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CHAPTER III - Stability and performance

Norms

Norms

Consider a linear continuous time invariant system with
transfer function

H(s) = C (sI − A)−1B + D ∈ C
r×m

where jω ∈ D(H) for all ω ∈ R. The impulse response is

h(t) = CeAtB + Dδ(t) ∈ R
r×m

⇓

Norms based on either time response h(t) or frequency
response H(jω)
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Norms

H2 norm

Using the Parseval’s theorem it is verified that

Fact

The following equality holds

∫
∞

0
Tr(h(t)′h(t)) dt =

1

π

∫
∞

0
Tr(H(jω)∼H(jω))dω

It is important to notice that :

the above equality still holds if h(t) and H(s) are replaced by
h(t)′ and H(s)′ respectively. That is

(A,B,C ,D) =⇒ (A′,C ′,B ′,D ′)
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Norms

H2 norm

Let S be a linear time invariant system with transfer function
(or state space representation) defined by matrices of
compatible dimensions, denoted as S = (A,B ,C ,D).

Lemma (H2 norm)

The H2 norm of system S is given by

‖S‖22 :=

∫
∞

0
Tr(h(t)′h(t)) dt =

1

π

∫
∞

0
Tr(H(jω)∼H(jω))dω

The above equalities hold whenever S is asymptotically stable,
that is

jω ∈ D(H) , ∀ ω ∈ R
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Norms

H2 norm

Important : ‖S‖2 < ∞ if and only if D = 0. The H2 norm is
finite only for strictly proper systems. From the previous
Lemma we have

‖S‖22 =

∫
∞

0
Tr

(

B ′eA
′tC ′CeAtB

)

dt +Tr(B ′C ′D)

+Tr(D ′CB) + Tr(D ′D)

∫
∞

0
δ(t)2dt

From Parseval’s theorem :
∫

∞

0

δ(t)2dt =
1

π

∫
∞

0

dω = +∞

Then, ‖S‖2 finite requires D = 0.
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Norms

H2 norm

For strictly proper time invariant systems the H2 norm is
calculated as follows :

Lemma (H2 norm calculation)

The following hold :

‖S‖22 = Tr(B ′PoB) where Po is the observability gramian :

Po =

∫
∞

0

eA
′tC ′CeAtdt

‖S‖22 = Tr(CPcC
′) where Pc is the controllability gramian :

Pc =

∫
∞

0

eAtBB ′eA
′tdt
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Norms

H2 norm

Other possibilities for H2 norm calculation using LMI :

Bounding the observability gramian

‖S‖22 = inf
X>0

{Tr(B ′XB) : A′X + XA + C ′C < 0}

= sup
Y>0

{Tr(B ′YB) : A′Y + YA+ C ′C > 0}

Bounding the controllability gramian

‖S‖22 = inf
X>0

{Tr(CXC ′) : AX + XA′ + BB ′ < 0}

= sup
Y>0

{Tr(CYC ′) : AY + YA′ + BB ′ > 0}

Using LMI solvers, all these problems provide the H2 norm of
the system S within a precision defined by the designer.
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Norms

H∞ norm

Let V ∈ C
r×m be a complex matrix. The matrix

Q = V∼V ∈ C
m×m

is Hermitian and positive semidefinite, that is :

Q∼ = Q and v∼Qv ≥ 0 for all v ∈ Cm.
The eigenvalues of Q satisfies λi (Q) ≥ 0 for all i = 1, · · · ,m.
The quantities

σi (V ) :=
√

λi (Q) =
√

λi (V∼V ) , i = 1, · · · ,m

are the singular values of V .
The quantity

‖V ‖∞ := maxi=1,··· ,mσi (V ) := σM(V )

is the ∞-norm of V . Moreover ‖V ‖∞ = ‖V ′‖∞.
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Norms

H∞ norm

Let S be a linear time invariant system with transfer function
(or state space representation) defined by matrices of
compatible dimensions, denoted as S = (A,B ,C ,D).

