4s2 + 4s + κe−Ts

where κ,T ≥ 0. Determine the stability region (κ,T ) using:
The Nyquist criterion.
The Routh criterion adopting first and second order
approximations to e−Ts .
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12. Consider a time delay system with characteristic equation

P(s) + κe−Ts = 0

where κ,T ≥ 0. Assuming the roots of P(s) = 0 are in the
region Re(s) < 0, using the Nyquist criterion show that
asymptotic stability is preserved for all T ≥ 0, whenever

max
ω≥0

κ

|P(jω)| < 1

Compare to the Nyquist criterion applied with the zero order
approximation e−Ts = 1.
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