# FREQUENCY DOMAIN ANALYSIS OF DYNAMIC SYSTEMS 

## JOSÉ C. GEROMEL

DSCE / School of Electrical and Computer Engineering UNICAMP, CP 6101, 13083-970, Campinas, SP, Brazil, geromel@dsce.fee.unicamp.br

Campinas, Brazil, August 2006

## Contents

(1) CHAPTER II - Laplace and $\mathcal{Z}$ transforms

- Laplace transform
- Definition and domain determination
- Time invariant systems
- Time varying systems
- Nonrational transforms
- $\mathcal{Z}$ transform
- Definition and domain determination
- Time invariant systems
- Time varying systems
- Problems


## Laplace transform

## Laplace transform

- The Laplace transform of the function $f(t): \mathbb{R} \rightarrow \mathbb{C}$ denoted as $\hat{f}(s)$ or $\mathcal{L}(f)$ is a function of complex variable

$$
\hat{f}(s): \mathcal{D}(\hat{f}) \rightarrow \mathbb{C}
$$

where $\mathcal{D}(\hat{f})$ is its domain and

$$
\begin{gather*}
\hat{f}(s)=\int_{-\infty}^{\infty} f(t) e^{-s t} d t  \tag{1}\\
\mathcal{D}(\hat{f}):=\{s \in \mathbb{C}: \hat{f}(s) \text { exists }\} \tag{2}
\end{gather*}
$$

- It is important to keep in mind that $\hat{f}(s)$ exists means that the integral in (1) converges and is finite.


## Laplace transform

- Generally $\mathcal{D}(\hat{f})$ is a strict subset of $\mathbb{C}$. In this case, there exists $s \in \mathbb{C}$ such that $s \notin \mathcal{D}(\hat{f})$ and hence, the determination of the domain $\mathcal{D}(\hat{f})$ is an essential issue when dealing with Laplace transform.
- Important: The domain of the Laplace transform $\mathcal{D}(\hat{f})$ strongly depends on the domain of the function $f(t)$. As it will be clear in the sequel :

$$
\begin{aligned}
t \in[0,+\infty) & \Longrightarrow \operatorname{Re}(s) \in(\alpha, \infty) \\
t \in(-\infty, 0] & \Longrightarrow \operatorname{Re}(s) \in(-\infty, \beta) \\
t \in(-\infty, \infty) & \Longrightarrow \operatorname{Re}(s) \in(\alpha, \beta)
\end{aligned}
$$

for some $\alpha, \beta \in \mathbb{R}$.

## Laplace transform

## Laplace transform

- For each function the Laplace transform (if any) is given :
- $f(t)=e^{-a t}: \mathbb{R} \rightarrow \mathbb{C}$ and $\mathcal{D}(\hat{f})=\emptyset$.
- $f(t)=e^{-a t}:[0,+\infty) \rightarrow \mathbb{C}$ and

$$
\hat{f}(s)=\frac{1}{s+a}, \quad \mathcal{D}(\hat{f})=\{s \in \mathbb{C}: \operatorname{Re}(s)>-\operatorname{Re}(a)\}
$$

- $f(t)=e^{-a t}:(-\infty, 0] \rightarrow \mathbb{C}$ and

$$
\hat{f}(s)=-\frac{1}{s+a}, \quad \mathcal{D}(\hat{f})=\{s \in \mathbb{C}: \operatorname{Re}(s)<-\operatorname{Re}(a)\}
$$

- $f(t)=e^{-a|t|}:(-\infty,+\infty) \rightarrow \mathbb{C}$ and

$$
\hat{f}(s)=-\frac{2 a}{s^{2}-a^{2}}, \quad \mathcal{D}(\hat{f})=\{s \in \mathbb{C}:|\operatorname{Re}(s)|<\operatorname{Re}(a)\}
$$

## Definition and domain determination

- The exponential function $e^{-\lambda t}: \mathbb{R} \rightarrow \mathbb{C}$ for any $\lambda \in \mathbb{C}$ does not admit a Laplace transform. Hence, for functions with domain $t \in \mathbb{R}$ the Laplace transform is too restrictive, being useless for solving linear differential equations. To circumvent this difficulty, let us restrict our interest to functions defined for $t \in[0,+\infty)$, in which case we have

$$
\hat{f}(s):=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

with domain of the general form

$$
\mathcal{D}(\hat{f}):=\{s \in \mathbb{C}: \operatorname{Re}(s)>\alpha\}
$$

for some $\alpha \in \mathbb{R}$ to be adequately determined.

## Definition and domain determination

- Important class: There exists $s_{f} \in \mathbb{C}$ such that the limit

$$
\lim _{\tau \rightarrow \infty} \int_{0}^{\tau}\left|f(t) e^{-s_{f} t}\right| d t
$$

exists and is finite.