Lemma (H∞ norm)

The H∞ norm of system S is given by

‖S‖∞ := sup
ω∈R

σM(H(jω))

The above equality holds whenever S is asymptotically stable,
that is

jω ∈ D(H) , ∀ ω ∈ R
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Norms

H∞ norm

Time domain interpretation : Consider the state space
representation of H(s) as

ẋ(t) = Ax(t) + Bw(t) , x(0) = 0

z(t) = Cx(t) + Dw(t)

where 0 ∈ D(ŵ). The output ẑ(s) = H(s)ŵ (s) gives

∫
∞

0
z(t)′z(t)dt =

1

π

∫
∞

0
ŵ(jω)∼H(jω)∼H(jω)ŵ (jω)
︸ ︷︷ ︸

ẑ(jω)∼ ẑ(jω)

dω

≤ ‖S‖2
∞

∫
∞

0
w(t)′w(t)dt

Fact : ‖S‖∞ ≤ γ ⇐⇒ ‖z(t)‖2 ≤ γ‖w(t)‖2
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Norms

H∞ norm

Using the quadratic Lyapunov function v(x) = x ′Px with
P > 0 and imposing

v̇(x(t)) ≤ −z(t)′z(t) + γ2w(t)′w(t) , ∀t ≥ 0

for some γ ≥ 0, the time integration from 0 to +∞ provides

∫
∞

0
z(t)′z(t)dt − γ2

∫
∞

0
w(t)′w(t)dt ≤ 0

yielding the conclusion that ‖S‖∞ ≤ γ. On the other hand,
taking into account the state space representation of S we get

v̇(x(t)) = (Ax(t) + Bw(t))′Px(t) + x(t)′P(Ax(t) + Bw(t))
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Norms

H∞ norm

For a linear time invariant system with transfer function (or
state space representation) defined by matrices of compatible
dimensions, denoted as S = (A,B ,C ,D), the H∞ norm is
calculated as follows :

Lemma (H∞ norm calculation)

The H∞ norm of system S is given by

‖S‖2
∞

:= inf
µ,X>0






µ :





A′X + XA XB C ′

• −µI D ′

• • −I



 < 0







This problem can be solved with no big difficulty since it is
expressed by an LMI with respect to the variables µ ∈ R and
X = X ′ ∈ R

n×n.
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KYP Lemma

KYP Lemma

Is one of the most general results on frequency domain.
Consider a transfer function H(s) with state space
representation S = {A,B ,C ,D}, det(jωI − A) 6= 0,∀ ω ∈ R

and a symmetric matrix Π of compatible dimension.

Lemma (KYP Lemma)

The transfer function H(s) satisfies the constraint

[
I

H(jω)

]∼

Π

[
I

H(jω)

]

< 0 ∀ω ∈ R

if and only if there exists P = P ′ such that

[
A′P + PA PB

B ′P 0

]

+

[
0 I

C D

]′

Π

[
0 I

C D

]

< 0
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KYP Lemma

KYP Lemma

Sufficiency is simple to prove from the matrix function

A(s) := (sI − A)−1

which allows us to verify that :

AA(s) = −I + sA(s) for all s ∈ C.
For any P = P ′ ∈ R

n×n the matrix function

Q(ω) := A(jω)∼(A′P + PA)A(jω) +A(jω)∼P + PA(jω)

satisfies Q(ω) = 0 for all ω ∈ R.
The following factorization of H(s) holds

[
0 I

C D

] [
A(s)B

I

]

=

[
I

H(s)

]

, ∀s ∈ C
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KYP Lemma

KYP Lemma

Multiplying the second inequality of the KYP Lemma to the
left by [B ′A(jω)∼ I ] and to the right by its transpose, from
the previous results we obtain

B ′Q(ω)B +

[
I

H(jω)

]∼

Π

[
I

H(jω)

]

< 0 ∀ω ∈ R

and the first inequality of the KYP Lemma holds due to the
fact that Q(ω) = 0 for all ω ∈ R.

The necessity states that if the first inequality of the KYP
Lemma holds for some matrix Π then the second one also
holds for the same Π for some matrix P = P ′.

