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CHAPTER IV - Nonlinear systems

Lur’e systems

Lur’e systems

Lur’e systems are those presenting the following state space
model

ẋ(t) = Ax(t) + Bw(t)

z(t) = Cx(t) + Dw(t)

w(t) = −φ(z(t))

where x(t) ∈ R
n, w(t) ∈ Rm, z(t) ∈ R

r and

φ(·) : R
r → R

m

is a vector-valued nonlinear function belonging to some set.
The above model is a linear system with impulse response
L(h(t)) = C (sI − A)−1B + D with a nonlinear feedback
defined by w(t) = −φ(z(t)). The linear part is supposed to
be asymptotically stable.
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Passivity

Passivity

Consider the linear part of a previously defined Lur’e system
with r = m. Passivity and Positive Realness are equivalent
concepts.

Definition (Time domain characterization)

It is said to be Passive if for x(0) = 0 the following inequality holds

∫
T

0
z(t)′w(t)dt ≥ 0 , ∀ T ≥ 0

Definition (Frequency domain characterization)

Its transfer function is Positive Real. That is, it satisfies

H(jω)∼ + H(jω) ≥ 0 , ∀ ω ∈ R
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Passivity

Passivity

Passivity can be verified with LMIs. Using the Lyapunov
function v(x) = x ′Px with P = P ′ > 0, from the time domain
characterization we have that

∫
T

0
(w(t)′z(t) + z(t)′w(t))dt > v(x(T )) > 0

implies (strictly) passivity. Hence, with x(0) = 0 we have to
impose for all (x ,w) 6= (0, 0) that

v̇(x) < w ′z + z ′w

⇑

(Ax + Bw)′
︸ ︷︷ ︸

ẋ ′

Px+x ′P (Ax + Bw)
︸ ︷︷ ︸

ẋ

< w ′ (Cx + Dw)
︸ ︷︷ ︸

z

+(Cx + Dw)′
︸ ︷︷ ︸

z ′

w
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Passivity

Passivity

Main result on Passivity and Positive Real transfer functions :

Theorem (Passivity and Positive Real)

The transfer function H(s) = C (sI − A)−1B + D is (strictly)
Positive Real if and only if there exists P = P ′ > 0 such that

[
A′P + PA PB − C ′

B ′P − C −D − D ′

]

< 0

Sufficiency follows from the previous quadratic Lyapunov
function.

Necessity follows from the KYP Lemma.
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Passivity

Passivity

Indeed, the transfer function H(s) is positive real whenever

[
I

H(jω)

]∼

Π

[
I

H(jω)

]

< 0 , ∀ ω ∈ R

where the multiplier Π is given by

Π =

[
0 −I
−I 0

]

Hence, the KYP Lemma provides the necessity part of the
previous theorem.

Passivity is more restrictive than simple asymptotical stability.
However, stability is preserved for all φ(·) such that φ(0) = 0
and w ′z = −φ(z)′z ≤ 0.
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Passivity

Passivity

Important remarks :

The previous theorem implies D + D ′ > 0 that is, H(s) must
be proper. This is required for extended passivity. Passivity
(not extended) is imposed by making D → 0 and

A′P + PA < 0 , PB = C ′ , P > 0

in this case, the LMI given before is not strict.
For SISO systems, Passivity is equivalent to

Re(H(jω)) ≥ 0 , ∀ω ∈ R

For SISO systems, the graphic of the nonlinear function
φ(z) : R → R with respect to z ∈ R must belong to the first
and third quadrants.
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Passivity

Passivity

For SISO systems stability is preserved whenever the locus of
the linear part H(s) and the graphic of the nonlinear part are
as indicated :

Im(H(jω))× Re(H(jω)) φ(z)× z

9 / 24



CHAPTER IV - Nonlinear systems

Popov criterion

Popov criterion

For simplicity we only consider SISO systems. The basic
stability criterion applies to Lur’e systems with r = m = 1.
The number of states n is arbitrary. The nonlinear function:

satisfies the condition φ(0) = 0.
belongs to the sector (0, κ > 0) that is (φ(z) − κz)φ(z) ≤ 0.

