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Note to the reader

This text is based on the following main references :

D. Liberzon, Switching in Systems and Control, Birkhäuser,
2003.

J. C. Geromel and P. Colaneri, “Stability and stabilization of
continuous-time switched linear systems”, SIAM Journal on
Control and Optimization, vol. 45, pp. 1915–1930, 2006.

J. C. Geromel and G. S. Deaecto, ”Stability analysis of
Lur’e-type switched systems”, IEEE Transactions on
Automatic Control, vol. 59, pp. 3046-3050, 2014.

J. C. Geromel, G. S. Deaecto and J. Daafouz, ”Suboptimal
switching control consistency analysis for switched linear
systems”, IEEE Transactions on Automatic Control, vol. 58,
pp. 1857-1861, 2013.
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Switched system

Consider the switched linear system with state space
realization

ẋ = Aσx , x(0) = x0

z = Eσx

where

x ∈ R
nx is the state

z ∈ R
nz is the controlled output and

σ(·) : R
nx → {1, · · · ,N} = K is the switching function to be

determined.

Profa. Grace S. Deaecto IM420 DMC / FEM - Unicamp 4 / 71



CHAPTER II - Switched Linear Systems

Min-type Lyapunov function

Min-type Lyapunov function

Let us define the min-type Lyapunov function

v(x) = min
i∈K

x ′Pix = min
λ∈Λ

∑

i∈K

λix
′Pix

with matrices Pi > 0, ∀i ∈ K, and the unitary simplex Λ

Λ =

{

λ ∈ R
N : λi ≥ 0,

∑

i∈K

λi = 1

}

Adopt the following notation for the convex combination of a
set of matrices {X1, · · · ,XN}

Xλ =
∑

i∈K

λiXi , λ ∈ Λ

Important : Notice that v(x) is positive definite, continuous
but not differentiable.
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Differentiability

Differentiability

Danskin theorem is the most important result to deal with
derivative of functions described as

φ(x) = min
y∈Y

f (x , y)

where Y is a compact set and ∇x f (x , y) exists.

Danskin theorem

The one-sided directional derivative of φ(x) exists in any direction d and
is given by

D+φ(x , d) = lim
ǫ→0+

φ(x + ǫd)− φ(x)

ǫ

= min
y∈Y (x)

∇x f (x , y)
′d

where Y (x) = {y : φ(x) = f (x , y)}.
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Differentiability

Differentiability

Example : Consider the function φ(x) with

f (x , 1) = x2, f (x , 2) = 2(x − 3/2)2 + 1/2

defined for all x ∈ R and y ∈ Y = {1, 2}. Using Danskin
theorem, determine the one-sided directional derivative of
φ(x) in the direction d in the points x = 0.5 and x = 1.
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Differentiability

Differentiability

Notice that the function φ(x) is not differentiable in x = 1.

We have the sets Y (0.5) = {1} and Y (1) = {1, 2}.

Hence, we can calculate

D+φ(0.5, d) = miny∈Y (0.5) ∇f (x , y)d = d

D+φ(1, d) = miny∈Y (1)∇f (x , y)d = min {2d ,−2d} = −2d .
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Differentiability

Differentiability

Let us apply Danskin theorem to the min-type function v(x)
for an arbitrary trajectory x(t) of the system

ẋ(t) = Aσx(t)

Denote I (x) = {i : v(x) = vi(x)}. We want to calculate

D+v(x(t)) = lim
ǫ→0+

v(x(t + ǫ))− v(x(t))

ǫ

= lim
ǫ→0+

v(x(t) + ǫAσx(t))) − v(x(t))

ǫ

= min
ℓ∈I (x(t))

∇xvℓ(x(t))
′Aσx(t)

= min
ℓ∈I (x(t))

x(t)′(A′
σPℓ + PℓAσ)x(t)
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Differentiability

Differentiability

Important facts :
If we define a switching strategy such that :

σ(x(t)) = i ∈ I (x(t))

then

D+v(x(t)) = min
ℓ∈I (x(t))

x(t)′(A′
iPℓ + PℓAi )x(t)

≤ x(t)′(A′
iPi + PiAi )x(t)

in which case the upper bound of D+v(x(t)) is very simple.
Whenever the set I (x(t)) presents only one element the
function v(x(t)) is differentiable and the equality holds.
For more than one element in I (x(t)), sliding modes generally
occurs.
During the sliding mode, the system presents a particular
dynamic which is different from those of the subsystems.
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Stability

Stability

Let us study stability by adopting the quadratic Lyapunov
function v(x) = x ′Px which is the simplest one.