## Lemma (Domain characterization)

For the functions of this class the following hold :

- Any $s \in \mathbb{C}$ satisfying $\operatorname{Re}(s) \geq \operatorname{Re}\left(s_{f}\right)$ belongs to $\mathcal{D}(\hat{f})$.
- There exists $M$ finite such that $|\hat{f}(s)| \leq M$ for all $s \in \mathcal{D}(\hat{f})$.


## Definition and domain determination

- General form : Functions defined for all $t \geq 0$ :

$$
\mathcal{D}(\hat{f}):=\{s \in \mathbb{C}: \operatorname{Re}(s)>\alpha\}
$$

- Domain determination : Given a function $f(t)$, determine the minimum value of $\alpha \in \mathbb{R}$ such that

$$
\lim _{\tau \rightarrow \infty} \int_{0}^{\tau}\left|f(t) e^{-\alpha t}\right| d t<\infty
$$

- Domain determination: Given a function $\hat{f}(s)$, determine the minimum value of $\alpha \in \mathbb{R}$ such that $\hat{f}(s)$ remains analytic in all points of the complex plane belonging to $\mathcal{D}(\hat{f})$.


## Definition and domain determination

- The function $\hat{f}(s)=\frac{e^{-s}}{s}$ is not analytic at $s=0$. Its Laurent series is

$$
\hat{f}(s)=\frac{1}{s}-1+\frac{s}{2}-\frac{s^{2}}{6}+\cdots
$$

consequently

$$
\mathcal{D}(\hat{f}):=\{s \in \mathbb{C}: \operatorname{Re}(s)>0\}
$$

- The function $\hat{f}(s)=\frac{1-e^{-s}}{s}$ is analytic at $s=0$. Its Taylor series is

$$
\hat{f}(s)=1-\frac{s}{2}+\frac{s^{2}}{6}-\cdots
$$

consequently

$$
\mathcal{D}(\hat{f}):=\{s \in \mathbb{C}: \operatorname{Re}(s)>-\infty\}=\mathbb{C}
$$

## Definition and domain determination

- Rational function :

$$
\hat{f}(s):=\frac{N(s)}{D(s)}=\frac{\sum_{i=0}^{m} b_{i} s^{i}}{\sum_{i=0}^{n} a_{i} s^{i}}
$$

where $m \leq n, b_{i} \in \mathbb{R}$ for all $i=1, \cdots, m$ and $a_{i} \in \mathbb{R}$ for all $i=1, \cdots, n$. If $m=n$ it is called proper otherwise strictly proper. It is not analytic at the poles $p_{i}, i=1, \cdots, n$ roots of $D(s)=0$. Hence

$$
\alpha=\max _{i=1, \cdots, n} \operatorname{Re}\left(p_{i}\right)
$$

- Unitary (Dirac) impulse :

$$
\hat{\delta}(s)=1, \quad \mathcal{D}(\hat{\delta})=\mathbb{C}
$$

## Definition and domain determination

- Several calculations involving Laplace transform depend on the precise determination of its domain :
- Integral : The integral of a function $f(t)$ defined for all $t \geq 0$ can be determined from

$$
\int_{0}^{\infty} f(t) d t=\hat{f}(0)
$$

whenever $0 \in \mathcal{D}(\hat{f})$.

- Limit : The limit of a function $f(t)$ defined for all $t \geq 0$ can be determined from

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s \hat{f}(s)
$$

whenever $0 \in \mathcal{D}(s \hat{f})$.

## Properties

- Basic properties for dynamic systems analysis, valid for functions defined in the time domain $t \geq 0$ and scalars $\theta_{1}, \theta_{2}, \cdots$.
- Linearity :

$$
\mathcal{L}\left(\sum_{i} \theta_{i} f_{i}(t)\right)=\sum_{i} \theta_{i} \hat{f}_{i}(s)
$$

- Continuous time convolution :

$$
\mathcal{L}(f(t) * g(t))=\hat{f}(s) \hat{g}(s)
$$

- Time derivative :

$$
\mathcal{L}(\dot{f}(t))=s \hat{f}(s)-f(0)
$$

## Properties

- Since the functions we are dealing with are only defined for all $t \geq 0$, the time derivative property must be better qualified at $t=0$.
- Time derivative: Defining the function

$$
h(t):=\left\{\begin{array}{cc}
\dot{f}(t) & , t>0 \\
\text { finite value } & , t=0
\end{array}\right.
$$

generally $h(0)=\lim _{t \rightarrow 0^{+}} \dot{f}(t)=\dot{f}\left(0^{+}\right)<\infty$.

