Continuous-Time Switched Dynamical Systems

Profa. Grace S. Deaecto

Faculdade de Engenharia Mecânica / UNICAMP
13083-860, Campinas, SP, Brasil. grace@fem.unicamp.br

Primeiro Semestre de 2017
(1) CHAPTER II - Switched Linear Systems

- Min-type Lyapunov function
- Differentiability
- Stability
- Lyapunov-Metzler inequalities
- Closed-loop performance
- Consistency
- State feedback control design
- Problems

Note to the reader

- This text is based on the following main references:
- D. Liberzon, Switching in Systems and Control, Birkhäuser, 2003.
- J. C. Geromel and P. Colaneri, "Stability and stabilization of continuous-time switched linear systems", SIAM Journal on Control and Optimization, vol. 45, pp. 1915-1930, 2006.
- J. C. Geromel and G. S. Deaecto, "Stability analysis of Lur'e-type switched systems", IEEE Transactions on Automatic Control, vol. 59, pp. 3046-3050, 2014.
- J. C. Geromel, G. S. Deaecto and J. Daafouz, "Suboptimal switching control consistency analysis for switched linear systems", IEEE Transactions on Automatic Control, vol. 58, pp. 1857-1861, 2013.

Switched system

- Consider the switched linear system with state space realization

$$
\begin{aligned}
& \dot{x}=A_{\sigma} x, x(0)=x_{0} \\
& z=E_{\sigma} x
\end{aligned}
$$

where

- $x \in \mathbb{R}^{n_{x}}$ is the state
- $z \in \mathbb{R}^{n_{z}}$ is the controlled output and
- $\sigma(\cdot): \mathbb{R}^{n_{x}} \rightarrow\{1, \cdots, N\}=\mathbb{K}$ is the switching function to be determined.

Min-type Lyapunov function

- Let us define the min-type Lyapunov function

$$
v(x)=\min _{i \in \mathbb{K}} x^{\prime} P_{i} x=\min _{\lambda \in \Lambda} \sum_{i \in \mathbb{K}} \lambda_{i} x^{\prime} P_{i} x
$$

with matrices $P_{i}>0, \forall i \in \mathbb{K}$, and the unitary simplex Λ

$$
\Lambda=\left\{\lambda \in \mathbb{R}^{N}: \lambda_{i} \geq 0, \sum_{i \in \mathbb{K}} \lambda_{i}=1\right\}
$$

- Adopt the following notation for the convex combination of a set of matrices $\left\{X_{1}, \cdots, X_{N}\right\}$

$$
X_{\lambda}=\sum_{i \in \mathbb{K}} \lambda_{i} X_{i}, \lambda \in \Lambda
$$

- Important : Notice that $v(x)$ is positive definite, continuous but not differentiable.

Differentiability

- Danskin theorem is the most important result to deal with derivative of functions described as

$$
\phi(x)=\min _{y \in Y} f(x, y)
$$

where Y is a compact set and $\nabla_{x} f(x, y)$ exists.

Danskin theorem

The one-sided directional derivative of $\phi(x)$ exists in any direction d and is given by

$$
\begin{aligned}
D_{+} \phi(x, d) & =\lim _{\epsilon \rightarrow 0^{+}} \frac{\phi(x+\epsilon d)-\phi(x)}{\epsilon} \\
& =\min _{y \in Y(x)} \nabla_{x} f(x, y)^{\prime} d
\end{aligned}
$$

where $Y(x)=\{y: \phi(x)=f(x, y)\}$.

Differentiability

- Example : Consider the function $\phi(x)$ with

$$
f(x, 1)=x^{2}, f(x, 2)=2(x-3 / 2)^{2}+1 / 2
$$

defined for all $x \in \mathbb{R}$ and $y \in Y=\{1,2\}$. Using Danskin theorem, determine the one-sided directional derivative of $\phi(x)$ in the direction d in the points $x=0.5$ and $x=1$.

Differentiability

- Notice that the function $\phi(x)$ is not differentiable in $x=1$.
- We have the sets $Y(0.5)=\{1\}$ and $Y(1)=\{1,2\}$.

Hence, we can calculate

- $D_{+} \phi(0.5, d)=\min _{y \in Y(0.5)} \nabla f(x, y) d=d$
- $D_{+} \phi(1, d)=\min _{y \in Y(1)} \nabla f(x, y) d=\min \{2 d,-2 d\}=-2 d$.

Differentiability

- Let us apply Danskin theorem to the min-type function $v(x)$ for an arbitrary trajectory $x(t)$ of the system

$$
\dot{x}(t)=A_{\sigma} x(t)
$$

Denote $I(x)=\left\{i: v(x)=v_{i}(x)\right\}$. We want to calculate

$$
\begin{aligned}
D_{+} v(x(t)) & =\lim _{\epsilon \rightarrow 0^{+}} \frac{v(x(t+\epsilon))-v(x(t))}{\epsilon} \\
& =\lim _{\epsilon \rightarrow 0^{+}} \frac{\left.v\left(x(t)+\epsilon A_{\sigma} x(t)\right)\right)-v(x(t))}{\epsilon} \\
& =\min _{\ell \in I(x(t))} \nabla_{x} v_{\ell}(x(t))^{\prime} A_{\sigma} x(t) \\
& =\min _{\ell \in I(x(t))} x(t)^{\prime}\left(A_{\sigma}^{\prime} P_{\ell}+P_{\ell} A_{\sigma}\right) x(t)
\end{aligned}
$$

Differentiability

- Important facts:
- If we define a switching strategy such that :

$$
\sigma(x(t))=i \in I(x(t))
$$

then

$$
\begin{aligned}
D_{+} v(x(t)) & =\min _{\ell \in I(x(t))} x(t)^{\prime}\left(A_{i}^{\prime} P_{\ell}+P_{\ell} A_{i}\right) x(t) \\
& \leq x(t)^{\prime}\left(A_{i}^{\prime} P_{i}+P_{i} A_{i}\right) x(t)
\end{aligned}
$$

in which case the upper bound of $D_{+} v(x(t))$ is very simple.

- Whenever the set $I(x(t))$ presents only one element the function $v(x(t))$ is differentiable and the equality holds.
- For more than one element in $I(x(t))$, sliding modes generally occurs.
- During the sliding mode, the system presents a particular dynamic which is different from those of the subsystems.

Stability

- Let us study stability by adopting the quadratic Lyapunov function $v(x)=x^{\prime} P x$ which is the simplest one.