Lemma : Quadratic stability

If there exist a matrix P > 0 and a vector λ ∈ Λ satisfying

A′
λP + PAλ +Qλ < 0

with Qi = E ′
i Ei then the min-type switching function

σ(x) = argmin
i∈K

x ′(A′
iP + PAi + E ′

i Ei )x

is globally asymptotically stabilizing and assures that

‖z‖22 < x ′0Px0
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Stability

Stability

Indeed, notice that the time derivative of v(x) provides

v̇(x) = x ′(A′
σP + PAσ + E ′

σEσ)x − z ′z

= min
i∈K

x ′(A′
iP + PAi + E ′

i Ei )x − z ′z

= min
λ∈Λ

x ′(A′
λP + PAλ + Qλ)x − z ′z

≤ x ′(A′
λP + PAλ + Qλ)x − z ′z

< −z ′z

where the second equality comes from the choice of the
switching function and the last inequality is due to the fact
that A′

λP + PAλ + Qλ < 0.
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Stability

Stability

Notice that no stability condition is required from the isolated
subsystems Ai , i ∈ K !

The sufficient condition is the existence of λ ∈ Λ such that Aλ

is Hurwitz stable. This is a NP hard problem !

Moreover, integrating the inequality both sides from t = 0 to
t → ∞, we have
∫ ∞

0
v̇(x)dt = v(x(∞))− v(x(0)) < −

∫ ∞

0
z(t)′z(t)dt

which provides ‖z‖22 < x ′0Px0 since the asymptotic stability
assures that v(x(∞)) = 0.
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Stability

Stability

An important improvement is obtained by adopting the
following min-type Lyapunov function

v(x) = min
i∈K

x ′Pix

and a subclass of Metzler matrices Π = {πji} ∈ Mc ,
(i , j) ∈ K×K, with the following properties

∑

j∈K

πji = 0, πij ≥ 0, ∀j 6= i ∈ K×K

All matrices belonging to Mc is such that

πii = −
∑

j 6=i∈K

πji ≤ 0, i ∈ K
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Stability

Stability

Gershgorin circle theorem : Each eigenvalue of Π ∈ Mc is
inside a circle centered at (πii , 0) and with radius
|πii | =

∑

j 6=i∈K πji .

Frobenius-Perron theorem : The null eigenvalue is the one
with maximum real part and the associated eigenvector
v ∈ R

N is nonnegative. Hence the usual normalization
∑

i∈K vi = 1 makes v ∈ Λ.

Notice that for an arbitrary ν ∈ Λ the matrix

Π = −I + νe′

with e′ = [1 1 · · · 1] is a Metzler matrix of the class Mc .
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Stability

Stability

Theorem : Stability

If there exist matrices Pi > 0 and a Metzler matrix Π ∈ Mc

satisfying the so called Lyapunov-Metzler inequalities

A′
iPi + PiAi +

∑

j∈K

πjiPj + E ′
i Ei < 0

Then the min-type switching function

σ(x) = argmin
i∈K

x ′Pix

is globally asymptotically stabilizing and assures that

‖z‖22 < min
i∈K

x ′0Pix0
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Stability

Stability

Defining I (x) = {i : x ′Pix = v(x)}, for i ∈ I (x), and
Π ∈ Mc , we have

x ′




∑

j∈K

πjiPj



 x = πiix
′Pix +

∑

j 6=i

πji
︸︷︷︸

≥0

x ′Pjx

≥ πiix
′Pix +

∑

j 6=i

πjix
′Pix

≥




∑

j∈K

πji





︸ ︷︷ ︸

=0

x ′Pix

≥ 0
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Stability

Stability

Considering that at an arbitrary instant of time t ≥ 0 we have
σ(t) = i ∈ I (x), the one-sided directional derivative of v(x)
provides

D+v(x) = min
ℓ∈I (x)

x ′(A′
iPℓ + PℓAi + E ′

i Ei )x − z ′z

≤ x ′(A′
iPi + PiAi + E ′

i Ei )x − z ′z

< −x ′




∑

j∈K

πjiPj





︸ ︷︷ ︸

≥0

x − z ′z

< −z ′z

Moreover, making the same procedure as before, we have

‖z‖22 < v(x0) = min
i∈K

x ′0Pix0
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Stability

Stability

At this point, some remarks are in order :

We can write
(

Ai +
πii
2
I
)′

Pi + Pi

(

Ai +
πii
2
I
)

+
∑

j 6=i∈K

πjiPj + E ′
i Ei < 0

⇓

No stability property is required from the isolated subsystems
because πii ≤ 0.

