FREQUENCY DOMAIN ANALYSIS OF DYNAMIC SYSTEMS

JOSÉ C. GEROMEL

DSCE / School of Electrical and Computer Engineering UNICAMP, CP 6101, 13083-970, Campinas, SP, Brazil, geromel@dsce.fee.unicamp.br

Campinas, Brazil, August 2006

Contents

(1) CHAPTER I - Introduction

- Linear systems and state space realizations
- Transfer functions and frequency response
- Parseval's theorem
- Stability analysis
- Time varying systems
- Problems

Linear systems

- Continuous time invariant linear system

$$
\begin{align*}
\dot{x}(t) & =A x(t)+B w(t), \quad x(0)=0 \tag{1}\\
z(t) & =C x(t)+D w(t) \tag{2}
\end{align*}
$$

where $x(t) \in \mathbb{R}^{n}$, is the state variable, $w(t) \in \mathbb{R}^{m}$ is the input variable and $z(t) \in \mathbb{R}^{r}$ is the output variable. Matrices A, B, C and D are real matrices of compatible dimensions.

- General solution:

$$
\begin{aligned}
x(t) & =\int_{0}^{t} \Phi(t, \tau) B w(\tau) d \tau \\
& =e^{A t} \star B w(t)
\end{aligned}
$$

where $\Phi(t, \tau)$ is the transition matrix function

$$
\Phi(t, \tau):=e^{A(t-\tau)}
$$

Linear systems

- Exponential calculation

$$
e^{A t}=\sum_{k=0}^{\infty} \frac{(A t)^{k}}{k!}
$$

- Important property: $\Phi(\tau, \tau)=I$ for all $\tau \geq 0$ and

$$
\begin{aligned}
\frac{\partial \Phi}{\partial t} & =A e^{A(t-\tau)} \\
& =A \Phi=\Phi A
\end{aligned}
$$

- Important input function: For any continuous function $f(t) \in \mathbb{R}^{n}$, the Dirac's impulse $\delta(t) \in \mathbb{R}$ is such that

$$
\int_{0}^{\infty} f(t-\tau) \delta(\tau) d \tau=f(t), \quad \forall t \geq 0
$$

Linear systems

- Impulse response : $w(t)=d \delta(t)$ for some $d \in \mathbb{R}^{m}$

$$
x(t)=\Phi(t, 0) B d=e^{A t} B d, \quad \forall t \geq 0
$$

- Consequences of the impulse response:
- Matrix B and vector d can always be determined to impose any initial condition

$$
x(0)=B d
$$

- Composition of the impulse response from the q-th input channel to the p-th output channel provides

$$
z(t)=C e^{A t} B+D \delta(t), \quad \forall t \geq 0
$$

Transfer functions

- Laplace transform

$$
\begin{gathered}
\hat{f}(s): \mathcal{D}(\hat{f}) \rightarrow \mathbb{C} \\
\hat{f}(s):=\int_{-\infty}^{+\infty} f(t) e^{-s t} d t
\end{gathered}
$$

- Domain of the Laplace transform is given by

$$
\mathcal{D}(\hat{f}):=\{s \in \mathbb{C}: \hat{f}(s) \text { exists }\}
$$

- The domain of $\hat{f}(s)$ strongly depends on the domain of $f(t)$.
- $\mathcal{D}(\hat{f})$ is the "maximal" region of \mathbb{C} where $\hat{f}(s)$ is analytic.

Transfer functions

- Domain calculation for $f(t)$ defined for all $t \geq 0$

$$
\mathcal{D}(\hat{f})=\{s \in \mathbb{C}: \operatorname{Re}(s)>\alpha\}
$$

where α is minimized, keeping $\hat{f}(s)$ analytic inside $\mathcal{D}(\hat{f})$. In other words, all poles of $\hat{f}(s)$ must be outside $\mathcal{D}(\hat{f})$.

