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Norms

Norms

@ Consider a linear continuous time invariant system with
transfer function

H(s) = C(sl — A)"1B+ D e Cr*m
where jw € D(H) for all w € R. The impulse response is
h(t) = Ce** B + Do(t) € R™*™

4

Norms based on either time response h(t) or frequency
response H(jw)
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@ Using the Parseval's theorem it is verified that

The following equality holds

| mthteyat) de = - [ Tu(hG) Hiw))d
0 0

s

@ It is important to notice that :

s the above equality still holds if h(t) and H(s) are replaced by
h(t)" and H(s)’ respectively. That is

(A,B,C,D) = (A, C',B'.D)
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@ Let S be a linear time invariant system with transfer function
(or state space representation) defined by matrices of
compatible dimensions, denoted as S = (A, B, C, D).

Lemma (H> norm)

The Hy norm of system S is given by

I1S|2 == /Ooo Tr(h(t) h(t)) dt = %/Ooo Tr(H(jw)™ H(jw))dw

o The above equalities hold whenever § is asymptotically stable,
that is

Jw€D(H), VweR
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H> norm

@ Important : ||S|l2 < oo if and only if D = 0. The Ha norm is

finite only for strictly proper systems. From the previous
Lemma we have

1S3 = / Tr (B'e"C'Ce™B) dt + Te(B'C'D)
0

+Tr(D' CB) + Tr(D'D) /m 5(t)2dt

o From Parseval’s theorem :

o0 1 o0
/ 5(t)dt = —/ dw = 400
0 ™ Jo

Then, ||S]|2 finite requires D = 0.
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@ For strictly proper time invariant systems the H, norm is
calculated as follows :

Lemma (H, norm calculation)
The following hold :

o ||S||3 = Tx(B’'P,B) where P, is the observability gramian :
P, = / eVt C CePtdt
0
o ||S||3 = Tr(CP.C’) where P. is the controllability gramian :

P, — / e BB et dt
0
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@ Other possibilities for H, norm calculation using LMI :
@ Bounding the observability gramian

ISI5 = jnf {Te(B'XB) = A'X+ XA+ C'C <0}
>

= sup{Tx(B'YB) : AY + YA+ C'C>0}
Y>0

o Bounding the controllability gramian

IS5 )lnfO{Tr(CXC’) . AX + XA + BB' < 0}
>

= sup {Tx(CYC') : AY + YA' + BB’ >0}
Y >0

Using LMI solvers, all these problems provide the H; norm of
the system S within a precision defined by the designer.
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o Let V € C™ be a complex matrix. The matrix
Q=V~veCm™nm

is Hermitian and positive semidefinite, that is :

o Q¥ =Qand v Qv >0 for all v € C™.
o The eigenvalues of Q satisfies \;(Q) >0 foralli=1,--- , m.
& The quantities

O','(V) = \/)‘I(Q) = \/AI(VNV) ) = 17" . m

are the singular values of V.
The quantity

©

Voo := maxi=1,... moi(V) = om(V)

is the oo-norm of V. Moreover ||V]|co = || V'] 0o-
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@ Let S be a linear time invariant system with transfer function
(or state space representation) defined by matrices of
compatible dimensions, denoted as S = (A, B, C, D).

Lemma (Hs norm)

The Hy, norm of system S is given by

[Slse := sup om(H(w))
weR

@ The above equality holds whenever § is asymptotically stable,
that is

JweDH), VweR
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@ Time domain interpretation : Consider the state space
representation of H(s) as

x(t) = Ax(t)+Bw(t), x(0)=0
z(t) = Cx(t)+ Dw(t)
where 0 € D(W). The output 2(s) = H(s)Ww(s) gives
/00 z(t)z(t)dt = % /00 w(jw)~ H(jw)~ H(jw)w(jw) dw
0 0 ~
2(jw)~2(jw)

< IS /0 " w(t) w(t)dt

Fact : [|S]loc <7 = [[2(t)]l2 < ~[w(t)l]2

11/32



CHAPTER Il - Stability and performance
000000000e0

Norms

H., norm

@ Using the quadratic Lyapunov function v(x) = x’ Px with
P > 0 and imposing

v(x(t)) < —z(t)z(t) +v*w(t)w(t), Vt>0

for some v > 0, the time integration from 0 to 400 provides

OOZ 'z — 92 OOW "'w
| zeyz0s -7 [ weywlar <o

yielding the conclusion that ||S|/~ < . On the other hand,
taking into account the state space representation of S we get

v(x(t)) = (Ax(t) + Bw(t)) Px(t) + x(t) P(Ax(t) + Bw(t))