The conditions are nonconvex due to the matrices product
{πji ,Pi} and difficult to solve for more than two subsystems.

The conditions assure stability even in the eventual existence
of sliding modes.

This phenomenon occurs whenever the set I (x) presents more
than one element.
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Stability

Stability

The classical Filippov’s result establishes that whenever the system
operates in a sliding mode, it is described by

ẋ =
∑

i∈I (x)

αiAix

where α ∈ Σ(x) with Σ(x) being the set composed by vectors α
such that αi ≥ 0 and

∑

i∈I (x) αi = 1. Hence,

D+v(x) = min
ℓ∈I (x)

∑

i∈I (x)

αix
′ (A′

iPℓ + PℓAi ) x

≤ max
α∈Σ(x)

min
ℓ∈I (x)

∑

i∈I (x)

αix
′ (A′

iPℓ + PℓAi ) x

≤ min
ℓ∈I (x)

max
α∈Σ(x)

∑

i∈I (x)

αix
′ (A′

iPℓ + PℓAi ) x

≤ max
i∈I (x)

x ′ (A′
iPi + PiAi ) x < 0

︸︷︷︸

because the previous theorem assures D+v(x) < 0, ∀i ∈ I (x)
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

Modified Lyapunov-Metzler inequalities

The result of the previous theorem remains valid whenever there
exist matrices Pi > 0 and a positive scalar γ > 0 satisfying the
modified Lyapunov-Metzler inequalities

A′
iPi + PiAi + γ(Pj − Pi) + E ′

i Ei < 0, i 6= j ∈ K×K

These conditions were obtained by restricting the Metzler
matrices to those with the same main diagonal γ =

∑

j 6=i πji .

Although they are clearly more conservative, for an arbitrary
number of subsystems, they can be solved by LMIs whenever
a scalar γ > 0 is fixed.
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

Theorem : Alternative stability conditions

If there exist a matrix P > 0, symmetric matrices Wi and a
Metzler matrix Π ∈ Mc satisfying the inequalities

A′
iP + PAi +

∑

j∈K

πjiWj + E ′
i Ei < 0, i ∈ K

Then the min-type switching function

σ(x) = argmin
i∈K

x ′Wix

is globally asymptotically stabilizing and assures

‖z‖22 < x ′0Px0

Moreover v(x) = x ′Px is a Lyapunov function for the system.
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

This result is obtained from the Lyapunov-Metzler inequalities
with Π(µ) = µΠ ∈ Mc and choosing Pi = P + µ−1Wi with
µ > 0, which provide

A′
i(P + µ−1Wi )
︸ ︷︷ ︸

Pi

+(P + µ−1Wi)
︸ ︷︷ ︸

Pi

Ai+
∑

j∈K

µπji(P + µ−1Wj)
︸ ︷︷ ︸

Pj

+E ′
i Ei < 0

Making µ → ∞ we have

A′
iP + PAi +

∑

j∈K

πjiWj + E ′
i Ei < 0, i ∈ K
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

The switching function becomes

σ(x) = argmin
i∈K

x ′ Pi
︸︷︷︸

P+µ−1Wi

x = argmin
i∈K

x ′Wix

Notice that the switching rule does not depend directly on the
Lyapunov function !
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

The next lemma presents some instrumental results that are
very important to obtain stability conditions based on an
unique subsystem.

Lemma

Let the symmetric matrices Qi , ∀i ∈ K, be given. The following
statements are equivalent :

1 There exist matrices Wi > 0 and a Metzler matrix Π ∈ Mc

satisfying

Qi +
∑

j∈K

πjiWj < 0, i ∈ K

2 There exist symmetric matrices Ri and ν ∈ Λ satisfying
Rν = 0 and

Qi + Ri < 0, i ∈ K
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

Indeed, considering that statement 1) is true, choosing

Ri =
∑

j∈K

πjiWj , i ∈ K

and ν ∈ Λ as being the eigenvector associated with the null
eigenvalue of Π, we have

Rν =
∑

i∈K

νi
∑

j∈K

πjiWj

=
∑

j∈K

(
∑

i∈K

πjiνi

)

Wj = 0

and, therefore, statement 2) is true.
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

Now, assuming that statement 2) is true, choosing

Π = −I + ν[1 . . . 1] , Wi = WN + (RN − Ri )

we have

N∑

j=1

πjiWj = Wν −Wi = −Rν + Ri = Ri

because Rν = 0. Hence, from statement 2) we have that
statement 1) is true.