- Inverse Laplace transform

$$
f(t):=\frac{1}{2 \pi j} \int_{\Gamma} \hat{f}(s) e^{s t} d s, \quad \forall t>0
$$

where Γ is any vertical line inside the domain $\mathcal{D}(\hat{f})$.

Transfer functions

- Transfer function : Applying the Laplace transform to the system (1)-(2) we obtain

$$
\hat{z}(s)=G(s) \hat{w}(s)
$$

where $G(s) \in \mathbb{C}^{r \times m}$ given by

$$
G(s)=C(s l-A)^{-1} B+D
$$

is the transfer function from the input w to the output z.

- $G(s)$ is a rational function
- The roots of the n-th order algebraic equation

$$
\operatorname{det}(s I-A)=0
$$

are called poles of the transfer function $G(s)$.

Transfer functions

- The linear system (1)-(2) is asymptotically stable wherever all poles of the transfer function $G(s)$ are located in the region $\operatorname{Re}(s)<0$ of the complex plane.
- Consequences of asymptotic stability :
- The domain of the transfer function satisfies

$$
\mathcal{D}(G) \supset\{s \in \mathbb{C}: \operatorname{Re}(s) \geq 0\}
$$

and consequently $j \omega \in \mathcal{D}(G)$ for all $\omega \in \mathbb{R}$.

- $G(j \omega)$ is a well defined quantity for all $\omega \in \mathbb{R}$ and is called the frequency response of the system under consideration.
- $G(j \omega)$ is the Fourier transform of $G(t)=C e^{A t} B+D \delta(t)$ defined for all $t \geq 0$.

Transfer functions

- The sinusoidal function

$$
\frac{1}{s-j \omega}=\mathcal{L}\left(e^{j \omega t}\right), \quad \omega \in \mathbb{R}, t \geq 0
$$

successively applied to each input channel provides the output

$$
\begin{aligned}
\hat{z}(s) & =\frac{G(s)}{s-j \omega} \\
& =\frac{G(j \omega)}{s-j \omega}+E(s)
\end{aligned}
$$

where the poles of $E(s)$ are those of $G(s)$. Assuming the system is asymptotically stable, the steady state solution is given by

$$
\hat{z}_{s s}(s)=\frac{G(j \omega)}{s-j \omega}
$$

Transfer functions

- The linear system under consideration satisfies :
- Steady state response with $d \in \mathbb{R}^{m}$:

$$
\begin{gathered}
\text { Input } \Longrightarrow w(t)=d e^{j \omega t} \\
\text { Output } \Longrightarrow z(t)=G(j \omega) d e^{j \omega t}
\end{gathered}
$$

- T-periodic input response with $\alpha_{k} \in \mathbb{C}$:

$$
\begin{aligned}
& \text { Input } \Longrightarrow w(t)=\sum_{k=-\infty}^{\infty} \alpha_{k} e^{j \omega_{k} t} \\
& \text { Output } \Longrightarrow z(t)=\sum_{k=-\infty}^{\infty} \beta_{k} e^{j \omega_{k} t}
\end{aligned}
$$

where $\beta_{k}=G\left(j \omega_{k}\right) \alpha_{k}$ and $\omega_{k}=k\left(\frac{2 \pi}{T}\right)$ for all $k \in \mathbb{N}$.

Transfer functions

- Important consequence: If $w(t)$ is a real signal then

$$
\alpha_{-k}=\alpha_{k}^{*}, \quad \forall k \in \mathbb{N}
$$

The response of a real linear system has the same property, that is

$$
\begin{gathered}
\beta_{-k}=\beta_{k}^{*}, \quad \forall k \in \mathbb{N} \\
\Downarrow \\
G(j \omega)^{*}=G(-j \omega), \quad \forall \omega \in \mathbb{R}
\end{gathered}
$$

Norms

- Consider a vector $x \in \mathbb{C}^{n}$ and denote x^{\sim} its conjugate transpose. The quantity

$$
\|x\|:=\sqrt{x^{\sim} x}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

is the Euclidean norm of the vector $x \in \mathbb{C}^{n}$.

