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CHAPTER I - Introduction

Linear systems and state space realizations

Linear systems

Continuous time invariant linear system

ẋ(t) = Ax(t) + Bw(t) , x(0) = 0 (1)

z(t) = Cx(t) + Dw(t) (2)

where x(t) ∈ R
n, is the state variable, w(t) ∈ R

m is the input
variable and z(t) ∈ R

r is the output variable. Matrices A, B ,
C and D are real matrices of compatible dimensions.

General solution:

x(t) =

∫ t

0

Φ(t, τ)Bw(τ)dτ

= eAt ⋆ Bw(t)

where Φ(t, τ) is the transition matrix function

Φ(t, τ) := eA(t−τ )
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Linear systems and state space realizations

Linear systems

Exponential calculation

eAt =

∞∑

k=0

(At)k

k!

Important property : Φ(τ, τ) = I for all τ ≥ 0 and

∂Φ

∂t
= AeA(t−τ )

= AΦ = ΦA

Important input function : For any continuous function
f (t) ∈ Rn, the Dirac’s impulse δ(t) ∈ R is such that

∫ ∞

0

f (t − τ)δ(τ)dτ = f (t) , ∀ t ≥ 0
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Linear systems and state space realizations

Linear systems

Impulse response : w(t) = dδ(t) for some d ∈ R
m

x(t) = Φ(t, 0)Bd = eAtBd , ∀ t ≥ 0

Consequences of the impulse response:

Matrix B and vector d can always be determined to impose
any initial condition

x(0) = Bd

Composition of the impulse response from the q-th input
channel to the p-th output channel provides

z(t) = CeAtB + Dδ(t) , ∀ t ≥ 0
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Transfer functions and frequency response

Transfer functions

Laplace transform
f̂ (s) : D(f̂ ) → C

f̂ (s) :=

∫ +∞

−∞
f (t)e−stdt

Domain of the Laplace transform is given by

D(f̂ ) := {s ∈ C : f̂ (s) exists}

The domain of f̂ (s) strongly depends on the domain of f (t).
D(f̂ ) is the “maximal” region of C where f̂ (s) is analytic.
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Transfer functions and frequency response

Transfer functions

Domain calculation for f (t) defined for all t ≥ 0

D(f̂ ) = {s ∈ C : Re(s) > α}

where α is minimized, keeping f̂ (s) analytic inside D(f̂ ). In
other words, all poles of f̂ (s) must be outside D(f̂ ).

Inverse Laplace transform

f (t) :=
1

2πj

∫

Γ
f̂ (s)estds , ∀ t > 0

where Γ is any vertical line inside the domain D(f̂ ).
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Transfer functions and frequency response

Transfer functions

Transfer function : Applying the Laplace transform to the
system (1)-(2) we obtain

ẑ(s) = G (s)ŵ(s)

where G (s) ∈ C
r×m given by

G (s) = C (sI − A)−1B + D

is the transfer function from the input w to the output z .

G(s) is a rational function
The roots of the n-th order algebraic equation

det(sI − A) = 0

are called poles of the transfer function G(s).
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Transfer functions and frequency response

Transfer functions

The linear system (1)-(2) is asymptotically stable wherever all
poles of the transfer function G (s) are located in the region
Re(s) < 0 of the complex plane.

Consequences of asymptotic stability :

The domain of the transfer function satisfies

D(G) ⊃ {s ∈ C : Re(s) ≥ 0}

and consequently jω ∈ D(G) for all ω ∈ R.
G(jω) is a well defined quantity for all ω ∈ R and is called the
frequency response of the system under consideration.
G(jω) is the Fourier transform of G(t) = CeAtB + Dδ(t)
defined for all t ≥ 0.
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Transfer functions and frequency response

Transfer functions

The sinusoidal function

1

s − jω
= L(e jωt) , ω ∈ R , t ≥ 0

successively applied to each input channel provides the output

ẑ(s) =
G (s)

s − jω

=
G (jω)

s − jω
+ E (s)

where the poles of E (s) are those of G (s). Assuming the
system is asymptotically stable, the steady state solution is
given by