Using this lemma the alternative stability conditions can be
written as follows.
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

Corollary : Alternative stability conditions

If there exist a matrix P > 0, symmetric matrices Ri and ν ∈ Λ
satisfying Rν = 0 and the inequalities

A′
iP + PAi + E ′

i Ei + Ri < 0, i ∈ K

Then the max-type switching function

σ(x) = argmax
i∈K

x ′Rix

is globally asymptotically stabilizing and assures

‖z‖22 < x ′0Px0

Moreover v(x) = x ′Px is a Lyapunov function for the system.
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Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

The inequality follows directly from the previous lemma.

The switching function is obtained from

σ(x) = arg min
i∈K

x ′ Pi
︸︷︷︸

P+µ−1Wi

x = argmin
i∈K

x ′ Wi
︸︷︷︸

WN+(RN−Ri )

x

= argmax
i∈K

x ′Rix

= argmin
i∈K

x ′(A′
iP + PAi + E ′

i Ei )x

It is simple to see that these conditions are the quadratic
stability ones provided in the beginning of this chapter.

Moreover, they are a particular case of the Lyapunov-Metzler
inequalities.
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Lyapunov-Metzler inequalities

Example 1 - Stability

Consider a system defined by two unstable subsystems

A1 =

[
0 1

−5 1

]

, A2 =

[
0 1
2 −5

]

, E1 = E2 = I

The equilibrium point of the first subsystem is an unstable
focus λ{A1} = {0.5± 2.1794}, while the equilibrium point of
the second is a saddle λ{A2} = {0.3723, −5.3723}.
We have solved problem

inf
Pi>0,γ>0

γ

subject to the Lyapunov Metzler inequalities with

Pi − γI < 0, i ∈ K

Notice that the guaranteed cost is given by

‖z‖22 < min
i∈K

x ′0Pix0 < γx ′0x0
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Lyapunov-Metzler inequalities

Example 1 - Stability

We have obtained γ∗ = 1.4482 and the matrices

P1 =

[
1.3428 0.2994
0.2994 0.4576

]

, P2 =

[
1.3566 0.3039
0.3039 0.4401

]

associated with the choice

Π =

[
−p q

p −q

]

with (p∗, q∗) = (144, 160) determined by unidimensional
search inside the box (p, q) ∈ [0, 160] × [0, 160] with step 2.

We have determined the switching surface by making

x ′(P1 − P2)x = 0
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Lyapunov-Metzler inequalities

Example 1 - Stability

Phase portrait of both isolated subsystems.
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Lyapunov-Metzler inequalities

Example 1 - Stability

Phase portrait of the switched system.
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It is clear the sliding mode sur-
face and the dynamics of both
subsystems !
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Lyapunov-Metzler inequalities

Example 1 - Stability

State trajectories of the switched system.
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Lyapunov-Metzler inequalities

Example 2 - Stability

Consider a third order switched linear system defined by

A1 =





−3 −6 3
2 2 −3
α 0 −2



 , A2 =





1 3 3
β −3 −3
0 0 −2





and E1 = E2 = I .

We have varied the pair α, β inside the interval [0.5, 2],
[−2, 1], respectively, analyzing the feasibility of the Lyapunov
Metzler inequalities for

Π =

[
−p q

p −q

]

with (p, q) belonging to the box [0, 20] × [0, 20].
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Lyapunov-Metzler inequalities

Example 2 - Lyapunov-Metzler

The region in gray (dark and light) is the feasibility region for
the Lyapunov-Metzler inequalities.

The region in dark gray does not admit a Hurwitz stable
convex combination of the subsystems matrices.
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This makes clear that
the Lyapunov-Metzler in-
equalities are less conser-
vative than asking for Aλ

be Hurwitz stable !
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Lyapunov-Metzler inequalities

Example 2 - Lyapunov-Metzler

For (α, β) = (1.0,−0.9) the switched system does not present
a stable convex combination of the subsystems matrices.
However, matrices

P1 =





3.6048 8.0420 −6.7034
8.0420 34.4956 −33.0632

−6.7034 −33.0632 34.3784





P2 =





4.6089 4.6781 −0.4977
4.6781 11.6580 −12.0200

−0.4977 −12.0200 22.7412





with (p, q) = (1.86, 1.79) satisfy the Lyapunov-Metzler
inequalities.
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Lyapunov-Metzler inequalities

Example 2 - Lyapunov-Metzler

The state trajectories obtained by implementing the switching
rule with matrices P1, P2 are presented as follows
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Closed-loop performance

Closed-loop performance

Consider now a more general switched linear system described by

Gσ(t) :=

{
ẋ(t) = Aσ(t)x(t) + Hσ(t)w(t), x(0) = 0

z(t) = Eσ(t)x(t) + Gσ(t)w(t)

where

w(t) ∈ R
nw is the external input.