- For a trajectory $x(t) \in \mathbb{C}^{n}$ defined for all $t \geq 0$, it is possible to define its \mathcal{L}_{2}-norm

$$
\|x\|_{2}:=\sqrt{\int_{0}^{\infty}\|x(t)\|^{2} d t}=\sqrt{\int_{0}^{\infty} x(t)^{\sim} x(t) d t}
$$

Parseval's theorem

- Given a trajectory $x(t) \in \mathbb{R}^{n}$ defined for all $t \geq 0$, is it possible to determine the norm $\|x\|_{2}$ from its Laplace transform $\hat{x}(s)$? For trajectories such that $0 \in \mathcal{D}(\hat{x})$, the affirmative answer to this question is given by the celebrated Parseval's theorem :

$$
\begin{equation*}
\|x\|_{2}^{2}=\underbrace{\frac{1}{\pi} \int_{0}^{\infty}\|\hat{x}(j \omega)\|^{2} d \omega}_{\|\hat{x}\|_{2}^{2}} \tag{3}
\end{equation*}
$$

- The proof is based on the inverse Laplace transform applied with Γ being the imaginary axis, that is

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi j} \int_{\Gamma} \hat{x}(s) e^{s t} d s \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{x}(j \omega) e^{j \omega t} d \omega
\end{aligned}
$$

Parseval's theorem

Parseval's theorem

- and on the calculation

$$
\begin{aligned}
\|x\|_{2}^{2} & =\int_{0}^{\infty} x(t)^{\sim} x(t) d t \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} x(t)^{\sim}\left[\int_{-\infty}^{\infty} \hat{x}(j \omega) e^{j \omega t} d \omega\right] d t \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\int_{0}^{\infty} x(t)^{\prime} e^{-j \omega t} d t\right]^{*} \hat{x}(j \omega) d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{x}(j \omega)^{\sim} \hat{x}(j \omega) d \omega
\end{aligned}
$$

Parseval's theorem

Parseval's theorem

- Since $x(t)$ is supposed to be real

$$
\begin{gathered}
\hat{x}(j \omega)^{*}=\hat{x}(-j \omega), \forall \omega \in \mathbb{R} \\
\Downarrow \\
\|x\|_{2}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{x}(j \omega)^{\sim} \hat{x}(j \omega) d \omega \\
=\frac{1}{\pi} \int_{0}^{\infty} \hat{x}(j \omega)^{\sim} \hat{x}(j \omega) d \omega \\
= \\
=\frac{1}{\pi} \int_{0}^{\infty}\|\hat{x}(j \omega)\|^{2} d \omega \\
=\|\hat{x}\|_{2}^{2}
\end{gathered}
$$

Stability analysis

Routh criterium

- Asymptotic stability: For the linear system (1)-(2) we have to decide whenever the roots of the characteristic equation

$$
\operatorname{det}(s l-A)=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}=0
$$

are located in the region $\operatorname{Re}(s)<0$ of the complex plane. Some facts are important:

- $A \in \mathbb{R}^{n \times n}$ implies that $a_{n-1}, \cdots, a_{1}, a_{0}$ are real numbers.
- If s is a root then s^{*} is also a root.
- A necessary (but not sufficient) conditions for asymptotic stability is

$$
a_{n-1}>0, \cdots, a_{1}>0, a_{0}>0
$$

Routh criterium

- The Routh criterion is based on the Routh array

s^{n}	a_{n}	a_{n-2}	a_{n-4}	\cdots
s^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	\cdots
s^{n-2}	b_{1}	b_{2}	b_{3}	\cdots
\cdots	\cdots			
s^{1}	\cdots			
s^{0}	\cdots			

where the next row is determined from the previous two ones as follows

$$
\begin{aligned}
& b_{1}=\frac{a_{n-1} a_{n-2}-a_{n} a_{n-3}}{a_{n-1}} \\
& b_{2}=\frac{a_{n-1} a_{n-4}-a_{n} a_{n-5}}{a_{n-1}}
\end{aligned}
$$