Lemma : Quadratic stability

If there exist a matrix $P>0$ and a vector $\lambda \in \Lambda$ satisfying

$$
A_{\lambda}^{\prime} P+P A_{\lambda}+Q_{\lambda}<0
$$

with $Q_{i}=E_{i}^{\prime} E_{i}$ then the min-type switching function

$$
\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime}\left(A_{i}^{\prime} P+P A_{i}+E_{i}^{\prime} E_{i}\right) x
$$

is globally asymptotically stabilizing and assures that

$$
\|z\|_{2}^{2}<x_{0}^{\prime} P x_{0}
$$

Stability

- Indeed, notice that the time derivative of $v(x)$ provides

$$
\begin{aligned}
\dot{v}(x) & =x^{\prime}\left(A_{\sigma}^{\prime} P+P A_{\sigma}+E_{\sigma}^{\prime} E_{\sigma}\right) x-z^{\prime} z \\
& =\min _{i \in \mathbb{K}} x^{\prime}\left(A_{i}^{\prime} P+P A_{i}+E_{i}^{\prime} E_{i}\right) x-z^{\prime} z \\
& =\min _{\lambda \in \Lambda} x^{\prime}\left(A_{\lambda}^{\prime} P+P A_{\lambda}+Q_{\lambda}\right) x-z^{\prime} z \\
& \leq x^{\prime}\left(A_{\lambda}^{\prime} P+P A_{\lambda}+Q_{\lambda}\right) x-z^{\prime} z \\
& <-z^{\prime} z
\end{aligned}
$$

where the second equality comes from the choice of the switching function and the last inequality is due to the fact that $A_{\lambda}^{\prime} P+P A_{\lambda}+Q_{\lambda}<0$.

Stability

- Notice that no stability condition is required from the isolated subsystems $A_{i}, \quad i \in \mathbb{K}$!
- The sufficient condition is the existence of $\lambda \in \Lambda$ such that A_{λ} is Hurwitz stable. This is a NP hard problem!
- Moreover, integrating the inequality both sides from $t=0$ to $t \rightarrow \infty$, we have

$$
\int_{0}^{\infty} \dot{v}(x) d t=v(x(\infty))-v(x(0))<-\int_{0}^{\infty} z(t)^{\prime} z(t) d t
$$

which provides $\|z\|_{2}^{2}<x_{0}^{\prime} P x_{0}$ since the asymptotic stability assures that $v(x(\infty))=0$.

Stability

- An important improvement is obtained by adopting the following min-type Lyapunov function

$$
v(x)=\min _{i \in \mathbb{K}} x^{\prime} P_{i} x
$$

and a subclass of Metzler matrices $\Pi=\left\{\pi_{j i}\right\} \in \mathcal{M}_{c}$, $(i, j) \in \mathbb{K} \times \mathbb{K}$, with the following properties

$$
\sum_{j \in \mathbb{K}} \pi_{j i}=0, \quad \pi_{i j} \geq 0, \quad \forall j \neq i \in \mathbb{K} \times \mathbb{K}
$$

- All matrices belonging to \mathcal{M}_{c} is such that

$$
\pi_{i i}=-\sum_{j \neq i \in \mathbb{K}} \pi_{j i} \leq 0, \quad i \in \mathbb{K}
$$

Stability

- Gershgorin circle theorem : Each eigenvalue of $\Pi \in \mathcal{M}_{c}$ is inside a circle centered at $\left(\pi_{i i}, 0\right)$ and with radius $\left|\pi_{i i}\right|=\sum_{j \neq i \in \mathbb{K}} \pi_{j i}$.
- Frobenius-Perron theorem: The null eigenvalue is the one with maximum real part and the associated eigenvector $v \in \mathbb{R}^{N}$ is nonnegative. Hence the usual normalization $\sum_{i \in \mathbb{K}} v_{i}=1$ makes $v \in \Lambda$.
- Notice that for an arbitrary $\nu \in \Lambda$ the matrix

$$
\Pi=-I+\nu e^{\prime}
$$

with $e^{\prime}=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$ is a Metzler matrix of the class \mathcal{M}_{c}.

Stability

Theorem : Stability

If there exist matrices $P_{i}>0$ and a Metzler matrix $\Pi \in \mathcal{M}_{c}$ satisfying the so called Lyapunov-Metzler inequalities

$$
A_{i}^{\prime} P_{i}+P_{i} A_{i}+\sum_{j \in \mathbb{K}} \pi_{j i} P_{j}+E_{i}^{\prime} E_{i}<0
$$

Then the min-type switching function

$$
\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} P_{i} x
$$

is globally asymptotically stabilizing and assures that

$$
\|z\|_{2}^{2}<\min _{i \in \mathbb{K}} x_{0}^{\prime} P_{i} x_{0}
$$

Stability

- Defining $I(x)=\left\{i: x^{\prime} P_{i} x=v(x)\right\}$, for $i \in I(x)$, and $\Pi \in \mathcal{M}_{c}$, we have

$$
\begin{aligned}
x^{\prime}\left(\sum_{j \in \mathbb{K}} \pi_{j i} P_{j}\right) x & =\pi_{i i} x^{\prime} P_{i} x+\sum_{j \neq i} \underbrace{\pi_{j i}}_{\geq 0} x^{\prime} P_{j} x \\
& \geq \pi_{i i} x^{\prime} P_{i} x+\sum_{j \neq i} \pi_{j i} x^{\prime} P_{i} x \\
& \geq \underbrace{\left(\sum_{j \in \mathbb{K}} \pi_{j i}\right)}_{=0} x^{\prime} P_{i} x \\
& \geq 0
\end{aligned}
$$

Stability

- Considering that at an arbitrary instant of time $t \geq 0$ we have $\sigma(t)=i \in I(x)$, the one-sided directional derivative of $v(x)$ provides

$$
\begin{aligned}
D_{+} v(x) & =\min _{\ell \in I(x)} x^{\prime}\left(A_{i}^{\prime} P_{\ell}+P_{\ell} A_{i}+E_{i}^{\prime} E_{i}\right) x-z^{\prime} z \\
& \leq x^{\prime}\left(A_{i}^{\prime} P_{i}+P_{i} A_{i}+E_{i}^{\prime} E_{i}\right) x-z^{\prime} z \\
& <-x^{\prime} \underbrace{\left(\sum_{j \in \mathbb{K}} \pi_{j i} P_{j}\right)}_{\geq 0} x-z^{\prime} z \\
& <-z^{\prime} z
\end{aligned}
$$

- Moreover, making the same procedure as before, we have

$$
\|z\|_{2}^{2}<v\left(x_{0}\right)=\min _{i \in \mathbb{K}} x_{0}^{\prime} P_{i} x_{0}
$$

Stability

At this point, some remarks are in order :

- We can write

$$
\begin{gathered}
\left(A_{i}+\frac{\pi_{i i}}{2} /\right)^{\prime} P_{i}+P_{i}\left(A_{i}+\frac{\pi_{i i}}{2} l\right)+\sum_{j \neq i \in \mathbb{K}} \pi_{j i} P_{j}+E_{i}^{\prime} E_{i}<0 \\
\Downarrow
\end{gathered}
$$

No stability property is required from the isolated subsystems because $\pi_{i i} \leq 0$.

- The conditions are nonconvex due to the matrices product $\left\{\pi_{j i}, P_{i}\right\}$ and difficult to solve for more than two subsystems.
- The conditions assure stability even in the eventual existence of sliding modes.
- This phenomenon occurs whenever the set $I(x)$ presents more than one element.

