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Lur'e systems

Lur'e systems

@ Lur'e systems are those presenting the following state space

model
x(t) = Ax(t)+ Bw(t)
z(t) = Cx(t)+ Dw(t)
w(t) = —o(z(t))
where x(t) € R", w(t) € R™, z(t) € R" and

o) : R"—R™
is a vector-valued nonlinear function belonging to some set.
The above model is a linear system with impulse response
L(h(t)) = C(sl — A)~1B + D with a nonlinear feedback
defined by w(t) = —¢(z(t)). The linear part is supposed to
be asymptotically stable.
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Passivity

@ Consider the linear part of a previously defined Lur'e system
with r = m. Passivity and Positive Realness are equivalent
concepts.

Definition (Time domain characterization)

It is said to be Passive if for x(0) = 0 the following inequality holds

i
/ 2(t)w(t)dt >0, ¥ T >0
0

Definition (Frequency domain characterization)

Its transfer function is Positive Real. That is, it satisfies

H(jjw)~ + Hjw) >0, YVweR
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@ Passivity can be verified with LMIs. Using the Lyapunov
function v(x) = x'Px with P = P’ > 0, from the time domain
characterization we have that

-
/0 (w(t) z(t) + z(t) w(t))dt > v(x(T)) >0

implies (strictly) passivity. Hence, with x(0) = 0 we have to
impose for all (x,w) # (0,0) that

v(x) < wz+Zw

T
(Ax + Bw)' Px+x'P (Ax + Bw) < w' (Cx + Dw) + (Cx + Dw)' w
—_— —_——
X! X z z/
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@ Main result on Passivity and Positive Real transfer functions :

Theorem (Passivity and Positive Real)

The transfer function H(s) = C(sl — A)™1B + D is (strictly)
Positive Real if and only if there exists P = P’ > 0 such that

AP+PA PB—C

Bp—c -p-p | <Y

@ Sufficiency follows from the previous quadratic Lyapunov
function.

@ Necessity follows from the KYP Lemma.

6 /24



CHAPTER IV - Nonlinear systems
000®00

Passivity

Passivity

@ Indeed, the transfer function H(s) is positive real whenever

[y | [ oy ] <0 vore

where the multiplier I1 is given by

=[]

Hence, the KYP Lemma provides the necessity part of the
previous theorem.

@ Passivity is more restrictive than simple asymptotical stability.
However, stability is preserved for all ¢(-) such that ¢(0) =0
and w'z = —¢(z)'z < 0.
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@ Important remarks :

@ The previous theorem implies D + D’ > 0 that is, H(s) must
be proper. This is required for extended passivity. Passivity
(not extended) is imposed by making D — 0 and

AP+PA<O0,PB=C,P>0

in this case, the LMI given before is not strict.
@ For SISO systems, Passivity is equivalent to

Re(H(jw)) >0, YweR

o For SISO systems, the graphic of the nonlinear function
#(z) : R — R with respect to z € R must belong to the first
and third quadrants.
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Passivity

@ For SISO systems stability is preserved whenever the locus of
the linear part H(s) and the graphic of the nonlinear part are
as indicated :

Im(H(jw)) x Re(H(jw)) d(z) x z
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Popov criterion

@ For simplicity we only consider SISO systems. The basic
stability criterion applies to Lur'e systems with r = m = 1.
The number of states n is arbitrary. The nonlinear function:

o satisfies the condition ¢(0) = 0.
o belongs to the sector (0, x > 0) that is (¢(z) — kz)¢p(z) < 0.

4

o(z) x z
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Popov criterion

@ Quadratic Lyapunov function : Consider v(x) = x'Px with
P = P’ >0 and impose

V(x) < (6(2) = k2)'d(2) + $(2) (¢(2) — K2)

Taking into account that w = —¢(z), this inequality is
enforced by the existence of P > 0 such that

AP+ PA PB — kC’

B'P—xC —(I+rDY —(1+xD) | =°

From the Passivity Theorem this is possible if and only if the
transfer function G(s) := kH(s) + [ is strictly positive real.
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Popov criterion

@ Hence global asymptotic stability is preserved whenever

1
Re(H(jw)) > ——, VweR
K

Tm(H(jw)) x Re(H(jw))

& This condition is more stringent than the Nyquist criterion
applied to the linear system defined by ¢(z) = Sz with

0<B<k.
12 /24
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Popov criterion

@ We now assume that the transfer function of the Lur'e system
is strictly proper, that is D = 0. We introduce the
Popov-Lyapunov function :

V(x) = x'Px + 20 /OZ o(&)d¢

where P = P’ > 0 and 6 > 0. It is important to keep in mind
that, under our assumptions, this function is positive definite
and radially unbounded. Hence is time derivative is given by

V(x) = XPx+xXPx+06(z)z+07¢(z)
= (Ax+ Bw)(Px—6C'w) +
+(x'P — 0w’ C)(Ax + Bw)

13 /24
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o Finally, the constraint V(x) < (w + kz)'w + w/(w + Kz) is
assured from the existence of P > 0 and 6 > 0 satisfying the
LMI

AP+ PA PB —0A'C' — kC’