## Lemma (Time derivative)

The Laplace transform of $h(t)$ defined above is such that :

$$
\hat{h}(s)=s \hat{f}(s)-f(0), \quad \mathcal{D}(\hat{h})=\mathcal{D}(s \hat{f})
$$

## Properties

- Unfortunately, the previous result does not take into account the possibility that $f(t)$ varies arbitrarily fast at $t=0$. That is, $f(t)$ is not continuous at $t=0$, which implies that $f(0) \neq 0$. Let us consider this situation using the sequence of functions :

$$
f_{n}(t):=f(t)-f(0)\left(1+\frac{t}{\tau_{n}}\right) e^{-t / \tau_{n}}, \quad \forall t \geq 0
$$

where $\tau_{n}>0$ and goes to zero as $n$ goes to infinity.

- $f_{n}(0)=0$ for all $n \in \mathbb{N}$.
- $\lim _{n \rightarrow \infty} f_{n}(t)=f(t)$ for all $t>0$, consequently

$$
\lim _{n \rightarrow \infty} \hat{f}_{n}(s)=\hat{f}(s), \forall s \in \mathcal{D}(\hat{f})
$$

## Properties

- Denoting the time derivative of $f(t)$ and of $f_{n}(t)$ with respect to $t>0$ as $h(t)$ and $h_{n}(t)$ respectively, from the previous Lemma we obtain $\hat{h}_{n}(s)=s \hat{f}_{n}(s)-f_{n}(0)$ for all $n \in \mathbb{N}$ and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \hat{h}_{n}(s) & =s \hat{f}(s) \\
& =(s \hat{f}(s)-f(0))+f(0) \\
& =\hat{h}(s)+f(0)
\end{aligned}
$$

yielding

$$
\lim _{n \rightarrow \infty} h_{n}(t)=h(t)+f(0) \delta(t)
$$

- The quantity $\lim _{n \rightarrow \infty} h_{n}(t)$ is called generalized derivative of $f(t)$. It coincides with the time derivative for $\forall t>0$ and is different at $t=0$ whenever $f(0) \neq 0$.


## Properties

- The Laplace transform of the generalized derivative is obtained by multiplying its Laplace transform by $s$. Let us make clear this concept using the step function defined as $v(t)=1$ for all $t \geq 0$

$$
\hat{v}(s)=\frac{1}{s}, \quad \mathcal{D}(\hat{v})=\{s \in \mathbb{C} ; \operatorname{Re}(s)>0\}
$$

- Time derivative : $\hat{h}(s)=s \hat{v}(s)-1=0$ in accordance to the fact that $h(0)=0$ and $h(t)=\dot{v}(t)=0$ for all $t>0$.
- Generalized derivative : $\lim _{n \rightarrow \infty} \hat{h}_{n}(s)=s \hat{v}(s)=1$ in accordance to the fact that $\lim _{n \rightarrow \infty} h_{n}(t)=\delta(t)$ for all $t \geq 0$.


## Time invariant systems

- Consider a time invariant system defined by the following input-output model

$$
\sum_{i=0}^{n} a_{i} \frac{d^{i} y}{d t^{i}}(t)=\sum_{i=0}^{m} b_{i} \frac{d^{i} g}{d t^{i}}(t)
$$

with given initial conditions $\frac{d^{i} y}{d t^{i}}(0)$, for all $i=0, \cdots, n-1$. It is assumed that all coefficients are real, $n \leq m$ and that $a_{n} \neq 0$. The Laplace transform, taking into account the impulse effect on the right hand side, yields

$$
\hat{y}(s)=\underbrace{H_{0}(s)}_{\text {initial conditions }}+H(s) \hat{g}(s)
$$

## Time invariant systems

- The main facts are as follows :
- $h_{0}(t):=\mathcal{L}^{-1}\left(H_{0}(s)\right)$ is the part of the solution depending exclusively on the initial conditions.
- $h(t):=\mathcal{L}^{-1}(H(s))$ is the impulse response (under zero initial conditions). The function $h(t) * g(t)$ is the part of the solution depending exclusively on the input.

$$
y(t)=h_{0}(t)+\int_{0}^{t} h(t-\tau) g(\tau) d \tau, \quad \forall t \geq 0
$$

- From the state space realization $(A, B, C, D)$ we get

$$
H_{0}(s):=C(s l-A)^{-1} x_{0}, \quad H(s):=C(s l-A)^{-1} B+D
$$

## Time varying systems

- We consider the class of time varying systems characterized by

$$
\sum_{i=0}^{n} a_{i}(t) \frac{d^{i} y}{d t^{i}}(t)=0, \quad \forall t \geq 0
$$

where :