In our context we will adopt two classes of external inputs :

The impulsive type w(t) = ekδ(t), for which the dynamic
equation can be written alternatively as

ẋ(t) = Aσ(t)x(t), x(0) = Hσ(0)ek

ek is the k-th column of the identity matrix.

Those belonging to the set w ∈ L2.
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Closed-loop performance

Performance indexes

For a stabilizing given trajectory σ(t) we have :
H2 performance index : For Gi = 0, ∀i ∈ K, the controlled
output z(t) associated with the external input w(t) = ekδ(t),
allows us to define the following H2 index

J2(σ) =
m∑

k=1

‖zk‖
2
2

H∞ performance index : The controlled output z(t) associated
with any arbitrary external input w(t) ∈ L2 allows us to define
the following H∞ index

J∞(σ) = sup
0 6=w∈L2

‖z‖22
‖w‖22

Both indexes are difficult to be calculated then the idea is to find a
suitable upper bound !
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Closed-loop performance

Performance indexes

For a stabilizing given trajectory σ(t) we have :
H2 performance index : For Gi = 0, ∀i ∈ K, the controlled
output z(t) associated with the external input w(t) = ekδ(t),
allows us to define the following H2 index

J2(σ) =
m∑

k=1

‖zk‖
2
2 = ‖Ei(sI − Ai )

−1Hi‖
2
2

︸ ︷︷ ︸

σ(t)=i ,∀t≥0

H∞ performance index : The controlled output z(t) associated
with any arbitrary external input w(t) ∈ L2 allows us to define
the following H∞ index

J∞(σ) = sup
0 6=w∈L2

‖z‖22
‖w‖22

= ‖Ei(sI − Ai )
−1Hi + Gi‖

2
∞

︸ ︷︷ ︸

σ(t)=i ,∀t≥0

Both indexes are difficult to be calculated then the idea is to find a
suitable upper bound !
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Closed-loop performance

H2 performance

Theorem : H2 performance

If there exist matrices Pi , i ∈ K, and a Metzler matrix Π ∈ Mc

satisfying the Lyapunov-Metzler inequalities

A′
iPi + PiAi +

∑

j∈K

πjiPj + E ′
i Ei < 0

then the min-type switching function

σ(x) = argmin
i∈K

x ′Pix

is globally asymptotically stabilizing and satisfies

J2(σ) < min
i∈K

Tr(H ′
iPiHi )
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Closed-loop performance

H2 performance

From the previous results we have

J2(σ) <

nw∑

k=1

min
i∈K

(
Hσ(0)ek

)′
Pi

(
Hσ(0)ek

)

< min
i∈K

nw∑

k=1

(
Hσ(0)ek

)′
Pi

(
Hσ(0)ek

)

︸ ︷︷ ︸

Tr

(

H′

σ(0)
PiHσ(0)

)

< min
i∈K

Tr (H ′
iPiHi )

where σ(0) = i can be imposed since σ(0) is arbitrary.
The best H2 guaranteed cost is given by

Jso2 = inf
{Π,Pi}∈X2

min
i∈K

Tr(H ′
iPiHi)

where X2 is the set of feasible solutions of the Lyapunov-Metzler

inequalities.
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Closed-loop performance

H∞ performance

Theorem : H∞ performance

If there exist matrices Pi , i ∈ K, a Metzler matrix Π ∈ Mc and a
scalar ρ > 0 satisfying the Riccati-Metzler inequalities

[
A′
iPi + PiAi +

∑

j∈K πjiPj + E ′
i Ei •

H ′
iPi + G ′

i Ei −ρI + G ′
iGi

]

< 0

then the min-type switching function

σ(x) = argmin
i∈K

x ′Pix

is globally asymptotically stabilizing and satisfies

J∞(σ) < ρ

Profa. Grace S. Deaecto IM420 DMC / FEM - Unicamp 43 / 71



CHAPTER II - Switched Linear Systems

Closed-loop performance

H∞ performance

Consider that the Riccati-Metzler inequalities hold. Adopting
the min-type Lyapunov function v(x) = mini∈K x ′Pix and
assuming that σ(t) = i ∈ I (x(t)) for a t ≥ 0, we have

D+v(x) = min
ℓ∈I (x)

2(Aix + Hiw)′Pℓx

<

[
x

w

]′ [
A′
iPi + PiAi •
H ′
iPi 0

] [
x

w

]

< −x ′




∑

j∈K

πjiPj



 x − z ′z + ρw ′w

< −z ′z + ρw ′w

where the second inequality comes from the validity of the
Riccati-Metzler inequalities.
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Closed-loop performance

H∞ performance

Integrating both sides from t = 0 to t → ∞ we obtain

v(x(∞)) − v(x(0)) < −‖z‖22 + ρ‖w‖22

where the left hand side is null since v(x(∞) = 0 because the
system is stable and v(x(0)) = 0 because x(0) = 0.