Stability

Stability

- The classical Filippov's result establishes that whenever the system operates in a sliding mode, it is described by

$$
\dot{x}=\sum_{i \in I(x)} \alpha_{i} A_{i} x
$$

where $\alpha \in \Sigma(x)$ with $\Sigma(x)$ being the set composed by vectors α such that $\alpha_{i} \geq 0$ and $\sum_{i \in I(x)} \alpha_{i}=1$. Hence,

$$
\begin{aligned}
D_{+} v(x) & =\min _{\ell \in I(x)} \sum_{i \in I(x)} \alpha_{i} x^{\prime}\left(A_{i}^{\prime} P_{\ell}+P_{\ell} A_{i}\right) x \\
& \leq \max _{\alpha \in \Sigma(x)} \min _{\ell \in I(x)} \sum_{i \in I(x)} \alpha_{i} x^{\prime}\left(A_{i}^{\prime} P_{\ell}+P_{\ell} A_{i}\right) x \\
& \leq \min _{\ell \in I(x)} \max _{\alpha \in \Sigma(x)} \sum_{i \in I(x)} \alpha_{i} x^{\prime}\left(A_{i}^{\prime} P_{\ell}+P_{\ell} A_{i}\right) x \\
& \leq \max _{i \in I(x)} x^{\prime}\left(A_{i}^{\prime} P_{i}+P_{i} A_{i}\right) x
\end{aligned}
$$

Lyapunov-Metzler inequalities

Modified Lyapunov-Metzler inequalities

The result of the previous theorem remains valid whenever there exist matrices $P_{i}>0$ and a positive scalar $\gamma>0$ satisfying the modified Lyapunov-Metzler inequalities

$$
A_{i}^{\prime} P_{i}+P_{i} A_{i}+\gamma\left(P_{j}-P_{i}\right)+E_{i}^{\prime} E_{i}<0, i \neq j \in \mathbb{K} \times \mathbb{K}
$$

- These conditions were obtained by restricting the Metzler matrices to those with the same main diagonal $\gamma=\sum_{j \neq i} \pi_{j i}$.
- Although they are clearly more conservative, for an arbitrary number of subsystems, they can be solved by LMIs whenever a scalar $\gamma>0$ is fixed.

Lyapunov-Metzler inequalities

Theorem : Alternative stability conditions

If there exist a matrix $P>0$, symmetric matrices W_{i} and a Metzler matrix $\Pi \in \mathcal{M}_{c}$ satisfying the inequalities

$$
A_{i}^{\prime} P+P A_{i}+\sum_{j \in \mathbb{K}} \pi_{j i} W_{j}+E_{i}^{\prime} E_{i}<0, \quad i \in \mathbb{K}
$$

Then the min-type switching function

$$
\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} W_{i} x
$$

is globally asymptotically stabilizing and assures

$$
\|z\|_{2}^{2}<x_{0}^{\prime} P x_{0}
$$

Moreover $v(x)=x^{\prime} P x$ is a Lyapunov function for the system.

Lyapunov-Metzler inequalities

- This result is obtained from the Lyapunov-Metzler inequalities with $\Pi(\mu)=\mu \Pi \in \mathcal{M}_{c}$ and choosing $P_{i}=P+\mu^{-1} W_{i}$ with $\mu>0$, which provide

$$
A_{i}^{\prime} \underbrace{\left(P+\mu^{-1} W_{i}\right)}_{P_{i}}+\underbrace{\left(P+\mu^{-1} W_{i}\right)}_{P_{i}} A_{i}+\sum_{j \in \mathbb{K}} \mu \pi_{j i} \underbrace{\left(P+\mu^{-1} W_{j}\right)}_{P_{j}}+E_{i}^{\prime} E_{i}<0
$$

- Making $\mu \rightarrow \infty$ we have

$$
A_{i}^{\prime} P+P A_{i}+\sum_{j \in \mathbb{K}} \pi_{j i} W_{j}+E_{i}^{\prime} E_{i}<0, i \in \mathbb{K}
$$

Lyapunov-Metzler inequalities

- The switching function becomes

$$
\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} \underbrace{P_{i}}_{P+\mu^{-1} W_{i}} x=\arg \min _{i \in \mathbb{K}} x^{\prime} W_{i} x
$$

Notice that the switching rule does not depend directly on the Lyapunov function!

Lyapunov-Metzler inequalities

- The next lemma presents some instrumental results that are very important to obtain stability conditions based on an unique subsystem.

Lemma

Let the symmetric matrices $Q_{i}, \forall i \in \mathbb{K}$, be given. The following statements are equivalent :
(1) There exist matrices $W_{i}>0$ and a Metzler matrix $\Pi \in \mathcal{M}_{c}$ satisfying

$$
Q_{i}+\sum_{j \in \mathbb{K}} \pi_{j i} W_{j}<0, \quad i \in \mathbb{K}
$$

(2) There exist symmetric matrices R_{i} and $\nu \in \Lambda$ satisfying $R_{\nu}=0$ and

$$
Q_{i}+R_{i}<0, \quad i \in \mathbb{K}
$$

Lyapunov-Metzler inequalities

- Indeed, considering that statement 1) is true, choosing

$$
R_{i}=\sum_{j \in \mathbb{K}} \pi_{j i} W_{j}, \quad i \in \mathbb{K}
$$

and $\nu \in \Lambda$ as being the eigenvector associated with the null eigenvalue of Π, we have

$$
\begin{aligned}
R_{\nu} & =\sum_{i \in \mathbb{K}} \nu_{i} \sum_{j \in \mathbb{K}} \pi_{j i} W_{j} \\
& =\sum_{j \in \mathbb{K}}\left(\sum_{i \in \mathbb{K}} \pi_{j i} \nu_{i}\right) W_{j}=0
\end{aligned}
$$

and, therefore, statement 2) is true.

Lyapunov-Metzler inequalities

- Now, assuming that statement 2) is true, choosing

$$
\Pi=-I+\nu\left[\begin{array}{lll}
1 & \ldots & 1
\end{array}\right], \quad W_{i}=W_{N}+\left(R_{N}-R_{i}\right)
$$

we have

$$
\sum_{j=1}^{N} \pi_{j i} W_{j}=W_{\nu}-W_{i}=-R_{\nu}+R_{i}=R_{i}
$$

because $R_{\nu}=0$. Hence, from statement 2) we have that statement 1) is true.

- Using this lemma the alternative stability conditions can be written as follows.

Lyapunov-Metzler inequalities

Corollary : Alternative stability conditions

If there exist a matrix $P>0$, symmetric matrices R_{i} and $\nu \in \Lambda$ satisfying $R_{\nu}=0$ and the inequalities

$$
A_{i}^{\prime} P+P A_{i}+E_{i}^{\prime} E_{i}+R_{i}<0, i \in \mathbb{K}
$$

Then the max-type switching function

$$
\sigma(x)=\arg \max _{i \in \mathbb{K}} x^{\prime} R_{i} x
$$

is globally asymptotically stabilizing and assures

$$
\|z\|_{2}^{2}<x_{0}^{\prime} P x_{0}
$$

Moreover $v(x)=x^{\prime} P x$ is a Lyapunov function for the system.

Lyapunov-Metzler inequalities

- The inequality follows directly from the previous lemma.
- The switching function is obtained from

$$
\begin{aligned}
\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} \underbrace{P_{i}}_{P+\mu^{-1} W_{i}} x & =\arg \min _{i \in \mathbb{K}} x^{\prime} \underbrace{W_{i}}_{W_{N}+\left(R_{N}-R_{i}\right)} x \\
& =\arg \max _{i \in \mathbb{K}} x^{\prime} R_{i} x \\
& =\arg \min _{i \in \mathbb{K}} x^{\prime}\left(A_{i}^{\prime} P+P A_{i}+E_{i}^{\prime} E_{i}\right) x
\end{aligned}
$$

- It is simple to see that these conditions are the quadratic stability ones provided in the beginning of this chapter.
- Moreover, they are a particular case of the Lyapunov-Metzler inequalities.