ẑss(s) =
G (jω)

s − jω
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Transfer functions and frequency response

Transfer functions

The linear system under consideration satisfies :

Steady state response with d ∈ Rm :

Input =⇒ w(t) = de jωt

Output =⇒ z(t) = G(jω)de jωt

T-periodic input response with αk ∈ C :

Input =⇒ w(t) =
∞∑

k=−∞

αke
jωk t

Output =⇒ z(t) =

∞∑

k=−∞

βke
jωk t

where βk = G(jωk)αk and ωk = k
(
2π
T

)
for all k ∈ N.
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Transfer functions and frequency response

Transfer functions

Important consequence : If w(t) is a real signal then

α−k = α∗
k , ∀ k ∈ N

The response of a real linear system has the same property,
that is

β−k = β∗
k , ∀ k ∈ N

⇓
G (jω)∗ = G (−jω) , ∀ ω ∈ R
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Parseval’s theorem

Norms

Consider a vector x ∈ C
n and denote x∼ its conjugate

transpose. The quantity

‖x‖ :=
√
x∼x =

√
√
√
√

n∑

i=1

|xi |2

is the Euclidean norm of the vector x ∈ C
n.

For a trajectory x(t) ∈ C
n defined for all t ≥ 0, it is possible

to define its L2-norm

‖x‖2 :=

√
∫ ∞

0
‖x(t)‖2dt =

√
∫ ∞

0
x(t)∼x(t)dt
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Parseval’s theorem

Parseval’s theorem

Given a trajectory x(t) ∈ R
n defined for all t ≥ 0, is it possible

to determine the norm ‖x‖2 from its Laplace transform x̂(s) ?
For trajectories such that 0 ∈ D(x̂), the affirmative answer to
this question is given by the celebrated Parseval’s theorem :

‖x‖22 =
1

π

∫ ∞

0
‖x̂(jω)‖2dω

︸ ︷︷ ︸

‖x̂‖22

(3)

The proof is based on the inverse Laplace transform applied
with Γ being the imaginary axis, that is

x(t) =
1

2πj

∫

Γ

x̂(s)estds

=
1

2π

∫ ∞

−∞

x̂(jω)e jωtdω
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Parseval’s theorem

Parseval’s theorem

and on the calculation

‖x‖22 =

∫ ∞

0
x(t)∼x(t)dt

=
1

2π

∫ ∞

0
x(t)∼

[∫ ∞

−∞
x̂(jω)e jωtdω

]

dt

=
1

2π

∫ ∞

−∞

[∫ ∞

0
x(t)′e−jωtdt

]∗

x̂(jω)dω

=
1

2π

∫ ∞

−∞
x̂(jω)∼x̂(jω)dω
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Parseval’s theorem

Parseval’s theorem

Since x(t) is supposed to be real

x̂(jω)∗ = x̂(−jω) , ∀ ω ∈ R

⇓

‖x‖22 =
1

2π

∫ ∞

−∞
x̂(jω)∼x̂(jω)dω

=
1

π

∫ ∞

0
x̂(jω)∼x̂(jω)dω

=
1

π

∫ ∞

0
‖x̂(jω)‖2dω

= ‖x̂‖22
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Stability analysis

Routh criterium

Asymptotic stability: For the linear system (1)-(2) we have to
decide whenever the roots of the characteristic equation

det(sI − A) = sn + an−1s
n−1 + · · ·+ a1s + a0 = 0

are located in the region Re(s) < 0 of the complex plane.
Some facts are important:

A ∈ Rn×n implies that an−1, · · · , a1, a0 are real numbers.
If s is a root then s∗ is also a root.
A necessary (but not sufficient) conditions for asymptotic
stability is

an−1 > 0 , · · · , a1 > 0 , a0 > 0
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Stability analysis

Routh criterium

The Routh criterion is based on the Routh array

sn an an−2 an−4 · · ·
sn−1 an−1 an−3 an−5 · · ·
sn−2 b1 b2 b3 · · ·
· · · · · ·
s1 · · ·
s0 · · ·

where the next row is determined from the previous two ones
as follows

b1 =
an−1an−2 − anan−3

an−1

b2 =
an−1an−4 − anan−5

an−1

18 / 43



CHAPTER I - Introduction

Stability analysis

Routh criterium

Important result : The number of sign changes in the first
column of the Routh array is equal to the number of roots in
the right half part of the complex plane.