φ(z)× z

κz
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Popov criterion

Popov criterion

Quadratic Lyapunov function : Consider v(x) = x ′Px with
P = P ′ > 0 and impose

v̇(x) < (φ(z)− κz)′φ(z) + φ(z)′(φ(z)− κz)

Taking into account that w = −φ(z), this inequality is
enforced by the existence of P > 0 such that

[
A′P + PA PB − κC ′

B ′P − κC −(I + κD)′ − (I + κD)

]

< 0

From the Passivity Theorem this is possible if and only if the
transfer function G (s) := κH(s) + I is strictly positive real.
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Popov criterion

Popov criterion

Hence global asymptotic stability is preserved whenever

Re(H(jω)) > −
1

κ
, ∀ ω ∈ R

Im(H(jω))× Re(H(jω))

−1/κ

This condition is more stringent than the Nyquist criterion
applied to the linear system defined by φ(z) = βz with
0 ≤ β < κ.
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Popov criterion

Popov criterion

We now assume that the transfer function of the Lur’e system
is strictly proper, that is D = 0. We introduce the
Popov-Lyapunov function :

V (x) = x ′Px + 2θ

∫
z

0
φ(ξ)dξ

where P = P ′ > 0 and θ ≥ 0. It is important to keep in mind
that, under our assumptions, this function is positive definite
and radially unbounded. Hence is time derivative is given by

V̇ (x) = ẋ ′Px + x ′Pẋ + θφ(z)′ż + θż ′φ(z)

= (Ax + Bw)′(Px − θC ′w) +

+(x ′P − θw ′C )(Ax + Bw)
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Popov criterion

Popov criterion

Finally, the constraint V̇ (x) < (w + κz)′w + w ′(w + κz) is
assured from the existence of P > 0 and θ ≥ 0 satisfying the
LMI

[
A′P + PA PB − θA′C ′ − κC ′

B ′P − θCA− κC −(I + θCB)− (I + θCB)′

]

< 0

Once again, applying the Passivity Theorem this is possible if
and only if the transfer function

G (s) = (κC + θCA)(sI − A)−1B + (I + θCB)

is strictly positive real. The Popov criterion follows from the
equality A(sI − A)−1 = −I + s(sI − A)−1 which yields

G (s) = (κ+ sθ)H(s) + I
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Popov criterion

Popov criterion

The previous calculations lead to the celebrated Popov
criterion :

Theorem (Popov criterion)

Stability is preserved whenever there exits a scalar θ ≥ 0 such that

Re

((

1 + j
θ

κ
ω

)

H(jω)

)

> −
1

κ

holds for all ω ∈ R.

Notice that in the affirmative case the parameter θ ≥ 0 is
readily determined and allows the construction of the
Popov-Lyapunov function V (x).
The previous and more conservative stability condition is
obtained by imposing θ = 0 implying that V (x) = v(x).

15 / 24



CHAPTER IV - Nonlinear systems

Frequency domain interpretation

Frequency domain interpretation

Simple algebraic manipulations show that the Popov stability
condition can be rewritten as

Re(H(jω)) −
θ

κ
ωIm(H(jω)) > −

1

κ
∀ω ∈ R

ωIm(H(jω))× Re(H(jω))

1/θ

−1/κ

Notice that the complex plane used to apply the Popov
criterion in not the same adopted by the Nyquist criterion.

16 / 24



CHAPTER IV - Nonlinear systems

Example

Example

Consider the asymptotically stable transfer function

H(s) =
s + 2

s4 + 6s3 + 13s2 + 14s + 6

We have obtained the following values :

Nyquist criterion applied for φ(z) linear provides κ ≈ 17.36.
Popov criterion with quadratic Lyapunov function applied for
φ(z) nonlinear provides κ ≈ 9.38.
Propov criterion applied for φ(z) nonlinear provides κ ≈ 17.33.