- The time varying coefficients are such that $a_{i}(t)=\alpha_{i} t+\beta_{i}$ with $\alpha_{i}, \beta_{i} \in \mathbb{R}$ for all $i=1, \cdots, n$ and $\alpha_{n} \neq 0$.
- The initial conditions $\frac{d^{i} y}{d t^{\prime}}(0), i=0, \cdots, n-1$ are not all zero.
- The Laplace transform reveals that whenever $s \in \mathcal{D}(\hat{f})$ it is true that

$$
\mathcal{L}(t f(t))=-\frac{d}{d s} \hat{f}(s)
$$

## Time varying systems

- Hence, taking into account that

$$
\mathcal{L}\left\{\sum_{i=0}^{n} \alpha_{i} t \frac{d^{i} y}{d t^{i}}(t)\right\}=-\frac{d}{d s} \mathcal{L}\left\{\sum_{i=0}^{n} \alpha_{i} \frac{d^{i} y}{d t^{i}}(t)\right\}
$$

and not considering for the moment the initial conditions, the Laplace transform provides

$$
Q(s) \hat{y}(s)-P(s) \frac{d}{d s} \hat{y}(s)=0
$$

where

$$
P(s):=\sum_{i=0}^{n} \alpha_{i} s^{i}, Q(s):=\sum_{i=0}^{n} \beta_{i} s^{i}-\sum_{i=1}^{n} i \alpha_{i} s^{i-1}
$$

## Time varying systems

- Assuming that the roots $p_{1}, \cdots, p_{n}$ of $P(s)=0$ are distinct, partial decomposition yields

$$
\frac{Q(s)}{P(s)}=d_{0}+\sum_{j=1}^{n} \frac{d_{j}}{\left(s-p_{j}\right)}
$$

where $d_{0}, \cdots d_{n} \in \mathbb{C}$. Consequently

$$
\frac{1}{\hat{y}(s)} \frac{d}{d s} \hat{y}(s)=d_{0}+\sum_{j=1}^{n} \frac{d_{j}}{\left(s-p_{j}\right)}
$$

gives

$$
\ln (\hat{y}(s))=d_{0} s+\sum_{j=1}^{n} d_{j} \ln \left(s-p_{j}\right)
$$

## Time varying systems

- The Laplace transform of the solution is

$$
\hat{y}(s)=e^{d_{0} s} \prod_{j=1}^{n}\left(s-p_{j}\right)^{d_{j}}
$$

Important facts :

- If $d_{1}, \cdots, d_{n} \in \mathbb{Z}$ with $\sum_{j=1}^{n} d_{j} \leq 0$ and $d_{0} \leq 0$, the above product denoted $H(s)$ is a rational function which provides

$$
y(t)=\left\{\begin{array}{cc}
0 & 0 \leq t \leq-d_{0} \\
h\left(t+d_{0}\right) & t>-d_{0}
\end{array}\right.
$$

- The above solution $\hat{y}(s)$ may hold even though the initial conditions are not null.


## Time varying systems

- Consider the Bessel differential equation

$$
t \ddot{y}(t)+\dot{y}(t)+t y(t)=0, y(0)=1, \dot{y}(0)=0
$$

From the same algebraic manipulations we get

$$
\begin{gathered}
\frac{1}{\hat{y}(s)} \frac{d}{d s} \hat{y}(s)=\frac{-1 / 2}{(s+j)}+\frac{-1 / 2}{(s-j)} \\
\Downarrow \\
\hat{y}(s)=\frac{1}{\sqrt{s^{2}+1}}, \mathcal{D}(\hat{y})=\{s \in \mathbb{C}: \operatorname{Re}(s)>0\}
\end{gathered}
$$

and finally $y(t)=J_{0}(t)$ for all $t \geq 0$ - the Bessel function.

## Time varying systems

- Important facts :
- $J_{0}(t)$ is determined numerically by series expansion or by solving the Bessel differential equation.
- The Bessel function has the following convolutional property

$$
J_{0}(t) * J_{0}(t)=\sin (t), \quad \forall t \geq 0
$$



## Nonrational transforms

- An important function on this matter is the $\Gamma$-function, defined for all $r>0$ by

$$
\Gamma(r):=\int_{0}^{\infty} \xi^{r-1} e^{-\xi} d \xi
$$

Hence $\Gamma(1)=1$ and

$$
\begin{aligned}
\Gamma(r+1) & =\left.\xi^{r} e^{-\xi}\right|_{\infty} ^{0}+r \int_{0}^{\infty} \xi^{r-1} e^{-\xi} d \xi \\
& =r \Gamma(r)
\end{aligned}
$$

shows that for $r \in \mathbb{N}, \Gamma(r+1)=r$ !. It generalizes the factorial to positive real numbers. A particularly important value is

$$
\Gamma(1 / 2)=\sqrt{\pi}
$$

## Nonrational transforms

- Considering the function $g(t):=t^{r}$ defined for all $t>0$, and $\xi:=s t$ we have

$$
\begin{aligned}
\hat{g}(s) & =\int_{0}^{\infty} t^{r} e^{-s t} d t \\
& =\frac{\Gamma(r+1)}{s^{r+1}}
\end{aligned}
$$

For all $r>-1 \in \mathbb{R}$ the Laplace transform of $g(t)$ is given by

$$
\hat{g}(s)=\frac{\Gamma(r+1)}{s^{r+1}}, \quad \mathcal{D}(\hat{g})=\{s \in \mathbb{C}: \operatorname{Re}(s)>0\}
$$

This property holds even though $r+1$ is not an integer number. In this case $\hat{g}(s)$ is not rational.