⇓

Routh criterion : The linear system (1)-(2) is asymptotically
stable if and only if the first column of the Routh array is
positive.
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Stability analysis

Nyquist criterion

The Nyquist criterion is based on the “Cauchy’s Residue
Theorem” applied to some function of complex variable
f (z) : C → C defined in a domain D ⊂ C.

Analytic : The function f (z) is analytic at z0 ∈ D if the
derivative f ′(z) exists at z0 and at every point of some
neighborhood of z0. Hence, f (z) is analytic in D whenever
f ′(z) exists at every z ∈ D.
Isolated singular point : The point z0 ∈ D is an isolated
singular point of f (z) whenever f (z) is analytic at every point
of a neighborhood of z0 except at the point z0 itself. The
poles are the only (finite) isolated singular points of any
rational function.
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Stability analysis

Nyquist criterion

A function f (z) can be developed in Laurent’s series at point
z0 ∈ D where it fails to be analytic, as for instance at an
isolated singular point

f (z) =
∞∑

i=−∞

ci (z − z0)
i

Residues : The residue of f (z) at z0 ∈ D is given by

R(f , z0) := c−1

=
1

2πj

∮

C

f (z)dz

where C ⊂ C is a closed contour containing z0 in its interior.
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Stability analysis

Nyquist criterion

The Cauchy’s Residue Theorem states that

1

2πj

∮

C

f (z)dz =

r∑

k=1

R(f , zk)

where :

z1, · · · , zr are isolated singular points of f (z).
the closed contour C ⊂ C contains all points z1, · · · , zr in its
interior.

⇓

Residues can be calculated by partial decomposition of f (z)
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Stability analysis

Nyquist criterion

The Cauchy’s Residue Theorem is applied to prove that the
following equality holds

1

2πj

∮

C

g ′(z)

g(z)
dz = Nz − Np (4)

where Nz is the number of zeros of g(z) inside the closed
contour C ∈ C and Np is the number of poles of g(z) inside
the same contour.

Important fact : The isolated singular points of the function

f (z) :=
g ′(z)

g(z)

are the poles and the zeros of g(z). Hence f (z) fails to be
analytic at the poles and zeros of g(z) that are inside C .
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Stability analysis

Nyquist criterion

Assume that z0 is a zero of multiplicity m0 of g(z), located
inside the closed contour C . Hence,

g(z) = (z − z0)
m0p(z)

where p(z) is analytic at z0 and p(z0) 6= 0 which provides

f (z) =
m0

z − z0
+

p′(z)

p(z)

However, since p′(z)/p(z) is analytic at z0 it can be developed
in Taylor series yielding the conclusion that R(f , z0) = m0.
Doing the same for all poles and zeros inside C we get (4).
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Stability analysis

Nyquist criterion

The line integral in (4) can also be calculated from

∮

C

g ′(z)

g(z)
dz =

∮

C

d ln(g(z))

= jarg (g(z))|C

which provides the final formula

Fact (Main formula)

1

2π
∆C arg(g(z)) = Nz − Np
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Stability analysis

Example

Consider the function g(z) = 1
(z+0.5)(z−2) and the closed

contours A, B and C as indicated below. Notice the poles of
g(z) indicated by × and the zeros of h(z) = 0.6 + g(z)
indicated by ◦.
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Stability analysis

Example

The figure below shows the closed contours obtained from A,
B and C through the mapping of g(z). Notice the indicated
points (0, 0) and (−0.6, 0).
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Stability analysis

Example

The function g(z) has two poles {−0.5, 2} and no zeros.
Hence, from the contours A, B and C we have
Nz = 0,Np = 1, Nz = 0,Np = 1 and Nz = 0,Np = 2
respectively.

Looking at the point (0, 0) we have (1/2π)∆A = −1,
(1/2π)∆B = −1 and (1/2π)∆C = −2 respectively.