Example 1 - Stability

- Consider a system defined by two unstable subsystems

$$
A_{1}=\left[\begin{array}{rr}
0 & 1 \\
-5 & 1
\end{array}\right], A_{2}=\left[\begin{array}{rr}
0 & 1 \\
2 & -5
\end{array}\right], E_{1}=E_{2}=1
$$

The equilibrium point of the first subsystem is an unstable focus $\lambda\left\{A_{1}\right\}=\{0.5 \pm 2.1794\}$, while the equilibrium point of the second is a saddle $\lambda\left\{A_{2}\right\}=\{0.3723,-5.3723\}$.

- We have solved problem

$$
\inf _{P_{i}>0, \gamma>0} \gamma
$$

subject to the Lyapunov Metzler inequalities with

$$
P_{i}-\gamma I<0, \quad i \in \mathbb{K}
$$

- Notice that the guaranteed cost is given by

$$
\|z\|_{2}^{2}<\min _{i \in \mathbb{K}} x_{0}^{\prime} P_{i} x_{0}<\gamma x_{0}^{\prime} x_{0}
$$

Example 1 - Stability

- We have obtained $\gamma^{*}=1.4482$ and the matrices

$$
P_{1}=\left[\begin{array}{ll}
1.3428 & 0.2994 \\
0.2994 & 0.4576
\end{array}\right], \quad P_{2}=\left[\begin{array}{ll}
1.3566 & 0.3039 \\
0.3039 & 0.4401
\end{array}\right]
$$

associated with the choice

$$
\Pi=\left[\begin{array}{rr}
-p & q \\
p & -q
\end{array}\right]
$$

with $\left(p^{*}, q^{*}\right)=(144,160)$ determined by unidimensional search inside the box $(p, q) \in[0,160] \times[0,160]$ with step 2 .

- We have determined the switching surface by making

$$
x^{\prime}\left(P_{1}-P_{2}\right) x=0
$$

Lyapunov-Metzler inequalities

Example 1 - Stability

- Phase portrait of both isolated subsystems.

Lyapunov-Metzler inequalities

Example 1 - Stability

- Phase portrait of the switched system.

It is clear the sliding mode surface and the dynamics of both subsystems!

Example 1 - Stability

- State trajectories of the switched system.

Lyapunov-Metzler inequalities

Example 2 - Stability

- Consider a third order switched linear system defined by

$$
A_{1}=\left[\begin{array}{rrr}
-3 & -6 & 3 \\
2 & 2 & -3 \\
\alpha & 0 & -2
\end{array}\right], A_{2}=\left[\begin{array}{rrr}
1 & 3 & 3 \\
\beta & -3 & -3 \\
0 & 0 & -2
\end{array}\right]
$$

and $E_{1}=E_{2}=I$.

- We have varied the pair α, β inside the interval $[0.5,2]$, $[-2,1]$, respectively, analyzing the feasibility of the Lyapunov Metzler inequalities for

$$
\Pi=\left[\begin{array}{rr}
-p & q \\
p & -q
\end{array}\right]
$$

with (p, q) belonging to the box $[0,20] \times[0,20]$.

Example 2 - Lyapunov-Metzler

- The region in gray (dark and light) is the feasibility region for the Lyapunov-Metzler inequalities.
- The region in dark gray does not admit a Hurwitz stable convex combination of the subsystems matrices.

This makes clear that the Lyapunov-Metzler inequalities are less conservative than asking for A_{λ} be Hurwitz stable!

Example 2 - Lyapunov-Metzler

- For $(\alpha, \beta)=(1.0,-0.9)$ the switched system does not present a stable convex combination of the subsystems matrices. However, matrices

$$
\begin{aligned}
& P_{1}=\left[\begin{array}{rrr}
3.6048 & 8.0420 & -6.7034 \\
8.0420 & 34.4956 & -33.0632 \\
-6.7034 & -33.0632 & 34.3784
\end{array}\right] \\
& P_{2}=\left[\begin{array}{rrr}
4.6089 & 4.6781 & -0.4977 \\
4.6781 & 11.6580 & -12.0200 \\
-0.4977 & -12.0200 & 22.7412
\end{array}\right]
\end{aligned}
$$

with $(p, q)=(1.86,1.79)$ satisfy the Lyapunov-Metzler inequalities.

Example 2 - Lyapunov-Metzler

- The state trajectories obtained by implementing the switching rule with matrices P_{1}, P_{2} are presented as follows

Closed-loop performance

Consider now a more general switched linear system described by

$$
\mathcal{G}_{\sigma(t)}:=\left\{\begin{aligned}
\dot{x}(t) & =A_{\sigma(t)} x(t)+H_{\sigma(t)} w(t), x(0)=0 \\
z(t) & =E_{\sigma(t)} x(t)+G_{\sigma(t)} w(t)
\end{aligned}\right.
$$

where

- $w(t) \in \mathbb{R}^{n_{w}}$ is the external input.

In our context we will adopt two classes of external inputs :

- The impulsive type $w(t)=e_{k} \delta(t)$, for which the dynamic equation can be written alternatively as

$$
\dot{x}(t)=A_{\sigma(t)} x(t), x(0)=H_{\sigma(0)} e_{k}
$$

e_{k} is the k-th column of the identity matrix.

- Those belonging to the set $w \in \mathcal{L}_{2}$.

Performance indexes

- For a stabilizing given trajectory $\sigma(t)$ we have :
- \mathcal{H}_{2} performance index : For $G_{i}=0, \forall i \in \mathbb{K}$, the controlled output $z(t)$ associated with the external input $w(t)=e_{k} \delta(t)$, allows us to define the following \mathcal{H}_{2} index

$$
J_{2}(\sigma)=\sum_{k=1}^{m}\left\|z_{k}\right\|_{2}^{2}
$$

- \mathcal{H}_{∞} performance index : The controlled output $z(t)$ associated with any arbitrary external input $w(t) \in \mathcal{L}_{2}$ allows us to define the following \mathcal{H}_{∞} index

$$
J_{\infty}(\sigma)=\sup _{0 \neq w \in \mathcal{L}_{2}} \frac{\|z\|_{2}^{2}}{\|w\|_{2}^{2}}
$$

Both indexes are difficult to be calculated then the idea is to find a suitable upper bound!