## Nonrational transforms

- Particular cases :
- For $r=0, g(t)=v(t)$ is the unit step function and the formula provides

$$
\hat{g}(s)=\frac{1}{s}
$$

- For $r=-1 / 2, g(t)=1 / \sqrt{t}$ and the formula provides

$$
\hat{g}(s)=\frac{\sqrt{\pi}}{\sqrt{s}}
$$

It can also be concluded that $g(t)=1 / \sqrt{\pi t}$ exhibits the following convolutional property

$$
g(t) * g(t)=v(t), \quad \forall t>0
$$

## $\mathcal{Z}$ transform

- The $\mathcal{Z}$ transform of the function $f(k): \mathbb{Z} \rightarrow \mathbb{C}$ denoted as $\hat{f}(z)$ or $\mathcal{Z}(f)$ is a function of complex variable

$$
\hat{f}(z): \mathcal{D}(\hat{f}) \rightarrow \mathbb{C}
$$

where $\mathcal{D}(\hat{f})$ is its domain and

$$
\begin{gather*}
\hat{f}(z)=\sum_{k=-\infty}^{\infty} f(k) z^{-k}  \tag{3}\\
\mathcal{D}(\hat{f}):=\{z \in \mathbb{C}: \hat{f}(z) \text { exists }\} \tag{4}
\end{gather*}
$$

- It is important to keep in mind that $\hat{f}(z)$ exists means that the sum in (3) converges and is finite.


## $\mathcal{Z}$ transform

- Generally $\mathcal{D}(\hat{f})$ is a strict subset of $\mathbb{C}$. In this case, there exists $z \in \mathbb{C}$ such that $z \notin \mathcal{D}(\hat{f})$ and hence, the determination of the domain $\mathcal{D}(\hat{f})$ is an essential issue when dealing with $\mathcal{Z}$ transform.
- Important: The domain of the $\mathcal{Z}$ transform $\mathcal{D}(\hat{f})$ strongly depends on the domain of the function $f(k)$. As it will be clear in the sequel :

$$
\begin{aligned}
k \in[0,+\infty) & \Longrightarrow|z| \in(\beta, \infty) \\
k \in(-\infty, 0] & \Longrightarrow|z| \in(0, \alpha) \\
k \in(-\infty, \infty) & \Longrightarrow|z| \in(\beta, \alpha)
\end{aligned}
$$

for some positive $\alpha, \beta \in \mathbb{R}$.

## $\mathcal{Z}$ transform

- Define the complex sequence $\left\{z^{0}, z^{1}, z^{2}, \cdots\right\}$ where $z \in \mathbb{C}$ and notice that

$$
\sum_{k=0}^{i-1} z^{k}=\frac{1-z^{i}}{1-z}, \quad \forall i \geq 1
$$

Using this we get the following result which is of particular importance on $\mathcal{Z}$ transform calculations:

## Lemma (Fundamental lemma)

Consider $z \in \mathbb{C}$. The equality

$$
\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z}
$$

holds and is finite if and only if $|z|<1$.

## $\mathcal{Z}$ transform

## $\mathcal{Z}$ transform

- For each function the $\mathcal{Z}$ transform (if any) is given :
- $f(k)=a^{k}: \mathbb{Z} \rightarrow \mathbb{C}$ and $\mathcal{D}(\hat{f})=\emptyset$.
- $f(k)=a^{k}:[0,+\infty) \rightarrow \mathbb{C}$ and

$$
\hat{f}(z)=\frac{z}{z-a}, \quad \mathcal{D}(\hat{f})=\{z \in \mathbb{C}:|z|>|a|\}
$$

- $f(k)=a^{k}:(-\infty, 0] \rightarrow \mathbb{C}$ and

$$
\hat{f}(z)=-\frac{a}{z-a}, \quad \mathcal{D}(\hat{f})=\{z \in \mathbb{C}:|z|<|a|\}
$$

- $f(k)=a^{|k|}:(-\infty,+\infty) \rightarrow \mathbb{C}$ and

$$
\hat{f}(z)=\frac{(a-1 / a) z}{(z-a)(z-1 / a)}, \mathcal{D}(\hat{f})=\{z \in \mathbb{C}:|a|<|z|<1 /|a|\}
$$

## Definition and domain determination

- The geometric function $\mu^{k}: \mathbb{Z} \rightarrow \mathbb{C}$ for any $\mu \in \mathbb{C}$ does not admit a $\mathcal{Z}$ transform. Hence, for functions with domain $k \in \mathbb{Z}$ the $\mathcal{Z}$ transform is too restrictive, being useless for solving linear difference equations. To circumvent this difficulty, let us restrict our interest to functions defined for $k \in[0,+\infty)$, in which case we have

$$
\hat{f}(z):=\sum_{k=0}^{\infty} f(k) z^{-k}
$$

with domain of the general form

$$
\mathcal{D}(\hat{f}):=\{z \in \mathbb{C}:|z|>\beta\}
$$

for some positive $\beta \in \mathbb{R}$ to be adequately determined.