Stability analysis

Routh criterium

- Important result: The number of sign changes in the first column of the Routh array is equal to the number of roots in the right half part of the complex plane.
- Routh criterion: The linear system (1)-(2) is asymptotically stable if and only if the first column of the Routh array is positive.

Nyquist criterion

- The Nyquist criterion is based on the "Cauchy's Residue Theorem" applied to some function of complex variable $f(z): \mathbb{C} \rightarrow \mathbb{C}$ defined in a domain $\mathcal{D} \subset \mathbb{C}$.
- Analytic: The function $f(z)$ is analytic at $z_{0} \in \mathcal{D}$ if the derivative $f^{\prime}(z)$ exists at z_{0} and at every point of some neighborhood of z_{0}. Hence, $f(z)$ is analytic in \mathcal{D} whenever $f^{\prime}(z)$ exists at every $z \in \mathcal{D}$.
- Isolated singular point: The point $z_{0} \in \mathcal{D}$ is an isolated singular point of $f(z)$ whenever $f(z)$ is analytic at every point of a neighborhood of z_{0} except at the point z_{0} itself. The poles are the only (finite) isolated singular points of any rational function.

Nyquist criterion

- A function $f(z)$ can be developed in Laurent's series at point $z_{0} \in \mathcal{D}$ where it fails to be analytic, as for instance at an isolated singular point

$$
f(z)=\sum_{i=-\infty}^{\infty} c_{i}\left(z-z_{0}\right)^{i}
$$

- Residues: The residue of $f(z)$ at $z_{0} \in \mathcal{D}$ is given by

$$
\begin{aligned}
R\left(f, z_{0}\right) & :=c_{-1} \\
& =\frac{1}{2 \pi j} \oint_{C} f(z) d z
\end{aligned}
$$

where $C \subset \mathbb{C}$ is a closed contour containing z_{0} in its interior.

Nyquist criterion

- The Cauchy's Residue Theorem states that

$$
\frac{1}{2 \pi j} \oint_{C} f(z) d z=\sum_{k=1}^{r} R\left(f, z_{k}\right)
$$

where :

- z_{1}, \cdots, z_{r} are isolated singular points of $f(z)$.
- the closed contour $C \subset \mathbb{C}$ contains all points z_{1}, \cdots, z_{r} in its interior.

Residues can be calculated by partial decomposition of $f(z)$

Nyquist criterion

- The Cauchy's Residue Theorem is applied to prove that the following equality holds

$$
\begin{equation*}
\frac{1}{2 \pi j} \oint_{C} \frac{g^{\prime}(z)}{g(z)} d z=N_{z}-N_{p} \tag{4}
\end{equation*}
$$

where N_{z} is the number of zeros of $g(z)$ inside the closed contour $C \in \mathbb{C}$ and N_{p} is the number of poles of $g(z)$ inside the same contour.

- Important fact: The isolated singular points of the function

$$
f(z):=\frac{g^{\prime}(z)}{g(z)}
$$

are the poles and the zeros of $g(z)$. Hence $f(z)$ fails to be analytic at the poles and zeros of $g(z)$ that are inside C.

Nyquist criterion

- Assume that z_{0} is a zero of multiplicity m_{0} of $g(z)$, located inside the closed contour C. Hence,

$$
g(z)=\left(z-z_{0}\right)^{m_{0}} p(z)
$$

where $p(z)$ is analytic at z_{0} and $p\left(z_{0}\right) \neq 0$ which provides

$$
f(z)=\frac{m_{0}}{z-z_{0}}+\frac{p^{\prime}(z)}{p(z)}
$$

However, since $p^{\prime}(z) / p(z)$ is analytic at z_{0} it can be developed in Taylor series yielding the conclusion that $R\left(f, z_{0}\right)=m_{0}$. Doing the same for all poles and zeros inside C we get (4).