Performance indexes

- For a stabilizing given trajectory $\sigma(t)$ we have :
- \mathcal{H}_{2} performance index : For $G_{i}=0, \forall i \in \mathbb{K}$, the controlled output $z(t)$ associated with the external input $w(t)=e_{k} \delta(t)$, allows us to define the following \mathcal{H}_{2} index

$$
J_{2}(\sigma)=\sum_{k=1}^{m}\left\|z_{k}\right\|_{2}^{2}=\underbrace{\left\|E_{i}\left(s l-A_{i}\right)^{-1} H_{i}\right\|_{2}^{2}}_{\sigma(t)=i, \forall t \geq 0}
$$

- \mathcal{H}_{∞} performance index : The controlled output $z(t)$ associated with any arbitrary external input $w(t) \in \mathcal{L}_{2}$ allows us to define the following \mathcal{H}_{∞} index

$$
J_{\infty}(\sigma)=\sup _{0 \neq w \in \mathcal{L}_{2}} \frac{\|z\|_{2}^{2}}{\|w\|_{2}^{2}}=\underbrace{\left\|E_{i}\left(s l-A_{i}\right)^{-1} H_{i}+G_{i}\right\|_{\infty}^{2}}_{\sigma(t)=i, \forall t \geq 0}
$$

Both indexes are difficult to be calculated then the idea is to find a suitable upper bound!

\mathcal{H}_{2} performance

Theorem : \mathcal{H}_{2} performance

If there exist matrices $P_{i}, i \in \mathbb{K}$, and a Metzler matrix $\Pi \in \mathcal{M}_{c}$ satisfying the Lyapunov-Metzler inequalities

$$
A_{i}^{\prime} P_{i}+P_{i} A_{i}+\sum_{j \in \mathbb{K}} \pi_{j i} P_{j}+E_{i}^{\prime} E_{i}<0
$$

then the min-type switching function

$$
\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} P_{i} x
$$

is globally asymptotically stabilizing and satisfies

$$
J_{2}(\sigma)<\min _{i \in \mathbb{K}} \operatorname{Tr}\left(H_{i}^{\prime} P_{i} H_{i}\right)
$$

\mathcal{H}_{2} performance

- From the previous results we have

$$
\begin{aligned}
J_{2}(\sigma) & <\sum_{k=1}^{n_{w}} \min _{i \in \mathbb{K}}\left(H_{\sigma(0)} e_{k}\right)^{\prime} P_{i}\left(H_{\sigma(0)} e_{k}\right) \\
& <\min _{i \in \mathbb{K}} \underbrace{\sum_{k=1}^{n_{w}}\left(H_{\sigma(0)} e_{k}\right)^{\prime} P_{i}\left(H_{\sigma(0)} e_{k}\right)}_{\operatorname{Tr}\left(H_{\sigma(0)}^{\prime} P_{i} H_{\sigma(0)}\right)} \\
& <\min _{i \in \mathbb{K}} \operatorname{Tr}\left(H_{i}^{\prime} P_{i} H_{i}\right)
\end{aligned}
$$

where $\sigma(0)=i$ can be imposed since $\sigma(0)$ is arbitrary.

- The best \mathcal{H}_{2} guaranteed cost is given by

$$
J_{2}^{50}=\inf _{\left\{\Pi, P_{i}\right\} \in \mathcal{X}_{2}} \min _{i \in \mathbb{K}} \operatorname{Tr}\left(H_{i}^{\prime} P_{i} H_{i}\right)
$$

where \mathcal{X}_{2} is the set of feasible solutions of the Lyapunov-Metzler inequalities.

\mathcal{H}_{∞} performance

Theorem: \mathcal{H}_{∞} performance

If there exist matrices $P_{i}, i \in \mathbb{K}$, a Metzler matrix $\Pi \in \mathcal{M}_{c}$ and a scalar $\rho>0$ satisfying the Riccati-Metzler inequalities

$$
\left[\begin{array}{cc}
A_{i}^{\prime} P_{i}+P_{i} A_{i}+\sum_{j \in \mathbb{K}} \pi_{j i} P_{j}+E_{i}^{\prime} E_{i} & \bullet \\
H_{i}^{\prime} P_{i}+G_{i}^{\prime} E_{i} & -\rho I+G_{i}^{\prime} G_{i}
\end{array}\right]<0
$$

then the min-type switching function

$$
\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} P_{i} x
$$

is globally asymptotically stabilizing and satisfies

$$
J_{\infty}(\sigma)<\rho
$$

\mathcal{H}_{∞} performance

- Consider that the Riccati-Metzler inequalities hold. Adopting the min-type Lyapunov function $v(x)=\min _{i \in \mathbb{K}} x^{\prime} P_{i} x$ and assuming that $\sigma(t)=i \in I(x(t))$ for a $t \geq 0$, we have

$$
\begin{aligned}
D_{+} v(x) & =\min _{\ell \in I(x)} 2\left(A_{i} x+H_{i} w\right)^{\prime} P_{\ell} x \\
& <\left[\begin{array}{c}
x \\
w
\end{array}\right]^{\prime}\left[\begin{array}{cc}
A_{i}^{\prime} P_{i}+P_{i} A_{i} & 0 \\
H_{i}^{\prime} P_{i} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
w
\end{array}\right] \\
& <-x^{\prime}\left(\sum_{j \in \mathbb{K}} \pi_{j i} P_{j}\right) x-z^{\prime} z+\rho w^{\prime} w \\
& <-z^{\prime} z+\rho w^{\prime} w
\end{aligned}
$$

where the second inequality comes from the validity of the Riccati-Metzler inequalities.

\mathcal{H}_{∞} performance

- Integrating both sides from $t=0$ to $t \rightarrow \infty$ we obtain

$$
v(x(\infty))-v(x(0))<-\|z\|_{2}^{2}+\rho\|w\|_{2}^{2}
$$

where the left hand side is null since $v(x(\infty)=0$ because the system is stable and $v(x(0))=0$ because $x(0)=0$.

- The best \mathcal{H}_{∞} guaranteed cost is given by

$$
J_{\infty}^{s o}=\inf _{\left\{\Pi, P_{i}, \rho\right\} \in \mathcal{X}_{\infty}} \rho
$$

where \mathcal{X}_{∞} is the set of feasible solutions of the Riccati-Metzler inequalities.

Consistency

Consistency

- Consistency is an important concept related to stabilizing switching rules. Consider $\alpha=\{2, \infty\}$, define \mathcal{S} as the set of all stabilizing switching rules and \mathcal{C} as the set of all constant rules $\sigma(t)=i \in \mathbb{K}$ for all $t \geq 0$.

Consistency

A switching rule $\sigma_{\alpha} \in \mathcal{S}$ is said to be consistent whenever it provides a performance better than the one of each isolated subsystem, that is

$$
J_{\alpha}\left(\sigma_{\alpha}\right) \leq J_{\alpha}(\sigma), \sigma \in \mathcal{C}
$$

when the inequality is strict the switching rule σ_{α} is said to be strictly consistent.