The best H∞ guaranteed cost is given by

Jso∞ = inf
{Π,Pi ,ρ}∈X∞

ρ

where X∞ is the set of feasible solutions of the
Riccati-Metzler inequalities.
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Consistency

Consistency

Consistency is an important concept related to stabilizing
switching rules. Consider α = {2,∞}, define S as the set of
all stabilizing switching rules and C as the set of all constant
rules σ(t) = i ∈ K for all t ≥ 0.

Consistency

A switching rule σα ∈ S is said to be consistent whenever it
provides a performance better than the one of each isolated
subsystem, that is

Jα(σα) ≤ Jα(σ), σ ∈ C

when the inequality is strict the switching rule σα is said to be
strictly consistent.
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Consistency

Consistency

As it will be clear in the sequel the min-type switching
function is consistent for the H2 and H∞ indexes.
In order to show this, let us notice that

Matrix Π = Π0 = 0 belongs to the subclass of Metzler
matrices Π0 ∈ Mc .
Matrix Π = Θℓ defined as

πii = −β, πℓi = β, ∀i ∈ K, ℓ 6= i

with β > 0 also belongs to Θℓ ∈ Mc . For N = 4 and ℓ = 2 :

Π = Θ2 =







−β 0 0 0
β 0 β β
0 0 −β 0
0 0 0 −β







In this case
∑

j∈K

πjiPj = β(Pℓ − Pi ), ∀i ∈ K
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Consistency

For the H2 performance, since that Π = Π0 is feasible, we
have

J2(σ) < inf
Pi>0

{Tr(H ′
iPiHi ) : A′

iPi + PiAi + E ′
i Ei < 0}

< ‖Ei (sI − Ai )
−1Hi‖

2
2

︸ ︷︷ ︸

J2(i)

which holds for all i ∈ K.

Hence, the min-type switching rule is consistent.

In general, we have J2(σ) ≪ J2(i) which indicates that σ(x) is
strictly consistent.

Moreover, with Π = Π0 we have

Jso2 = min
i∈K

‖Ei (sI − Ai)
−1Hi‖

2
2
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Consistency

For the H∞ performance, since that Π = Π0 is feasible, we
have

J∞(σ) < inf
Pi>0,ρ>0

{ρ :

[
A′
iPi + PiAi + E ′

i Ei •
H ′
iPi + G ′

iEi −ρI + G ′
iGi

]

< 0}

< inf
ρ>0

{ρ : ‖Ei (sI − Ai )
−1Hi + Gi‖

2
∞

︸ ︷︷ ︸

J∞(i)

< ρ}

< max
i∈K

‖Ei (sI − Ai)
−1Hi + Gi‖

2
∞

Hence, differently from the H2 case, matrix Π0 can not be
used to prove consistency in the H∞ framework.

Moreover, with Π = Π0 we have

Jso∞ = max
i∈K

‖Ei (sI − Ai)
−1Hi + Gi‖

2
∞
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Consistency

However, considering Gi = G , i ∈ K and adopting Π = Θℓ

with ℓ ∈ K, the Riccati-Metzler inequalities become

[
A′
iPi + PiAi + E ′

i Ei + β(Pℓ − Pi) •
H ′
iPi + G ′Ei −ρI + G ′G

]

< 0

which is feasible whenever β > 0 is large enough,
Pi > Pℓ∀i 6= ℓ and

[
A′
ℓPℓ + PℓAℓ + E ′

ℓEℓ •
H ′
ℓPℓ + G ′Eℓ −ρI + G ′G

]

< 0

which is equivalent to

‖Eℓ(sI − Aℓ)
−1Hℓ + G‖2∞ < ρ
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Consistency

Consequently, we can conclude that

J∞(σ) < inf
ρ>0

{ρ : ‖Eℓ(sI − Aℓ)
−1Hℓ + G‖2∞ < ρ}

< ‖Eℓ(sI − Aℓ)
−1Hℓ + G‖2∞

︸ ︷︷ ︸

J∞(ℓ)

which holds for all ℓ ∈ K.