## Definition and domain determination

- Important class: There exists $z_{f} \in \mathbb{C}$ such that the limit

$$
\lim _{\ell \rightarrow \infty} \sum_{k=0}^{\ell}\left|f(k) z_{f}^{-k}\right|
$$

exists and is finite.

## Lemma (Domain characterization)

For the functions of this class the following hold :

- Any $z \in \mathbb{C}$ satisfying $|z| \geq\left|z_{f}\right|$ belongs to $\mathcal{D}(\hat{f})$.
- There exists $M$ finite such that $|\hat{f}(z)| \leq M$ for all $z \in \mathcal{D}(\hat{f})$.


## Definition and domain determination

- General form : Functions defined for all $k \geq 0 \in \mathbb{Z}$ :

$$
\mathcal{D}(\hat{f}):=\{z \in \mathbb{C}:|z|>\beta\}
$$

- Domain determination: Given a function $f(k)$, determine the minimum value of $\beta \in \mathbb{R}$ such that

$$
\lim _{\ell \rightarrow \infty} \sum_{k=0}^{\ell}\left|f(k) z_{f}^{-k}\right|<\infty
$$

- Domain determination: Given a function $\hat{f}(z)$, determine the minimum value of $\beta \in \mathbb{R}$ such that $\hat{f}(z)$ remains analytic in all points of the complex plane belonging to $\mathcal{D}(\hat{f})$.


## Definition and domain determination

- Rational function :

$$
\hat{f}(z):=\frac{N(z)}{D(z)}=\frac{\sum_{i=0}^{m} b_{i} z^{i}}{\sum_{i=0}^{n} a_{i} z^{i}}
$$

where $m \leq n, b_{i} \in \mathbb{R}$ for all $i=1, \cdots, m$ and $a_{i} \in \mathbb{R}$ for all $i=1, \cdots, n$. If $m=n$ it is called proper otherwise strictly proper. It is not analytic at the poles $p_{i}, i=1, \cdots, n$ roots of $D(z)=0$. Hence

$$
\beta=\max _{i=1, \cdots, n}\left|p_{i}\right|
$$

- Unitary (Schur) impulse : $\delta(k):=0^{k}, k \in \mathbb{Z}$

$$
\hat{\delta}(z)=1, \quad \mathcal{D}(\hat{\delta})=\mathbb{C}
$$

## Definition and domain determination

- Several calculations involving $\mathcal{Z}$ transform depend on the precise determination of its domain :
- Sum : The sum of a function $f(k)$ defined for all $k \geq 0$ can be determined from

$$
\sum_{k=0}^{\infty} f(k)=\hat{f}(1)
$$

whenever $1 \in \mathcal{D}(\hat{f})$.

- Limit : The limit of a function $f(k)$ defined for all $k \geq 0$ can be determined from

$$
\lim _{k \rightarrow \infty} f(k)=\lim _{z \rightarrow 1}(z-1) \hat{f}(z)
$$

whenever $1 \in \mathcal{D}((z-1) \hat{f})$.

## Properties

- Basic properties for dynamic systems analysis, valid for functions defined in the time domain $k \geq 0$ and scalars $\theta_{1}, \theta_{2}, \cdots$.
- Linearity :

$$
\mathcal{Z}\left(\sum_{i} \theta_{i} f_{i}(k)\right)=\sum_{i} \theta_{i} \hat{f}_{i}(z)
$$

- Discrete time convolution :

$$
\mathcal{Z}(f(k) \bullet g(k))=\hat{f}(z) \hat{g}(z)
$$

- Step ahead:

$$
\mathcal{Z}(f(k+1))=z \hat{f}(z)-z f(0)
$$

## Properties

- Discrete time convolution is essential for dynamic systems analysis, For functions $f(k)$ and $g(k)$ defined for all $k \in[0,+\infty)$ we have

$$
\begin{aligned}
f(k) \bullet g(k) & =\sum_{i=0}^{k} f(k-i) g(i) \\
& =\sum_{i=0}^{k} f(i) g(k-i), \quad \forall k \geq 0
\end{aligned}
$$

applying to the discrete impulse function $\delta(k)$ we obtain :

- $f(k) \bullet \delta(k)=f(k)$ for all $k \geq 0$.
- Step function : $v(k)=\sum_{i=0}^{k} \delta(i)$ for all $k \geq 0$.