Nyquist criterion

- The line integral in (4) can also be calculated from

$$
\begin{aligned}
\oint_{C} \frac{g^{\prime}(z)}{g(z)} d z & =\oint_{C} d \ln (g(z)) \\
& =\left.j \arg (g(z))\right|_{C}
\end{aligned}
$$

which provides the final formula
Fact (Main formula)

$$
\frac{1}{2 \pi} \Delta_{C} \arg (g(z))=N_{z}-N_{p}
$$

Example

- Consider the function $g(z)=\frac{1}{(z+0.5)(z-2)}$ and the closed contours A, B and C as indicated below. Notice the poles of $g(z)$ indicated by \times and the zeros of $h(z)=0.6+g(z)$ indicated by 0 .

Example

- The figure below shows the closed contours obtained from A, B and C through the mapping of $g(z)$. Notice the indicated points $(0,0)$ and $(-0.6,0)$.

Stability analysis

Example

- The function $g(z)$ has two poles $\{-0.5,2\}$ and no zeros. Hence, from the contours A, B and C we have $N_{z}=0, N_{p}=1, N_{z}=0, N_{p}=1$ and $N_{z}=0, N_{p}=2$ respectively.
- Looking at the point $(0,0)$ we have $(1 / 2 \pi) \Delta_{A}=-1$, $(1 / 2 \pi) \Delta_{B}=-1$ and $(1 / 2 \pi) \Delta_{C}=-2$ respectively.
- The function $h(z)$ has two poles $\{-0.5,2\}$ and two zeros $\{0.75 \pm j 0.3227\}$. Hence, from the contours A, B and C we have $N_{z}=2, N_{p}=1, N_{z}=0, N_{p}=1$ and $N_{z}=2, N_{p}=2$ respectively.
- Looking at the point $(-0.6,0)$ we have $(1 / 2 \pi) \Delta_{A}=1$, $(1 / 2 \pi) \Delta_{B}=-1$ and $(1 / 2 \pi) \Delta_{C}=0$ respectively.

Verify the main formula

Nyquist criterion

- Let us apply the previous results to the characteristic equation

$$
\underbrace{s^{n}+a_{n-1} s^{n-1}+\cdots}_{D(s)}+\underbrace{\cdots+a_{1} s+a_{0}}_{N(s)}=0
$$

rewritten as

$$
1+\frac{N(s)}{D(s)}=0
$$

which allows us to define the rational functions

$$
h(s):=1+g(s), \quad g(s):=\frac{N(s)}{D(s)}
$$

The zeros of $h(s)$ are the roots of the characteristic equation

Nyquist criterion

- Defining the closed contour C

- From the roots of $D(s)=0$ we determine N_{p}, the number of poles of $h(s)$ inside C.
- From the mapping of C through $g(s)$, looking at the point $(-1,0)$, we determine $(1 / 2 \pi) \Delta_{C} \arg (h(s))$.
- Using the main formula we determine N_{z}, the number of zeros of $h(s)$ inside C.

Nyquist criterion

- For asymptotic stability we have to impose $N_{z}=0$. Hence, denoting

$$
N_{\text {crit }}:=\frac{1}{2 \pi} \Delta_{C} \arg (h(s))
$$

the number of encirclements (with sign) of the mapping of the contour C through the function $g(s)$ at the critical point $(-1,0)$ we have the celebrated :

Fact (Nyquist criterion)

The linear system (1)-(2) is asymptotically stable if and only if

$$
N_{\text {crit }}+N_{p}=0
$$

Important notes

- Given a characteristic equation, the polynomials $N(s)$ and $D(s)$ are not unique.
- If the roots of $D(s)=0$ are all outside C then $N_{p}=0$ and the Nyquist criterion indicates that stability is possible if and only if the critical point is not encircled.
- The critical point may be any real number. Its choice depends on the particular problem under consideration.
- The contour C can be any closed contour where one wants to verify if the roots of the characteristic equation are inside to it. For instance, for discrete time systems C must be the unity circle.