This example puts in evidence the quality of the result
obtained from the Popov-Lyapunov function yielding the
celebrated Popov criterion.
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Sector optimization using LMIs

Sector optimization

Using the LMI representation of the Popov criterion, there is
no difficulty to solve the convex problem

sup
P>0,θ>0,κ>0

κ

subject to

[
A′P + PA PB − θA′C ′ − κC ′

B ′P − θCA− κC −(I + θCB)− (I + θCB)′

]

< 0

which provides :

The parameters P > 0 and θ > 0 of the function V (x).
The biggest sector defined by the optimal value of κ > 0 for
which the Popov criterion holds.
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Control design

State feedback

Consider the Lur’e system with state feedback :

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = Cx(t)

u(t) = Kx(t)

w(t) = −φ(z(t))

the goal is to determine the state feedback gain such that the
sector defined by κ > 0 is maximized. The Popov criterion is
used to check global asymptotic stability.
The key observation is that the Popov criterion can be
rewritten in terms of W := P−1 > 0.
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Control design

State feedback

with products of variables θW and κW , that is

[
AW +WA′ B − θWA′C ′ − κWC ′

B ′ − θCAW − κCW −(I + θCB)− (I + θCB)′

]

< 0

However, from the definition of the new variable K = LW−1

the closed-loop system is such that

AW → (A+ B2K )W = AW + B2L

B → B1

The maximization of κ is an LMI with respect to matrices
W > 0 and L for θ > 0 and κ > 0 fixed.
The optimization requires a two-dimensional parameter search.
Setting θ = 0, the nonlinear term κW remains.
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Problems

Problems

1. Consider the nonlinear system ẋ(t) = Aφ(x(t)) where
A ∈ R

n×n and φ(·) : R
n → R

n is such that

φ(0) = 0 , φ(x) = [φ1(x1), · · · , φn(xn)]
′

Show that the equilibrium point x = 0 is GAS wherever there
exists a diagonal positive matrix P such that A′P + PA < 0.
To this end, make use of the so called Persidiskii-Lyapunov
function

v(x) =

n∑

i=1

Pii

∫
xi

0
φi (ξ)dξ

and verify under which conditions it is positive definite and
radially unbounded.
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Problems

Problems

2. Consider a Lur’e system with

H(s) =
s + 10

(s + 1)(s2 + 2s + 2)

and determine:

The maximum value of κ > 0 such that stability is preserved
with φ(z) linear.
The maximum value of κ > 0 such that stability is preserved
with φ(z) nonlinear, provided by a quadratic Lyapunov
function.
The maximum value of κ > 0 such that stability is preserved
with φ(z) nonlinear, provided by the Popov-Lyapunov function.
The maximum value of κ > 0 using H∞ theory.
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Problems

Problems

3. Consider a linear plant with transfer function H(s) plus a
linear feedback w(t) = −δz(t) where δ ∈ R. For H(s) given
by

H(s) =
(s − 1)(s − 2)

(s + 1)2(s + 4)

determine the upper bound δmax such that asymptotic
stability is preserved for all 0 ≤ δ ≤ δmax using :

The H∞ theory
The Popov criterion
The Routh criterion

Compare the obtained results from the root locus plot (with
respect to δ) of the closed-loop system.
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Problems

Problems

4. Consider a MIMO Lur’e system such that

H(s) = C (sI − A)−1B ∈ C
m×m

Determine :

the stability conditions provided by a quadratic Lyapunov
function.
the stability conditions provided by a Popov-Lyapunov type
function.

5. Consider a SISO Lur’e system. Generalize the Popov criterion
to cope with nonlinear functions belonging to the sector
(−κ, κ).
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