The function h(z) has two poles {−0.5, 2} and two zeros
{0.75 ± j0.3227}. Hence, from the contours A, B and C we
have Nz = 2,Np = 1, Nz = 0,Np = 1 and Nz = 2,Np = 2
respectively.

Looking at the point (−0.6, 0) we have (1/2π)∆A = 1,
(1/2π)∆B = −1 and (1/2π)∆C = 0 respectively.

⇓

Verify the main formula
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Stability analysis

Nyquist criterion

Let us apply the previous results to the characteristic equation

sn + an−1s
n−1 + · · ·

︸ ︷︷ ︸

D(s)

+ · · · + a1s + a0
︸ ︷︷ ︸

N(s)

= 0

rewritten as

1 +
N(s)

D(s)
= 0

which allows us to define the rational functions

h(s) := 1 + g(s) , g(s) :=
N(s)

D(s)

The zeros of h(s) are the roots of the characteristic equation
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Stability analysis

Nyquist criterion

Defining the closed contour C

Im

Re∞

C

From the roots of D(s) = 0 we determine Np, the number of
poles of h(s) inside C .
From the mapping of C through g(s), looking at the point
(−1, 0), we determine (1/2π)∆C arg(h(s)).
Using the main formula we determine Nz , the number of zeros
of h(s) inside C .
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Stability analysis

Nyquist criterion

For asymptotic stability we have to impose Nz = 0. Hence,
denoting

Ncrit :=
1

2π
∆C arg(h(s))

the number of encirclements (with sign) of the mapping of
the contour C through the function g(s) at the critical point
(−1, 0) we have the celebrated :

Fact (Nyquist criterion)

The linear system (1)-(2) is asymptotically stable if and only if

Ncrit + Np = 0
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Stability analysis

Important notes

Given a characteristic equation, the polynomials N(s) and
D(s) are not unique.

If the roots of D(s) = 0 are all outside C then Np = 0 and
the Nyquist criterion indicates that stability is possible if and
only if the critical point is not encircled.

The critical point may be any real number. Its choice depends
on the particular problem under consideration.

The contour C can be any closed contour where one wants to
verify if the roots of the characteristic equation are inside to
it. For instance, for discrete time systems C must be the unity
circle.
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Stability analysis

Lyapunov functions

The stability analysis of an equilibrium point x = 0 of a
(possibly nonlinear) system with state x(t) ∈ R

n is based on
the following :

Define a function v(x) : Rn → R given the distance of x(t) at
time t ≥ 0 to the equilibrium point x = 0.

v(x) > 0 ∀x 6= 0 , v(0) = 0 , lim
‖x‖→∞

v(x) = ∞

Global asymptotic stability occurs whenever the distance
decreases with respect to t ≥ 0.

v̇ (x(t)) = ∇xv(x(t))
′ẋ(t) < 0
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Stability analysis

Lyapunov functions

The stability of the equilibrium point x = 0 of the linear
system (1) with w(t) = 0 ,∀t ≥ 0 and arbitrary initial
condition follows from the quadratic Lyapunov function

v(x) = x ′Px > 0 , ∀x 6= 0 ∈ R
n

and its time derivative along an arbitrary trajectory of (1)

v̇(x) = x ′(A′P + PA)x < 0 , ∀x 6= 0 ∈ R
n

Fact (Lyapunov criterion)

The linear system (1)-(2) is asymptotically stable if and only if
there exists a symmetric matrix P ∈ R

n×n such that

P > 0 , A′P + PA < 0
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Time varying systems

Time varying systems

Consider a continuous time varying linear system

ẋ(t) = A(t)x(t) (5)

with arbitrary initial condition. Using the quadratic Lyapunov
function

v(x(t)) = x(t)′P(t)x(t)

we readily obtain:

Fact (Lyapunov criterion)

The linear system (5) is asymptotically stable if and only if there
exists a symmetric matrix function P(t) ∈ R

n×n such that

P(t) > 0 , A(t)′P(t) + P(t)A(t) + Ṗ(t) < 0 , ∀t ≥ 0

35 / 43



CHAPTER I - Introduction

Time varying systems

Time varying systems

Important notes :