Hence, the min-type switching rule is consistent.

In general, we have J∞(σ) ≪ J∞(i) which indicates that σ(x)
is strictly consistent.
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Consistency

Example 3 - H2 performance

Consider a switched linear system composed of two stable
subsystems

A1 =

[
0 1

−2 −9

]

, A2 =

[
0 1

−2 −2

]

, H =

[
0

10

]

E1 =
[
1 0

]
, E2 =

[
0 1

]

we can calculate

J2(σ) = min
ℓ∈{1,2}

‖Eℓ(sI − Aℓ)
−1Hℓ‖

2
2

= min{ 2.7778
︸ ︷︷ ︸

σ(t)=1, ∀t≥0

, 25.0000}
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Consistency

Example 3 - H2 performance

Adopting a Metzler matrix of the form

Π =

[
−p q

p −q

]

we have determined the minimum guaranteed cost for all
(p, q) inside the box [0, 2] × [0, 2] as shown in the next figure
where the plane surface concerns minσ∈C J2(σ).

0
0.5

1
1.5

2

0

0.5

1

1.5

2
2

2.5

3

3.5

p q
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Consistency

Example 3 - H2 performance

The best guaranteed cost was obtained for

Π∗ ≈

[
−0.45 0
0.45 0

]

⇒ Jso2 = 2.1929

By numerical simulation we have determined the actual cost
given by

J2(σso) = 1.6357

We can conclude that the min-type switching rule σ(·) is
strictly consistent with a cost reduction of 40% !
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Consistency

Example 3 - H2 performance

The state trajectories and the switching rule.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.2

1.4

1.6

1.8

2

t [s]

t [s]

x
(t
)

σ
(x

(t
))

Notice the existence of stable sliding modes !
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Consistency

Example 4 - H∞ performance

Consider a switched linear system composed of two stable
subsystems

A1 =

[
0 1

−2 −9

]

, A2 =

[
0 1

−2 −2

]

, H =

[
0

10

]

E1 =
[
1 0

]
, E2 =

[
0 1

]
, G1 = G2 = 1

we can calculate

J∞(σ) = min
ℓ∈{1,2}

‖Eℓ(sI − Aℓ)
−1Hℓ + G‖2∞

= min{36.0463 , 35.9356
︸ ︷︷ ︸

σ(t)=2, ∀t≥0

}
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Consistency

Example 4 - H∞ performance

Adopting a Metzler matrix of the form

Π =

[
−p q

p −q

]

we have determined the minimum guaranteed cost for all
(p, q) inside the box [0, 2] × [0, 2] as shown in the next figure
where the plane surface concerns minσ∈C J∞(σ).
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Consistency

Example 4 - H∞ performance

The best guaranteed cost was obtained for

Π∗ ≈

[
−5.0 4.5
5.0 −4.5

]

⇒ Jso∞ = 18.0677

The obtained cost was

J∞(σso) < 18.0677
︸ ︷︷ ︸

Jso∞

< min
σ∈C

J∞(σ) = 35.9356

We can conclude that the min-type switching rule σ(·) is
strictly consistent with a cost reduction of at least 50% !
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State feedback control design

The idea now is to generalize the previous H2 and H∞

conditions to deal with the continuous-time system

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + Hσ(t)w(t), x(0) = 0

z(t) = Eσ(t)x(t) + Fσ(t)u + Gσ(t)w(t)

where the control law

u(t) = Kσ(x(t))x(t)

must be designed together with the switching rule σ(x) in
order to preserve stability and H2 or H∞ performance.

Connecting u to the system, we obtain the closed loop system

ẋ(t) = (Aσ(t) + Bσ(t)Kσ(t))x + Hσ(t)w(t), x(0) = 0

z(t) = (Eσ(t) + Fσ(t)Kσ(t))x(t) + Gσ(t)w(t)
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State feedback control

Defining He{X} = X + X ′ we have :

Theorem : H2 control

If there exist symmetric matrices Si , Tij , matrices Yi and a Metzler
matrix Π ∈ Mc satisfying the Lyapunov-Meztler inequalities

[
He{AiSi + BiYi}+

∑N

j 6=i=1 πjiTij •

EiSi + FiYi −I

]

< 0, i ∈ K

[
Tij + Si •

Si Sj

]