If A is asymptotically stable then P = P ′ > 0 can be included
with no loss of generality whenever C ′Π22C ≥ 0.
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H∞ theory

Comparison

It is seen that

‖H(s)‖∞ < γ ⇐⇒ Π =

[
−γ2I 0
0 I

]

The celebrated Small Gain Theorem is a mere particular case
of the KYP Lemma which provides

‖H(s)‖∞ < γ ⇐⇒

[
A′P + PA+ C ′C PB + C ′D

B ′P + D ′C D ′D − γ2I

]

< 0

for some P > 0. The Schur Complement gives the previous
LMI for H∞ calculation with µ = γ2.
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Locus in the frequency domain

Locus in the s-space

The is no difficulty to impose several constraints on H(jω)
characterized by different matrices Πi , i = 1, · · · ,N. From the
KYP Lemma the inequalities

[
I

H(jω)

]∼

Πi

[
I

H(jω)

]

< 0 ∀ω ∈ R

holds for all i = 1, · · · ,N if and only if there exist matrices
Pi = P ′

i such that

[
A′Pi + PiA PiB

B ′Pi 0

]

+

[
0 I

C D

]′

Πi

[
0 I

C D

]

< 0

holds for all i = 1, · · · ,N.
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Locus in the frequency domain

Locus in the s-space

Examples for SISO systems : H(jω) ∈ C for each ω ∈ R

Circle : |H(jω)| < γ for all ω ∈ R

H(jω)∗H(jω) < γ2 ⇐⇒ Π =

[
−γ2 0
0 1

]

Right hand side of C : Re(H(jω)) > 0 for all ω ∈ R

Π =

[
0 −1
−1 0

]

Strip : α < Re(H(jω)) < β for all ω ∈ R

Π1 =

[
−2β 1
1 0

]

, Π2 =

[
2α −1
−1 0

]
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Control design using LMIs

State feedback

Consider the linear time invariant system :

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = Cx(t) + D1w(t) +D2u(t)

u(t) = Kx(t)

The closed loop transfer function is given by

H(s) = (C +D2K )(sI − (A+ B2K ))−1B1 + D1

The determination of matrix K using LMIs is related to the
transfer function G (s) = H(s)′, given by

G (s) = B ′

1(sI − (A + B2K )′)−1(C + D2K )′ + D ′

1
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Control design using LMIs

State feedback

Given matrices Π1, · · · ,ΠN , the inequalities

[
I

G (jω)

]∼

Πi

[
I

G (jω)

]

< 0 ∀ω ∈ R

for i = 1, · · · ,N are satisfied if there exists a matrix P = P ′

such that
[
(A+ B2K )P + P(A+ B2K )′ P(C + D2K )′

(C + D2K )P 0

]

+

+

[
0 I

B ′

1 D ′

1

]′

Πi

[
0 I

B ′

1 D ′

1

]

< 0

holds for all i = 1, · · · ,N.
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Control design using LMIs

State feedback

Assuming that all matrices Π1, · · · ,ΠN are such that

[
0 B1

]
Πi

[
0
B ′

1

]

≥ 0 , i = 1, · · · ,N

the asymptotical stability of the closed loop system A+ B2K

is assured by the linear constraint P > 0.

The previous inequalities expressed in terms of the matrix
variables (P > 0,K ) are converted into LMIs with respect to
the matrix variables (P > 0, L) where

K = LP−1

Since P can not depend on the index i = 1, · · · ,N the
necessity part of the KYP Lemma is lost. For N = 1 the
necessity obviously holds.
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Stability

Stability

Systems with special structure - Linear part plus feedback

H(s)

∆

State space realization

ẋ(t) = Ax(t) + Bw(t)

z(t) = Cx(t) + Dw(t)

w(t) = ∆z(t) , ∆ ∈ Ξ

Ξ includes a priori information about the structure of ∆
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Stability

Stability

Assuming that

[
∆
I

]′

Π

[
∆
I

]

≥ 0 , ∀ ∆ ∈ Ξ

then multiplying to the left by z ′ and to the right by z and
using the fact that w = ∆z we conclude that

[
w

z

]′

Π

[
w

z

]

≥ 0

for all (w , z) of appropriate dimensions such that w = ∆z .

On the other hand, considering the Lyapunov function

v(x) = x ′Px , P = P ′ > 0
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Stability

Stability

and imposing that its time derivative along any trajectory of the
system under consideration satisfies

v̇(x) +

[
w

z

]′

Π

[
w

z

]

< 0

asymptotic stability is preserved for all ∆ ∈ Ξ. The key point on
this algebraic manipulation is that the equality

[
w

z

]

=

[
0 I

C D

] [
x

w

]

and the KYP Lemma provide the next important result.
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Stability

Stability

Lemma (Stability)

Assume that 0 ∈ Ξ. The previous feedback structure is stable for

all ∆ ∈ Ξ provided there exists a symmetric matrix Π such that

[
I

H(jω)

]∼

Π

[
I

H(jω)

]

< 0 ∀ω ∈ R

and [
∆
I

]′

Π

[
∆
I

]

≥ 0 , ∀ ∆ ∈ Ξ

The assumption 0 ∈ Ξ is necessary since P = P ′ must be
positive definite in order to be used in the Lyapunov function.