Consistency

Consistency

- As it will be clear in the sequel the min-type switching function is consistent for the \mathcal{H}_{2} and \mathcal{H}_{∞} indexes.
- In order to show this, let us notice that
- Matrix $\Pi=\Pi_{0}=0$ belongs to the subclass of Metzler matrices $\Pi_{0} \in \mathcal{M}_{c}$.
- Matrix $\Pi=\Theta_{\ell}$ defined as

$$
\pi_{i i}=-\beta, \pi_{\ell i}=\beta, \forall i \in \mathbb{K}, \ell \neq i
$$

with $\beta>0$ also belongs to $\Theta_{\ell} \in \mathcal{M}_{c}$. For $N=4$ and $\ell=2$:

$$
\Pi=\Theta_{2}=\left[\begin{array}{cccc}
-\beta & 0 & 0 & 0 \\
\beta & 0 & \beta & \beta \\
0 & 0 & -\beta & 0 \\
0 & 0 & 0 & -\beta
\end{array}\right]
$$

In this case

$$
\sum_{j \in \mathbb{K}} \pi_{j i} P_{j}=\beta\left(P_{\ell}-P_{i}\right), \forall i \in \mathbb{K}
$$

Consistency

Consistency

- For the \mathcal{H}_{2} performance, since that $\Pi=\Pi_{0}$ is feasible, we have

$$
\begin{aligned}
J_{2}(\sigma) & <\inf _{P_{i}>0}\left\{\operatorname{Tr}\left(H_{i}^{\prime} P_{i} H_{i}\right): A_{i}^{\prime} P_{i}+P_{i} A_{i}+E_{i}^{\prime} E_{i}<0\right\} \\
& <\underbrace{\left\|E_{i}\left(s l-A_{i}\right)^{-1} H_{i}\right\|_{2}^{2}}_{J_{2}(i)}
\end{aligned}
$$

which holds for all $i \in \mathbb{K}$.

- Hence, the min-type switching rule is consistent.
- In general, we have $J_{2}(\sigma) \ll J_{2}(i)$ which indicates that $\sigma(x)$ is strictly consistent.
- Moreover, with $\Pi=\Pi_{0}$ we have

$$
J_{2}^{s o}=\min _{i \in \mathbb{K}}\left\|E_{i}\left(s l-A_{i}\right)^{-1} H_{i}\right\|_{2}^{2}
$$

Consistency

Consistency

- For the \mathcal{H}_{∞} performance, since that $\Pi=\Pi_{0}$ is feasible, we have

$$
\begin{aligned}
J_{\infty}(\sigma) & <\inf _{P_{i}>0, \rho>0}\left\{\rho:\left[\begin{array}{cc}
A_{i}^{\prime} P_{i}+P_{i} A_{i}+E_{i}^{\prime} E_{i} & \bullet \\
H_{i}^{\prime} P_{i}+G_{i}^{\prime} E_{i} & -\rho I+G_{i}^{\prime} G_{i}
\end{array}\right]<0\right\} \\
& <\inf _{\rho>0}\{\rho: \underbrace{\left\|E_{i}\left(s I-A_{i}\right)^{-1} H_{i}+G_{i}\right\|_{\infty}^{2}}_{J_{\infty}(i)}<\rho\} \\
& <\max _{i \in \mathbb{K}}\left\|E_{i}\left(s l-A_{i}\right)^{-1} H_{i}+G_{i}\right\|_{\infty}^{2}
\end{aligned}
$$

- Hence, differently from the \mathcal{H}_{2} case, matrix Π_{0} can not be used to prove consistency in the \mathcal{H}_{∞} framework.
- Moreover, with $\Pi=\Pi_{0}$ we have

$$
J_{\infty}^{s o}=\max _{i \in \mathbb{K}}\left\|E_{i}\left(s l-A_{i}\right)^{-1} H_{i}+G_{i}\right\|_{\infty}^{2}
$$

Consistency

Consistency

- However, considering $G_{i}=G, i \in \mathbb{K}$ and adopting $\Pi=\Theta_{\ell}$ with $\ell \in \mathbb{K}$, the Riccati-Metzler inequalities become

$$
\left[\begin{array}{cc}
A_{i}^{\prime} P_{i}+P_{i} A_{i}+E_{i}^{\prime} E_{i}+\beta\left(P_{\ell}-P_{i}\right) & \bullet \\
H_{i}^{\prime} P_{i}+G^{\prime} E_{i} & -\rho I+G^{\prime} G
\end{array}\right]<0
$$

which is feasible whenever $\beta>0$ is large enough, $P_{i}>P_{\ell} \forall i \neq \ell$ and

$$
\left[\begin{array}{cc}
A_{\ell}^{\prime} P_{\ell}+P_{\ell} A_{\ell}+E_{\ell}^{\prime} E_{\ell} & \bullet \\
H_{\ell}^{\prime} P_{\ell}+G^{\prime} E_{\ell} & -\rho I+G^{\prime} G
\end{array}\right]<0
$$

which is equivalent to

$$
\left\|E_{\ell}\left(s I-A_{\ell}\right)^{-1} H_{\ell}+G\right\|_{\infty}^{2}<\rho
$$

Consistency

Consistency

- Consequently, we can conclude that

$$
\begin{aligned}
J_{\infty}(\sigma) & <\inf _{\rho>0}\left\{\rho:\left\|E_{\ell}\left(s I-A_{\ell}\right)^{-1} H_{\ell}+G\right\|_{\infty}^{2}<\rho\right\} \\
& <\underbrace{\left\|E_{\ell}\left(s I-A_{\ell}\right)^{-1} H_{\ell}+G\right\|_{\infty}^{2}}_{J_{\infty}(\ell)}
\end{aligned}
$$

which holds for all $\ell \in \mathbb{K}$.

- Hence, the min-type switching rule is consistent.
- In general, we have $J_{\infty}(\sigma) \ll J_{\infty}(i)$ which indicates that $\sigma(x)$ is strictly consistent.

Consistency

Example 3 - \mathcal{H}_{2} performance

- Consider a switched linear system composed of two stable subsystems

$$
\begin{gathered}
A_{1}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -9
\end{array}\right], A_{2}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -2
\end{array}\right], H=\left[\begin{array}{r}
0 \\
10
\end{array}\right] \\
E_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], E_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{gathered}
$$

we can calculate

$$
\begin{aligned}
J_{2}(\sigma) & =\min _{\ell \in\{1,2\}}\left\|E_{\ell}\left(s l-A_{\ell}\right)^{-1} H_{\ell}\right\|_{2}^{2} \\
& =\min \{\underbrace{2.7778}_{\sigma(t)=1, \forall t \geq 0}, 25.0000\}
\end{aligned}
$$

Consistency

Example $3-\mathcal{H}_{2}$ performance

- Adopting a Metzler matrix of the form

$$
\Pi=\left[\begin{array}{rr}
-p & q \\
p & -q
\end{array}\right]
$$

we have determined the minimum guaranteed cost for all (p, q) inside the box $[0,2] \times[0,2]$ as shown in the next figure where the plane surface concerns $\min _{\sigma \in \mathcal{C}} J_{2}(\sigma)$.

Consistency

Example 3 - \mathcal{H}_{2} performance

- The best guaranteed cost was obtained for

$$
\Pi^{*} \approx\left[\begin{array}{rr}
-0.45 & 0 \\
0.45 & 0
\end{array}\right] \Rightarrow J_{2}^{50}=2.1929
$$

- By numerical simulation we have determined the actual cost given by

$$
J_{2}\left(\sigma_{s o}\right)=1.6357
$$

We can conclude that the min-type switching rule $\sigma(\cdot)$ is strictly consistent with a cost reduction of 40% !

Consistency

Example 3- \mathcal{H}_{2} performance

- The state trajectories and the switching rule.

Notice the existence of stable sliding modes !