B'P—0CA—rC —(I+6CB)—(I+6cB)y | =°

Once again, applying the Passivity Theorem this is possible if
and only if the transfer function

G(s) = (kC +0CA)(sl — A)"B + (I +6CB)

is strictly positive real. The Popov criterion follows from the
equality A(sl — A)™! = —I + s(sl — A)~! which yields

G(s) =(k+sO)H(s)+ |

14 /24
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Popov criterion

@ The previous calculations lead to the celebrated Popov
criterion :

Theorem (Popov criterion)

Stability is preserved whenever there exits a scalar 0 > 0 such that

Re <<1 +jgw) H(jw)) > f%

holds for all w € R.

o Notice that in the affirmative case the parameter § > 0 is
readily determined and allows the construction of the
Popov-Lyapunov function V/(x).

@ The previous and more conservative stability condition is
obtained by imposing § = 0 implying that V/(x) = v(x).

15 /24
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Frequency domain interpretation

@ Simple algebraic manipulations show that the Popov stability
condition can be rewritten as

Re(H(jw)) — %wlm(H(jw)) > —% VweR

1/0

wIm(H(jw)) x Re(H(jw))

@ Notice that the complex plane used to apply the Popov
criterion in not the same adopted by the Nyquist criterion.
16 /24
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@ Consider the asymptotically stable transfer function

s+2
s+ 653 +1352 + 145+ 6

H(s) =

We have obtained the following values :

o Nyquist criterion applied for ¢(z) linear provides k ~ 17.36.

@ Popov criterion with quadratic Lyapunov function applied for

¢(z) nonlinear provides k = 9.38.
s Propov criterion applied for ¢(z) nonlinear provides k ~ 17.33.
@ This example puts in evidence the quality of the result

obtained from the Popov-Lyapunov function yielding the
celebrated Popov criterion.
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Sector optimization

@ Using the LMI representation of the Popov criterion, there is
no difficulty to solve the convex problem

sup K
P>0,0>0,5>0
subject to
AP+ PA PB — A C' — kC’

B'P—0CA—rC —(I+6CB)—(I+6cB)y | =°

which provides :
s The parameters P > 0 and 6 > 0 of the function V/(x).
@ The biggest sector defined by the optimal value of x > 0 for
which the Popov criterion holds.
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State feedback

@ Consider the Lur'e system with state feedback :

x(t) = Ax(t)+ Biw(t)+ Byu(t)
z(t) = Cx(t)

u(t) = Kx(t)

w(t) = —o(z(t))

the goal is to determine the state feedback gain such that the
sector defined by x > 0 is maximized. The Popov criterion is
used to check global asymptotic stability.

The key observation is that the Popov criterion can be
rewritten in terms of W := P~ > 0.

19/24
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State feedback

@ with products of variables W and kW, that is

AW + WA’ B—-o0WA'C' — kWC’

B~ 9CAW — kCW —(I +6CB) — (I +6¢B) | <°

However, from the definition of the new variable K = LW~1
the closed-loop system is such that

AW = (A+ ByK)W = AW + Bl
B — Bl

@ The maximization of x is an LMI with respect to matrices

W >0 and L for § > 0 and x > 0 fixed.
& The optimization requires a two-dimensional parameter search.
o Setting 0 = 0, the nonlinear term kW remains.

20 /24
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1. Consider the nonlinear system x(t) = Ap(x(t)) where
A€ R™™and ¢(-) : R" — R" is such that

$(0) =0, ¢(x) =[10xa), -, dn(xa)l

Show that the equilibrium point x = 0 is GAS wherever there
exists a diagonal positive matrix P such that A’P + PA < 0.
To this end, make use of the so called Persidiskii-Lyapunov

function . .
=S P [ #i(6)d
) =3 | enterae

and verify under which conditions it is positive definite and
radially unbounded.
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Problems

2. Consider a Lur'e system with

s+ 10
(s +1)(s?2+2s+2)

H(s) =

and determine:

@ The maximum value of x > 0 such that stability is preserved
with ¢(z) linear.

@ The maximum value of k > 0 such that stability is preserved
with ¢(z) nonlinear, provided by a quadratic Lyapunov
function.

@ The maximum value of x > 0 such that stability is preserved
with ¢(z) nonlinear, provided by the Popov-Lyapunov function.

@ The maximum value of kK > 0 using H., theory.
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3. Consider a linear plant with transfer function H(s) plus a
linear feedback w(t) = —dz(t) where § € R. For H(s) given

by
—1)(s—2
ey - - Ds=2)
(s+1)%(s+4)
determine the upper bound .« such that asymptotic
stability is preserved for all 0 < § < §pax using :

e The Hy theory
@ The Popov criterion
@ The Routh criterion

Compare the obtained results from the root locus plot (with
respect to §) of the closed-loop system.
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4. Consider a MIMO Lur'e system such that
H(s) = C(sl — A)"1B e c™m

Determine :
o the stability conditions provided by a quadratic Lyapunov
function.
o the stability conditions provided by a Popov-Lyapunov type
function.
5. Consider a SISO Lur'e system. Generalize the Popov criterion
to cope with nonlinear functions belonging to the sector

(—k, k).
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