Both constraints are convex (linear) with respect to Π.
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Stability

Stability

Important aspects: Some situations can be dealt with no
particular difficulty :

The classical H∞ stability condition is obtained if Π is imposed
to be

Π =

[
−γ2I 0
0 I

]

for some γ > 0. Asymptotic stability is preserved whenever

‖H(s)‖∞ < γ , ‖∆‖∞ ≤ γ−1

Matrix Π can be parameter dependent, that is Π = Π(∆).
From the KYP Lemma, matrix P can also be parameter
dependent, that is P = P(∆).
For polytopic systems with Ξ = co{∆1, · · · ,∆N} matrices
(Pi > 0,Πi) can be used.
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Problems

Problems

1. Consider the following asymptotically stable transfer functions

H(s) = (s+2)
(s2+2s+2)(s+1)

H(s) = (s−2)
(s2+2s+2)(s+1)

H(s) = (s−2)2

(s2+2s+2)(s+1)

Determine the H2 norm of each transfer function using
gramians and a numerical routine of LMIsolver.

2. Consider the following asymptotically stable transfer functions

H(s) = (s+2)
(s2+2s+2)(s+1)

H(s) = (s−2)
(s2+2s+2)(s+1)

H(s) = 1 + (s−2)2

(s2+2s+2)(s+1)

Determine the H∞ norm of each transfer function using the
singular value diagram and a numerical routine of LMIsolver.
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Problems

Problems

3. Consider a linear plant with transfer function H(s) plus a
nonlinear feedback w(t) = ∆(z(t)). Show that asymptotical
stability is preserved whenever

‖H(s)‖∞ < γ , ∆(z)′∆(z) ≤ γ−2z ′z

4. Use the solution of the previous problem to verify that the
origin for a SISO system defined by

H(s) =
(s2 + 3s + 3)(s − 1)

(s + 1)3
, ∆(z) =

{
1− e−z/4, z ≥ 0

−1 + ez/4, z ≤ 0

is globally asymptotically stable.
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Problems

Problems

5. Consider a linear plant with transfer function H(s) plus a
linear feedback w(t) = −δz(t) where δ ∈ R. For H(s) given
by

H(s) =
(s − 1)(s − 2)

(s + 1)2(s + 4)

determine the upper bound δmax such that asymptotic
stability is preserved for all 0 ≤ δ ≤ δmax using :

The H∞ theory
The Routh criterion.

Compare the obtained results from the root locus plot (with
respect to δ) of the closed loop system.
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Problems

Problems

6. Consider the function

f̂ (s) =
(1− e−sT )

s

Is it possible to determine ‖f̂ (s)‖∞ ? Why ?
In the affirmative case, determine ‖f̂ (s)‖∞.

Is it possible to determine
∥
∥
∥
e−Ts

s

∥
∥
∥
∞

?

7. Consider a time delay system with characteristic equation
P(s) + κe−Ts = 0 where κ,T ≥ 0. Using the previous result
show that asymptotic stability is preserved whenever

T

∥
∥
∥
∥

κs

P(s) + κ

∥
∥
∥
∥
∞

< 1
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Problems

Problems

8. Consider H(s) and G (s) two asymptotically stable transfer
functions. Show that the following relations hold :

‖H(s)G(s)‖2 ≤ ‖H(s)‖∞‖G(s)‖2
‖H(s)G(s)‖∞ ≤ ‖H(s)‖∞‖G(s)‖∞

9. Verify the results of the previous problem for

H(s) =
(s + 1)4

(s + 2)5
, G (s) =

(s − 1)

(s + 1)2

10. Determine numerically the values of ‖G (s)‖2 and ‖G (s)‖∞
for the transfer function

G (s) =
e−Ts

s3 + 4s2 + 4s + κe−Ts

defined with κ = 1/2 and T = 2.
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