Consistency

Example $4-\mathcal{H}_{\infty}$ performance

- Consider a switched linear system composed of two stable subsystems

$$
\begin{gathered}
A_{1}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -9
\end{array}\right], A_{2}=\left[\begin{array}{rr}
0 & 1 \\
-2 & -2
\end{array}\right], H=\left[\begin{array}{r}
0 \\
10
\end{array}\right] \\
E_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], E_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right], G_{1}=G_{2}=1
\end{gathered}
$$

we can calculate

$$
\begin{aligned}
J_{\infty}(\sigma) & =\min _{\ell \in\{1,2\}}\left\|E_{\ell}\left(s I-A_{\ell}\right)^{-1} H_{\ell}+G\right\|_{\infty}^{2} \\
& =\min \{36.0463, \underbrace{35.9356}_{\sigma(t)=2, \forall t \geq 0}\}
\end{aligned}
$$

Consistency

Example 4 - \mathcal{H}_{∞} performance

- Adopting a Metzler matrix of the form

$$
\Pi=\left[\begin{array}{rr}
-p & q \\
p & -q
\end{array}\right]
$$

we have determined the minimum guaranteed cost for all (p, q) inside the box $[0,2] \times[0,2]$ as shown in the next figure where the plane surface concerns $\min _{\sigma \in \mathcal{C}} J_{\infty}(\sigma)$.

Consistency

Example $4-\mathcal{H}_{\infty}$ performance

- The best guaranteed cost was obtained for

$$
\Pi^{*} \approx\left[\begin{array}{rr}
-5.0 & 4.5 \\
5.0 & -4.5
\end{array}\right] \Rightarrow J_{\infty}^{50}=18.0677
$$

- The obtained cost was

$$
J_{\infty}\left(\sigma_{\text {so }}\right)<\underbrace{18.0677}_{J 50}<\min _{\sigma \in \mathcal{C}} J_{\infty}(\sigma)=35.9356
$$

We can conclude that the min-type switching rule $\sigma(\cdot)$ is strictly consistent with a cost reduction of at least 50% !

State feedback control design

- The idea now is to generalize the previous \mathcal{H}_{2} and \mathcal{H}_{∞} conditions to deal with the continuous-time system

$$
\begin{aligned}
\dot{x}(t) & =A_{\sigma(t)} x(t)+B_{\sigma(t)} u(t)+H_{\sigma(t)} w(t), x(0)=0 \\
z(t) & =E_{\sigma(t)} x(t)+F_{\sigma(t)} u+G_{\sigma(t)} w(t)
\end{aligned}
$$

where the control law

$$
u(t)=K_{\sigma(x(t))} x(t)
$$

must be designed together with the switching rule $\sigma(x)$ in order to preserve stability and \mathcal{H}_{2} or \mathcal{H}_{∞} performance.

- Connecting u to the system, we obtain the closed loop system

$$
\begin{aligned}
\dot{x}(t) & =\left(A_{\sigma(t)}+B_{\sigma(t)} K_{\sigma(t)}\right) x+H_{\sigma(t)} w(t), x(0)=0 \\
z(t) & =\left(E_{\sigma(t)}+F_{\sigma(t)} K_{\sigma(t)}\right) x(t)+G_{\sigma(t)} w(t)
\end{aligned}
$$

State feedback control

Defining $\operatorname{He}\{X\}=X+X^{\prime}$ we have :

Theorem : \mathcal{H}_{2} control

If there exist symmetric matrices $S_{i}, T_{i j}$, matrices Y_{i} and a Metzler matrix $\Pi \in \mathcal{M}_{c}$ satisfying the Lyapunov-Meztler inequalities

$$
\left.\left.\left.\begin{array}{c}
{\left[\mathrm{H}_{\mathrm{e}}\left\{A_{i} S_{i}+B_{i} Y_{i}\right\}+\sum_{j \neq i=1}^{N} \pi_{j i} T_{i j}\right.} \\
E_{i} S_{i}+F_{i} Y_{i} \\
E_{i}
\end{array}\right]<0, i \in \mathbb{K}\right] \begin{array}{cc}
T_{i j}+S_{i} & \bullet \\
S_{i} & S_{j}
\end{array}\right]>0, i \neq j \in \mathbb{K} \times \mathbb{K} \text {. }
$$

then the switching rule $\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} S_{i}^{-1} x$ and the state feedback gains $K_{i}=Y_{i} S_{i}^{-1}$ assure the global asymptotic stability of the origin and satisfies

$$
J_{2}(\sigma)<\min _{i \in \mathbb{K}} \operatorname{Tr}\left(H_{i}^{\prime} S_{i}^{-1} H_{i}\right)
$$

State feedback control

Theorem: \mathcal{H}_{∞} control

If there exist symmetric matrices $S_{i}, T_{i j}$, matrices Y_{i} and a scalar $\rho>0$ and a Metzler matrix $\Pi \in \mathcal{M}_{c}$ satisfying the Riccati-Meztler inequalities

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\mathrm{H}_{\mathrm{e}}\left\{A_{i} S_{i}+B_{i} Y_{i}\right\}+\sum_{j \neq i=1}^{N} \pi_{j i} T_{i j} & \bullet & \bullet \\
H_{i}^{\prime} & -\rho I & \bullet \\
E_{i} S_{i}+F_{i} Y_{i} & G_{i} & -l
\end{array}\right]<0(*), i \in \mathbb{K}} \\
{\left[\begin{array}{cc}
T_{i j}+S_{i} & \bullet \\
S_{i} & S_{j}
\end{array}\right]>0, i \neq j \in \mathbb{K} \times \mathbb{K}}
\end{gathered}
$$

then the switching rule $\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} S_{i}^{-1} x$ and the state feedback gains $K_{i}=Y_{i} S_{i}^{-1}$ assure the global asymptotic stability of the origin and satisfies $J_{\infty}(\sigma)<\rho$.

State feedback control

- Both conditions were obtained from the from the fact that $T_{i j}>S_{i} S_{j}^{-1} S_{i}-S_{i}$ for all $i \neq j$ which provides

$$
\begin{aligned}
\sum_{j \neq i=1}^{N} \pi_{j i} T_{i j} & >\sum_{j \neq i=1}^{N} \pi_{j i}\left(S_{i} S_{j}^{-1} S_{i}-S_{i} S_{i}^{-1} S_{i}\right) \\
& >\sum_{j=1}^{N} \pi_{j i} S_{i} S_{j}^{-1} S_{i}
\end{aligned}
$$

- For the \mathcal{H}_{∞} case, considering this inequality and multiplying both sides of $(*)$ by $\operatorname{diag}\left\{S_{i}^{-1}, I, I\right\}$, we obtain the original Riccati-Metzler inequalities after performing the Schur Complement with respect to the last row and column and making the replacements $A_{i} \rightarrow A_{i}+B_{i} K_{i}$ and $E_{i} \rightarrow E_{i}+F_{i} K_{i}$.
- Similar procedure can be made in the \mathcal{H}_{2} case.

Problems

Consider the switched linear system

$$
\begin{aligned}
& \dot{x}=A_{\sigma} x, x(0)=x_{0} \\
& z=E_{\sigma} x
\end{aligned}
$$

1) Adopting the min-type Lyapunov-function

$$
v(x)=\min _{i \in \mathbb{K}} x^{\prime} P_{i} x
$$

- Find the conditions that assure stability for an arbitrary switching rule $\sigma(t)$.
- Do the obtained conditions require some stability property of each isolated subsystem ?
- Show that the obtained conditions contain the quadratic ones $A_{i}^{\prime} P+P A_{i}+E_{i}^{\prime} E_{i}<0, \forall i \in \mathbb{K}$, as particular case.