12/32
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@ For a linear time invariant system with transfer function (or
state space representation) defined by matrices of compatible
dimensions, denoted as S = (A, B, C, D), the Hy, norm is
calculated as follows :

Lemma (Hs norm calculation)

The Hy, norm of system S is given by

AX+XA XB ('

2 . 7 . - /
IS]|5% = M7|Xn£0 T . uwl D" | <0
° ° —1

This problem can be solved with no big difficulty since it is

expressed by an LMI with respect to the variables 1 € R and
X =X eR™n",

13/32
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KYP Lemma

@ |s one of the most general results on frequency domain.
Consider a transfer function H(s) with state space
representation S = {A, B, C, D}, det(jwl — A) # 0,V w € R
and a symmetric matrix 1 of compatible dimension.

Lemma (KYP Lemma)

The transfer function H(s) satisfies the constraint

[H(j'W) ]NH[H(j'w) ] <0 YweR

if and only if there exists P = P’ such that

AP+ PA PB R E 0 |/
[ B'P o]*[c D]H[C D]<O

14 /32
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@ Sufficiency is simple to prove from the matrix function
A(s) == (sl — At

which allows us to verify that :

o AA(s) = -1+ sA(s) for all s € C.
o For any P = P’ € R™ " the matrix function

O(w) := A(Jjw)~ (AP + PA)A(jw) + A(jw)~ P + PA(jw)

satisfies Q(w) = 0 for all w € R.
s The following factorization of H(s) holds

R CRPARE

15/32
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@ Multiplying the second inequality of the KYP Lemma to the
left by [B’A(jw)™ /] and to the right by its transpose, from
the previous results we obtain

B'Q(w)B + [ H(j.w) ]Nn [ H(j.w) ] <0 YweR

and the first inequality of the KYP Lemma holds due to the
fact that Q(w) = 0 for all w € R.

@ The necessity states that if the first inequality of the KYP
Lemma holds for some matrix 1 then the second one also
holds for the same I for some matrix P = P’.

o If Ais asymptotically stable then P = P’ > 0 can be included
with no loss of generality whenever C'Tl» C > 0.

16 /32
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@ |t is seen that

—21 0 }

e A

The celebrated Small Gain Theorem is a mere particular case

of the KYP Lemma which provides

AP+ PA+ C'C PB+C’D} 0

6 <7 = | Yo oe b oh

for some P > 0. The Schur Complement gives the previous
LMI for Hy calculation with p = 42.

17/32
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Locus in the s-space

@ The is no difficulty to impose several constraints on H(jw)
characterized by different matrices ;,i = 1,--- , N. From the
KYP Lemma the inequalities

" I
. M; . <0 VweR
{ng)} [HOw)]
holds for all i =1,---, N if and only if there exist matrices

P; = P/ such that

AP+ P,A PB o 17 0o |/
[ B'P; 0 }*[c D]rL[C D}<O
holds for all i =1,--- | N.

18/32
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Locus in the s-space

@ Examples for SISO systems : H(jw) € C for each w € R
s Circle : |H(jw)| < forall w e R

() ) <o == | 0 D]

o Right hand side of C : Re(H(jw)) > 0 for all w € R
0 -1
=15
o Strip: a < Re(H(jw)) < B for all w € R

SEOESER
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State feedback

@ Consider the linear time invariant system :

+ Biw(t) 4+ Byu(t)

x(t) = Ax(t
Cx(t) + Diw(t) + Dyu(t)

)
z(t) = (1)
u(t) = Kx(t)

The closed loop transfer function is given by
H(s) = (C + DyK)(sl — (A+ BoK))™ 1By + Dy

The determination of matrix K using LMIs is related to the
transfer function G(s) = H(s)', given by

G(s) = Bj(sl — (A+ BoK))Y(C + D,K) + D}

20 /32
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State feedback

@ Given matrices Iy, -+ , My, the inequalities

{Gé‘w) r”"[ 66 ] <0 wek

for i=1,---, N are satisfied if there exists a matrix P = P’
such that

(A+ ByK)P + P(A+ ByK)  P(C + DyK)
(C + DrK)P 0 +

o 17 0o |/
*[B{ Di]n"[Bi D{]<°
holds for all i =1,--- , N.

21/32
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State feedback

@ Assuming that all matrices Iy, --- , 1y are such that

0
[0 Bl]l'l,-[Bi

] >0,i=1,---,N
the asymptotical stability of the closed loop system A+ By K
is assured by the linear constraint P > 0.

@ The previous inequalities expressed in terms of the matrix
variables (P > 0, K) are converted into LMIs with respect to
the matrix variables (P > 0, L) where

K=LP !