Stability analysis

Lyapunov functions

- The stability analysis of an equilibrium point $x=0$ of a (possibly nonlinear) system with state $x(t) \in \mathbb{R}^{n}$ is based on the following :
- Define a function $v(x): R^{n} \rightarrow R$ given the distance of $x(t)$ at time $t \geq 0$ to the equilibrium point $x=0$.

$$
v(x)>0 \forall x \neq 0, \quad v(0)=0, \quad \lim _{\|x\| \rightarrow \infty} v(x)=\infty
$$

- Global asymptotic stability occurs whenever the distance decreases with respect to $t \geq 0$.

$$
\dot{v}(x(t))=\nabla_{x} v(x(t))^{\prime} \dot{x}(t)<0
$$

Lyapunov functions

- The stability of the equilibrium point $x=0$ of the linear system (1) with $w(t)=0, \forall t \geq 0$ and arbitrary initial condition follows from the quadratic Lyapunov function

$$
v(x)=x^{\prime} P x>0, \quad \forall x \neq 0 \in \mathbb{R}^{n}
$$

and its time derivative along an arbitrary trajectory of (1)

$$
\dot{v}(x)=x^{\prime}\left(A^{\prime} P+P A\right) x<0, \quad \forall x \neq 0 \in \mathbb{R}^{n}
$$

Fact (Lyapunov criterion)

The linear system (1)-(2) is asymptotically stable if and only if there exists a symmetric matrix $P \in \mathbb{R}^{n \times n}$ such that

$$
P>0, \quad A^{\prime} P+P A<0
$$

Time varying systems

- Consider a continuous time varying linear system

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t) \tag{5}
\end{equation*}
$$

with arbitrary initial condition. Using the quadratic Lyapunov function

$$
v(x(t))=x(t)^{\prime} P(t) x(t)
$$

we readily obtain:

Fact (Lyapunov criterion)

The linear system (5) is asymptotically stable if and only if there exists a symmetric matrix function $P(t) \in \mathbb{R}^{n \times n}$ such that

$$
P(t)>0, \quad A(t)^{\prime} P(t)+P(t) A(t)+\dot{P}(t)<0, \quad \forall t \geq 0
$$

Time varying systems

- Important notes:

- It is possible to impose $P(t)=P, \forall t \geq 0$. In this case we have to determine a symmetric matrix P such that :

$$
P>0, \quad A(t)^{\prime} P+P A(t)<0, \quad \forall t \geq 0
$$

this simpler condition is only sufficient for asymptotic stability.

- The Routh and Nyquist criteria do not apply.
- The Laplace transform of (5) provides

$$
s \hat{x}(s)-x_{0}=\mathcal{L}(A(t) x(t))
$$

hence it is not simple (but not impossible) to determine $\hat{x}(s)$. This point will be deeply considered afterwards.

Problems

1. Consider the differential equation

$$
\ddot{\theta}+4 \dot{\theta}+4 \theta=0, \quad \theta(0)=1, \dot{\theta}(0)=0
$$

- Determine its solution θ and the output $\dot{\theta}+2 \theta$.
- Determine its state space representation.
- Determine the matrices of (1)-(2) providing the same solution from zero initial condition.

2. For a linear system with transfer function

$$
G(s)=\frac{(s-2)}{(s+1)\left(s^{2}+2 s+2\right)}
$$

Determine its impulse response.

Problems

3. Consider the transfer function

$$
G(s)=\frac{s^{4}}{(s+1)(s+2)(s+3)(s+4)}
$$

- Determine its state space representation.
- Determine the exponential function $e^{A t}$.