It is possible to impose P(t) = P , ∀t ≥ 0. In this case we
have to determine a symmetric matrix P such that :

P > 0 , A(t)′P + PA(t) < 0 , ∀t ≥ 0

this simpler condition is only sufficient for asymptotic stability.
The Routh and Nyquist criteria do not apply.
The Laplace transform of (5) provides

sx̂(s) − x0 = L(A(t)x(t))

hence it is not simple (but not impossible) to determine x̂(s).
This point will be deeply considered afterwards.
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Problems

Problems

1. Consider the differential equation

θ̈ + 4θ̇ + 4θ = 0 , θ(0) = 1 , θ̇(0) = 0

Determine its solution θ and the output θ̇ + 2θ.
Determine its state space representation.
Determine the matrices of (1)-(2) providing the same solution
from zero initial condition.

2. For a linear system with transfer function

G (s) =
(s − 2)

(s + 1)(s2 + 2s + 2)

Determine its impulse response.
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Problems

Problems

3. Consider the transfer function

G (s) =
s4

(s + 1)(s + 2)(s + 3)(s + 4)

Determine its state space representation.
Determine the exponential function eAt .

4. Using Laplace transform show that for A ∈ R
n×n,

(sI − A)−1 =
I

s
+

A

s2
+

A2

s3
+ · · ·
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Problems

Problems

5. Determine the Laplace transform and its domain for the
following functions :

f (t) = e−|t| for all −∞ < t < ∞.
f (t) = e−t for all 0 ≤ t < ∞.
f (t) = et for all −∞ < t ≤ 0.
f (t) = et for all −∞ < t < ∞.
f (t) = e−tsin(2t) 0 ≤ t < ∞.
f (t) given by the convolution of e−2t and δ(t − 2) defined for
all 0 ≤ t < ∞.
f (t) = e−t + etδ(2t) for all 0 ≤ t < ∞.
f (t) = −(1/t)e−t for all 0 < t < ∞.
f (t) = sinc(t) = sin(t)/t for all 0 < t < ∞.
f (t) = sin2(t) for all 0 < t < ∞.
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Problems

Problems

6. Given A ∈ R
n×n nonsingular show that :

deAt

dt
= AeAt .

∫ t

0 eAτdτ = A−1(eAt − I ).

7. Consider a periodic input w(t) with period 2 sec and a
transfer function G (s)

w(t) =

{
1, t ∈ [0, 0.5)
0, t ∈ [0.5, 2)

, G (s) =
2125

s3 + 15s2 + 475s + 2125

Determine (plot) the Fourier series of input w(t).
Determine (plot) the Fourier series of output z(t).
Interpret the result using the Bode plot of G(jω).
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Problems

Problems

8. Determine the domain and the inverse Laplace transform of
the following functions :

f̂ (s) = 1−e−4s

s+3 .

f̂ (s) = ln(s + 1).

9. Show that if 0 ∈ D(ĥ) then

d

ds
ln(ĥ(s))

∣
∣
∣
∣
s=0

= −
∫∞
0 th(t)dt
∫∞
0 h(t)dt

Apply and interpret this result to the functions

ĥ(s) =
1

τs + 1
, h(t) =

{
1, t ∈ [10, 12]
0, t /∈ [10, 12]
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Problems

Problems

10. For the function f (t) = e−2t defined for all t ≥ 0, determine
the value of the integral

I =

∫ ∞

0
f (t)2dt

directly and using Parseval’s theorem.

11. Using the Routh and Nyquist criteria determine the values of
the parameter κ ∈ R such that the following algebraic
equations represent asymptotic stable linear continuous time
invariant systems:

s3 + 5s2 + (κ− 6)s + κ = 0.
s(s + 1)2 + κ(s + 4) = 0.
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Problems

Problems

12. Using the Nyquist criterion and considering the following
contours A, B and C

A B

C

∞

∞
1

determine, for the algebraic equations given bellow, the
number of roots located inside each contour :

(z + 0.5)(z + 2)(z + 4) + (z − 0.5)(z − 1) = 0.
z(z + 0.5)(z + 2)(z + 4) + (z − 0.5)(z − 1) = 0.
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