Since P can not depend on the index i = 1,--- , N the
necessity part of the KYP Lemma is lost. For N =1 the
necessity obviously holds.
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@ Systems with special structure - Linear part plus feedback

el

A

State space realization
x(t) = Ax(t)+ Bw(t)
z(t) = Cx(t)+ Dw(t)
w(t) = Az(t), Ae=

= includes a priori information about the structure of A

23 /32
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@ Assuming that

/
27n[4] 0. vaes

then multiplying to the left by z’ and to the right by z and
using the fact that w = Az we conclude that

!/
2] 7]z
z z
for all (w, z) of appropriate dimensions such that w = Az.
@ On the other hand, considering the Lyapunov function
vix)=x'Px, P=P >0

24 /32
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and imposing that its time derivative along any trajectory of the
system under consideration satisfies

o+ [ ][] <

asymptotic stability is preserved for all A € =. The key point on
this algebraic manipulation is that the equality

HEEH

and the KYP Lemma provide the next important result.

25 /32
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Lemma (Stability)

Assume that 0 € =. The previous feedback structure is stable for
all A € = provided there exists a symmetric matrix 1 such that

iy | ] by ] <0 e

30[4]z0. vacs

and

@ The assumption 0 € = is necessary since P = P’ must be
positive definite in order to be used in the Lyapunov function.

@ Both constraints are convex (linear) with respect to I1.

26 /32
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@ Important aspects: Some situations can be dealt with no
particular difficulty :

@ The classical H,, stability condition is obtained if 1 is imposed
to be )
_| =10
=[]
for some v > 0. Asymptotic stability is preserved whenever

IH(S) oo <7y 1Alle <777

o Matrix I can be parameter dependent, that is [1 = (A).

@ From the KYP Lemma, matrix P can also be parameter
dependent, that is P = P(A).

s For polytopic systems with = = co{Aq,--- , Ay} matrices
(P; > 0,1;) can be used.

27 /32
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1. Consider the following asymptotically stable transfer functions

— (s+2)

o H(s) = (s?+2ss+2)(s+1)
— (s=2)

° H(s) = mrsmaerm
H(s) = (s—2)°

° H(s) = wrsaem

Determine the Hy norm of each transfer function using
gramians and a numerical routine of LMIsolver.

2. Consider the following asymptotically stable transfer functions

+2

o H(s) = (52+2(ss+2))(s+1)
_ 2

° H(s) = s

- (s—2)°
o H(s) =1+ (5712512)(s+1)
Determine the H,, norm of each transfer function using the
singular value diagram and a numerical routine of LMIsolver.

28 /32
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3. Consider a linear plant with transfer function H(s) plus a
nonlinear feedback w(t) = A(z(t)). Show that asymptotical
stability is preserved whenever

[H(S)lo <7 s A(2)A(2) <7722z

4. Use the solution of the previous problem to verify that the
origin for a SISO system defined by

H(s) =

(s2+3s+3)(s—1) [ 1-eF% z>0
(s+1)3  A2) = ~1+4+e?/* z<0

is globally asymptotically stable.

29 /32
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5. Consider a linear plant with transfer function H(s) plus a
linear feedback w(t) = —dz(t) where § € R. For H(s) given

by
—1)(s—2
ey - - Ds=2)
(s+1)%(s+4)
determine the upper bound d,,x such that asymptotic
stability is preserved for all 0 < § < §pax using :

@ The Hy theory
o The Routh criterion.

Compare the obtained results from the root locus plot (with
respect to d) of the closed loop system.

30/32
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6. Consider the function

efsT)

o Is it possible to determine ||7(s)|/oc ? Why ?
o In the affirmative case, determine ||f )| oo-

<.
7. Consider a time delay system with characteristic equation

P(s) 4 ke~ ¢ = 0 where x, T > 0. Using the previous result
show that asymptotic stability is preserved whenever

o |s it possible to determine

RS

Y a— 1
P(s) +rl. "

|

31/32
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8. Consider H(s) and G(s) two asymptotically stable transfer
functions. Show that the following relations hold :

o [[H(s)G(s)ll2 < 1H(s)lloo ]| G(s)lI2
o [[H(s)G(s)lloe < [IH(5)loolI G ()

9. Verify the results of the previous problem for

(s—1)
(s+1)2

(s+1)*
(s+2)5°

H(s) = G(s) =

10. Determine numerically the values of |G(s)||2 and ||G(5)]|co
for the transfer function

e—Ts

G(s)

defined with k =1/2 and T = 2.

T B 14s2 1 4s + re 1

32/32
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