4. Using Laplace transform show that for $A \in \mathbb{R}^{n \times n}$,

$$
(s l-A)^{-1}=\frac{l}{s}+\frac{A}{s^{2}}+\frac{A^{2}}{s^{3}}+\cdots
$$

Problems

Problems

5. Determine the Laplace transform and its domain for the following functions:

- $f(t)=e^{-|t|}$ for all $-\infty<t<\infty$.
- $f(t)=e^{-t}$ for all $0 \leq t<\infty$.
- $f(t)=e^{t}$ for all $-\infty<t \leq 0$.
- $f(t)=e^{t}$ for all $-\infty<t<\infty$.
- $f(t)=e^{-t} \sin (2 t) 0 \leq t<\infty$.
- $f(t)$ given by the convolution of $e^{-2 t}$ and $\delta(t-2)$ defined for all $0 \leq t<\infty$.
- $f(t)=e^{-t}+e^{t} \delta(2 t)$ for all $0 \leq t<\infty$.
- $f(t)=-(1 / t) e^{-t}$ for all $0<t<\infty$.
- $f(t)=\operatorname{sinc}(t)=\sin (t) / t$ for all $0<t<\infty$.
- $f(t)=\sin ^{2}(t)$ for all $0<t<\infty$.

Problems

Problems

6. Given $A \in \mathbb{R}^{n \times n}$ nonsingular show that :

- $\frac{d e^{A t}}{d t}=A e^{A t}$.
- $\int_{0}^{t} e^{A \tau} d \tau=A^{-1}\left(e^{A t}-I\right)$.

7. Consider a periodic input $w(t)$ with period 2 sec and a transfer function $G(s)$
$w(t)=\left\{\begin{array}{ll}1, & t \in[0,0.5) \\ 0, & t \in[0.5,2)\end{array}, G(s)=\frac{2125}{s^{3}+15 s^{2}+475 s+2125}\right.$

- Determine (plot) the Fourier series of input $w(t)$.
- Determine (plot) the Fourier series of output $z(t)$.
- Interpret the result using the Bode plot of $G(j \omega)$.

Problems

Problems

8. Determine the domain and the inverse Laplace transform of the following functions:

- $\hat{f}(s)=\frac{1-e^{-4 s}}{s+3}$.
- $\hat{f}(s)=\ln (s+1)$.

9. Show that if $0 \in \mathcal{D}(\hat{h})$ then

$$
\left.\frac{d}{d s} \ln (\hat{h}(s))\right|_{s=0}=-\frac{\int_{0}^{\infty} t h(t) d t}{\int_{0}^{\infty} h(t) d t}
$$

Apply and interpret this result to the functions

$$
\hat{h}(s)=\frac{1}{\tau s+1}, h(t)= \begin{cases}1, & t \in[10,12] \\ 0, & t \notin[10,12]\end{cases}
$$

Problems

10. For the function $f(t)=e^{-2 t}$ defined for all $t \geq 0$, determine the value of the integral

$$
I=\int_{0}^{\infty} f(t)^{2} d t
$$

directly and using Parseval's theorem.
11. Using the Routh and Nyquist criteria determine the values of the parameter $\kappa \in \mathbb{R}$ such that the following algebraic equations represent asymptotic stable linear continuous time invariant systems:

- $s^{3}+5 s^{2}+(\kappa-6) s+\kappa=0$.
- $s(s+1)^{2}+\kappa(s+4)=0$.

Problems

Problems

12. Using the Nyquist criterion and considering the following contours A, B and C

determine, for the algebraic equations given bellow, the number of roots located inside each contour :

- $(z+0.5)(z+2)(z+4)+(z-0.5)(z-1)=0$.
- $z(z+0.5)(z+2)(z+4)+(z-0.5)(z-1)=0$.