Problems

2) Is it possible to assure global asymptotic stability by adopting the max-type Lyapunov function

$$
V(x)=\max _{i \in \mathbb{K}} x^{\prime} P_{i} x
$$

associated with the switching function

$$
\sigma(x)=\arg \max _{i \in \mathbb{K}} x^{\prime} P_{i} x
$$

- If the answer is positive, present the stability conditions.
- If negative, justify mathematically.

3) Show that the modified Lyapunov-Metzler inequalities are indeed a particular case of the original ones.

Problems

4) For the switched linear system defined by matrices

$$
A_{1}=\left[\begin{array}{rr}
0 & 1 \\
2 & -9
\end{array}\right], \quad A_{2}=\left[\begin{array}{rr}
0 & 1 \\
-2 & 2
\end{array}\right], x_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$E_{1}=E_{2}=I$. Elaborate a Matlab program to solve

$$
\min _{i \in \mathbb{K}} \inf _{P_{i}>0} x_{0}^{\prime} P_{i} x_{0}
$$

subject to the Lyapunov-Metzler inequalities Theorem :
Stability (pag 16).

- Provide P_{1}, P_{2}, Π and the guaranteed cost for a generic $\Pi \in \mathcal{M}_{c}$.
- Provide P_{1}, P_{2}, Π and the guaranteed cost for $\Pi \in \mathcal{M}_{c}$ with the same main diagonals.
- Provide P_{1}, P_{2}, Π and the guaranteed cost for $\Pi=-I+\nu\left[\begin{array}{ll}1 & 1\end{array}\right] \in \mathcal{M}_{c}, \nu \in \Lambda$.
- Compare the results.

Problems

5) For the same switched linear system, solve the problem

$$
\inf _{P>0} x_{0}^{\prime} P x_{0}
$$

for the conditions of Lemma: Quadratic stability (pag 11) by searching inside the simplex $\lambda \in \Lambda$. Provide the solution P, $\lambda \in \Lambda$ and compare the result with Problem 3).
6) Implement the switching rule of Problem 4) for the generic $\Pi \in \mathcal{M}_{c}$ and the switching rule of Problem 5) and show that in both cases the state trajectories converge indeed to the origin.

Problems

7) For the more general switched linear system

$$
\begin{aligned}
\dot{x} & =A_{\sigma} x+H w, x(0)=0 \\
z & =E x+G w
\end{aligned}
$$

Define $H_{w z}(s)=E\left(s l-A_{\lambda}\right)^{-1} H+G, \lambda \in \Lambda$, show that :
a) Considering $G=0$, the norm $\left\|H_{w z}(s)\right\|_{2}^{2}$ is an upper bound for the \mathcal{H}_{2} performance index $J_{2}(\sigma)$. Obtain the conditions as a particular case of the Lyapunov-Metzler inequality.
b) For the previous item, find the corresponding stabilizing state dependent switching function $\sigma(x)$.
c) The norm $\left\|H_{w z}(s)\right\|_{\infty}^{2}$ is an upper bound for the \mathcal{H}_{∞} performance index $J_{\infty}(\sigma)$. Obtain the associated conditions based on an unique matrix $P>0$.
d) For the previous item, find the corresponding state-input dependent stabilizing switching function $\sigma(x, w)$.
e) For item c), find the corresponding state dependent stabilizing switching function $\sigma(x)$.

Problems

Problems

8) Concerning the previous problem, is it possible to associate a stabilizing switching function $\sigma(x)$ with the norm of $\left\|E\left(s l-A_{\lambda}\right)^{-1} H_{\lambda}+G\right\|_{\infty}^{2}$ and what about $\sigma(x, w) ?$
9) Consider the system of Problem $\# 7$ with

$$
A_{1}=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{rr}
1 & 0 \\
0 & -7
\end{array}\right], H=\left[\begin{array}{l}
2 \\
2
\end{array}\right], E^{\prime}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], G=0
$$

Elaborate a Matlab program to find $\lambda \in \Lambda$ is order to obtain :
a) The smallest $\left\|H_{w z}(s)\right\|_{2}^{2}$.
b) Implement the correspondent switching function $\sigma(x)$, show that the state trajectories converge indeed to the origin and, by numerical simulation, determine $\|z\|_{2}^{2}$.
c) Solve the Lyapunov-Metzler inequalities with $\Pi \in \mathcal{M}_{c}$ and provide Π, P_{1}, P_{2} important to implement the switching function $\sigma(x)=\arg \min _{i \in \mathbb{K}} x^{\prime} P_{i} x$.

Problems

Problems

d) Show that the state trajectories converge indeed to the origin and, by numerical simulation, provide $\|z\|_{2}^{2}$.
e) Compare the costs obtained in the itens a), b), c), and d).
10) Consider the system of pag 59 with matrices

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & -9 & 5
\end{array}\right], A_{2}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-6 & -7 & 1 & 0
\end{array}\right] \\
& B=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], H=\left[\begin{array}{r}
-1 \\
1 \\
0 \\
1
\end{array}\right], E^{\prime}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], F=1, G=0
\end{aligned}
$$

$$
\text { with } H_{i}=H, E_{i}=E, B_{i}=B, F_{i}=F, G_{i}=G \text { for all }
$$ $i=1,2$.

a) For each isolated subsystem, find the gains $K_{i}, i=\{1,2\}$ that minimizes the \mathcal{H}_{2} norm and present the correspondent norm.

Problems

b) Using the gains determined in the previous item, solve the conditions of Theorem : \mathcal{H}_{2} performance (pag 41) for the closed-loop system. Provide the state trajectories, the cost J_{2}^{50} and the solution P_{1}, P_{2}, Π. Compare $J_{2}^{\text {so }}$ with the norms of each subsystem based on the concept of consistency.
c) Solve the conditions of Theorem : \mathcal{H}_{2} control (pag 60). Provide the state trajectories, the cost J_{2}^{50} and the solution $P_{1}, P_{2}, K_{1}, K_{2}$ and П. Compare the cost obtained with item b).

Problems

11) Consider the LPV system

$$
\Sigma(\lambda):=\left\{\begin{array}{l}
\dot{x}(t)=A_{\lambda(t)} x(t)+B_{\lambda(t)} u(t)+H w(t) \\
z(t)=C_{\sigma(x(t))} x+D_{\sigma(x(t))} u(t)
\end{array}\right.
$$

where $\lambda(t) \in \Lambda$ is a time-varying uncertain parameter. Based on the Lyapunov-Metzler inequalities with a parameter-dependent Metzler matrix $\Pi(\lambda) \in \mathcal{M}_{c}$ defined as

$$
\pi_{j i}(\lambda):=\left\{\begin{array}{cc}
\gamma_{i} \lambda_{j}, & j \neq i \\
\gamma_{i}\left(\lambda_{i}-1\right), & j=i
\end{array}\right.
$$

find the conditions for which the control law

$$
u(t)=K_{\sigma(x(t))} x(t)
$$

assures global asymptotic stability of the equilibrium point and an \mathcal{H}_{2} guaranteed cost.