## Time invariant systems

- Consider a time invariant system defined by the following input-output model

$$
\sum_{i=0}^{n} a_{i} y(k+i)=\sum_{i=0}^{m} b_{i} g(k+i)
$$

with given initial conditions $y(i)$, for all $i=0, \cdots, n-1$. It is assumed that all coefficients are real, $n \leq m$ and that $a_{n} \neq 0$. The $\mathcal{Z}$ transform yields

$$
\hat{y}(z)=\underbrace{H_{0}(z)}_{\text {initial conditions }}+H(z) \hat{g}(z)
$$

## Time invariant systems

- The main facts are as follows :
- $h_{0}(k):=\mathcal{Z}^{-1}\left(H_{0}(z)\right)$ is the part of the solution depending exclusively on the initial conditions.
- $h(k):=\mathcal{L}^{-1}(H(z))$ is the impulse response (under zero initial conditions). The function $h(k) \bullet g(k)$ is the part of the solution depending exclusively on the input.

$$
y(k)=h_{0}(k)+\sum_{i=0}^{k} h(k-i) g(i), \quad \forall k \geq 0
$$

- From the state space realization $(A, B, C, D)$ we get

$$
H_{0}(z):=z C(z l-A)^{-1} x_{0}, \quad H(z):=C(z l-A)^{-1} B+D
$$

## Time varying systems

- We consider the class of time varying systems characterized by

$$
\sum_{i=0}^{n} a_{i}(k) y(k+i)=0, \quad \forall k \geq 0
$$

where:

- The time varying coefficients are such that $a_{i}(k)=\alpha_{i} k+\beta_{i}$ with $\alpha_{i}, \beta_{i} \in \mathbb{R}$ for all $i=1, \cdots, n$ and $\alpha_{n} \neq 0$.
- The initial conditions $y(i), i=0, \cdots, n-1$ are not all zero.
- The $\mathcal{Z}$ transform reveals that whenever $z \in \mathcal{D}(\hat{f})$ it is true that

$$
\mathcal{Z}(k f(k))=-z \frac{d}{d z} \hat{f}(z)
$$

## Time varying systems

- Hence, taking into account that

$$
\mathcal{Z}\left\{\sum_{i=0}^{n} \alpha_{i} k y(k+i)\right\}=-z \frac{d}{d z} \mathcal{Z}\left\{\sum_{i=0}^{n} \alpha_{i} y(k+i)\right\}
$$

and not considering for the moment the initial conditions, the $\mathcal{Z}$ transform provides

$$
Q(z) \hat{y}(z)-P(z) \frac{d}{d z} \hat{y}(z)=0
$$

where

$$
P(z):=\sum_{i=0}^{n} \alpha_{i} z^{i+1}, Q(z):=\sum_{i=0}^{n} \beta_{i} z^{i}-\sum_{i=1}^{n} i \alpha_{i} z^{i}
$$

## Time varying systems

- Assuming that the roots $p_{1}, \cdots, p_{n}$ of $P(z)=0$ are distinct and noticing that $P(0)=0$, partial decomposition yields

$$
\frac{Q(z)}{P(z)}=\frac{d_{0}}{z}+\sum_{j=1}^{n} \frac{d_{j}}{\left(z-p_{j}\right)}
$$

where $d_{0}, \cdots d_{n} \in \mathbb{C}$. Consequently

$$
\frac{1}{\hat{y}(z)} \frac{d}{d z} \hat{y}(z)=\frac{d_{0}}{z}+\sum_{j=1}^{n} \frac{d_{j}}{\left(z-p_{j}\right)}
$$

gives

$$
\ln (\hat{y}(z))=d_{0} \ln (z)+\sum_{j=1}^{n} d_{j} \ln \left(z-p_{j}\right)
$$

## Time varying systems

- The $\mathcal{Z}$ transform of the solution is

$$
\hat{y}(z)=z^{d_{0}} \prod_{j=1}^{n}\left(z-p_{j}\right)^{d_{j}}
$$

## Important facts :

- If $d_{0}, d_{1}, \cdots, d_{n} \in \mathbb{Z}$ with $\sum_{j=1}^{n} d_{j} \leq 0$ and $d_{0} \leq 0$, the above product denoted $H(z)$ is a rational function which provides

$$
y(k)=\left\{\begin{array}{cc}
0 & 0 \leq k<-d_{0} \\
h\left(k+d_{0}\right) & k \geq-d_{0}
\end{array}\right.
$$

- The above solution $\hat{y}(z)$ may hold even though the initial conditions are not null.


## Time varying systems

- Consider the time varying difference equation

$$
(k+1) y(k+1)-(k+1 / 2) y(k)=0, y(0)=1
$$

From the same algebraic manipulations we get

$$
\begin{gathered}
\frac{1}{\hat{y}(z)} \frac{d}{d z} \hat{y}(z)=\frac{1 / 2}{z}+\frac{-1 / 2}{(z-1)} \\
\Downarrow \\
\hat{y}(z)=\sqrt{\frac{z}{z-1}}, \mathcal{D}(\hat{y})=\{z \in \mathbb{C}:|z|>1\}
\end{gathered}
$$

and finally $y(k) \bullet y(k)=v(k), \forall k \geq 0$. The function $y(k)$ for all $k \geq 0$, can be numerically calculated from the above difference equation.

## Problems

1. Consider the Fibonacci difference equation

$$
\theta(k+2)-\theta(k+1)-\theta(k)=0, \quad \theta(0)=0, \quad \theta(1)=1
$$

- Determine its solution $\theta(k)$ and the output $\theta(k+1)+\theta(k)$.
- Determine its state space representation.
- Determine the state space matrices such that the same solution, delayed by one step, is obtained from zero initial condition.

2. For a discrete time linear system with transfer function

$$
G(z)=\frac{(z+1)}{(z+1 / 2)(z-1 / 2)}
$$

Determine its impulse response.

## Problems

3. Consider the second order time varying differential equation

$$
\sum_{i=0}^{2}\left(\alpha_{i} t+\beta_{i}\right) y^{(i)}(t)=0
$$

- Show that if $\beta_{2}=0$ and $\beta_{1} \neq \alpha_{2}$ then the Laplace transform provides a solution satisfying $y(0)=0$ and $\dot{y}(0)$ arbitrary.
- Show that if $\beta_{2}=0$ and $\beta_{1}=\alpha_{2}$ then the Laplace transform provides a solution with $y(0)$ and $\dot{y}(0)$ arbitrary.

4. From the previous problem, determine a second order time varying differential equation and the initial conditions such that the Laplace transform of its solution is

$$
\hat{y}(s)=\frac{1}{\sqrt{(s+1)(s+2)}}
$$

## Problems

## Problems

5. Consider $z \in \mathbb{C}$. Prove that the equality

$$
\frac{1}{1-z}=\sum_{i=0}^{\infty} z^{i}
$$

holds if and only if $|z|<1$. Using this result determine the function $f(t)$ defined for all $t \geq 0$ with Laplace transform given by:

- $\hat{f}(s)=\frac{1}{s\left(1-e^{-s}\right)}$.
- $\hat{f}(s)=\frac{1}{\left(e^{s}-e^{-s}\right)}$.
- $\hat{f}(s)=\frac{e^{-s}}{(s+1)\left(1-e^{-s}\right)}$.


## Problems

6. Given $A \in \mathbb{R}^{n \times n}$, determine :

- $\mathcal{Z}^{-1}\left\{(z I-A)^{-1}\right\}$.
- $\mathcal{Z}^{-1}\left\{z(z l-A)^{-1}\right\}$.
- The $\mathcal{Z}$ transform of $f(k):=\sum_{i=0}^{k} A^{i}, \forall k \geq 0$.

7. The bilinear transformation is defined by

$$
z=\frac{1+s}{1-s}
$$

- Show that the mapping of the region $\operatorname{Re}(s) \leq 0$ in the $s$-plane is the region $|z| \leq 1$ in the $z$-plane.
- Use this property to generalize the Routh criterion to deal with discrete time invariant linear systems.


## Problems

8. Consider the matrices $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$. Using the Laplace transform, show that the square matrix

$$
\Gamma:=\left[\begin{array}{ll}
A & B \\
0 & 0
\end{array}\right]
$$

is such that

$$
e^{\ulcorner t}=\left[\begin{array}{cc}
e^{A t} & \int_{0}^{t} e^{A t} B d t \\
0 & I
\end{array}\right]
$$

9. Define the contour $C$ to be used with the Nyquist criterion for discrete time systems stability analysis.

## Problems

10. Consider the time delay system

$$
\ddot{y}(t)+3 \dot{y}(t)+2 y(t)+\kappa y(t-T)=u(t)
$$

where $\kappa \geq 0$ and $T=0,1,2$. Using the Nyquist criterion, determine for each $T$ the values of $\kappa$ preserving asymptotic stability.
11. Consider a time delay system with transfer function

$$
H(s)=\frac{1}{s^{3}+4 s^{2}+4 s+\kappa e^{-T s}}
$$

where $\kappa, T \geq 0$. Determine the stability region ( $\kappa, T$ ) using:

- The Nyquist criterion.
- The Routh criterion adopting first and second order approximations to $e^{-T_{s}}$.


## Problems

12. Consider a time delay system with characteristic equation

$$
P(s)+\kappa e^{-T s}=0
$$

where $\kappa, T \geq 0$. Assuming the roots of $P(s)=0$ are in the region $\operatorname{Re}(s)<0$, using the Nyquist criterion show that asymptotic stability is preserved for all $T \geq 0$, whenever

$$
\max _{\omega \geq 0} \frac{\kappa}{|P(j \omega)|}<1
$$

Compare to the Nyquist criterion applied with the zero order approximation $e^{-T s}=1$.