> 0, i 6= j ∈ K×K

then the switching rule σ(x) = argmini∈K x ′S−1
i x and the state feedback

gains Ki = YiS
−1
i assure the global asymptotic stability of the origin and

satisfies
J2(σ) < min

i∈K

Tr(H ′
i S

−1
i Hi)
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State feedback control design

State feedback control

Theorem : H∞ control

If there exist symmetric matrices Si , Tij , matrices Yi and a scalar
ρ > 0 and a Metzler matrix Π ∈ Mc satisfying the Riccati-Meztler
inequalities





He{AiSi + BiYi}+
∑N

j 6=i=1 πjiTij • •

H ′
i −ρI •

EiSi + FiYi Gi −I



 < 0(∗), i ∈ K

[
Tij + Si •

Si Sj

]

> 0, i 6= j ∈ K×K

then the switching rule σ(x) = argmini∈K x ′S−1
i x and the state feedback

gains Ki = YiS
−1
i assure the global asymptotic stability of the origin and

satisfies J∞(σ) < ρ.
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State feedback control

Both conditions were obtained from the from the fact that
Tij > SiS

−1
j Si − Si for all i 6= j which provides

N∑

j 6=i=1

πjiTij >

N∑

j 6=i=1

πji
(
SiS

−1
j Si − SiS

−1
i Si

)

>
N∑

j=1

πjiSiS
−1
j Si

For the H∞ case, considering this inequality and multiplying
both sides of (*) by diag{S−1

i , I , I}, we obtain the original
Riccati-Metzler inequalities after performing the Schur
Complement with respect to the last row and column and
making the replacements Ai → Ai +BiKi and Ei → Ei + FiKi .

Similar procedure can be made in the H2 case.
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Problems

Consider the switched linear system

ẋ = Aσx , x(0) = x0

z = Eσx

1) Adopting the min-type Lyapunov-function

v(x) = min
i∈K

x ′Pix

Find the conditions that assure stability for an arbitrary
switching rule σ(t).
Do the obtained conditions require some stability property of
each isolated subsystem ?
Show that the obtained conditions contain the quadratic ones
A′
iP + PAi + E ′

i Ei < 0, ∀i ∈ K, as particular case.
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Problems

Problems

2) Is it possible to assure global asymptotic stability by adopting
the max-type Lyapunov function

V (x) = max
i∈K

x ′Pix

associated with the switching function

σ(x) = argmax
i∈K

x ′Pix

If the answer is positive, present the stability conditions.
If negative, justify mathematically.

3) Show that the modified Lyapunov-Metzler inequalities are
indeed a particular case of the original ones.
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Problems

Problems

4) For the switched linear system defined by matrices

A1 =

[
0 1
2 −9

]

, A2 =

[
0 1

−2 2

]

, x0 =

[
1
1

]

E1 = E2 = I . Elaborate a Matlab program to solve

min
i∈K

inf
Pi>0

x ′0Pix0

subject to the Lyapunov-Metzler inequalities Theorem :
Stability (pag 16).

Provide P1, P2, Π and the guaranteed cost for a generic
Π ∈ Mc .
Provide P1, P2, Π and the guaranteed cost for Π ∈ Mc with
the same main diagonals.
Provide P1, P2, Π and the guaranteed cost for
Π = −I + ν[1 1] ∈ Mc , ν ∈ Λ.
Compare the results.
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Problems

5) For the same switched linear system, solve the problem

inf
P>0

x ′0Px0

for the conditions of Lemma : Quadratic stability (pag 11) by
searching inside the simplex λ ∈ Λ. Provide the solution P ,
λ ∈ Λ and compare the result with Problem 3).

6) Implement the switching rule of Problem 4) for the generic
Π ∈ Mc and the switching rule of Problem 5) and show that
in both cases the state trajectories converge indeed to the
origin.
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Problems

Problems

7) For the more general switched linear system

ẋ = Aσx + Hw , x(0) = 0

z = Ex + Gw

Define Hwz(s) = E (sI − Aλ)
−1H + G , λ ∈ Λ, show that :

a) Considering G = 0, the norm ‖Hwz(s)‖
2
2 is an upper bound for

the H2 performance index J2(σ). Obtain the conditions as a
particular case of the Lyapunov-Metzler inequality.

b) For the previous item, find the corresponding stabilizing state
dependent switching function σ(x).

c) The norm ‖Hwz(s)‖
2
∞ is an upper bound for the H∞

performance index J∞(σ). Obtain the associated conditions
based on an unique matrix P > 0.

d) For the previous item, find the corresponding state-input
dependent stabilizing switching function σ(x ,w).

e) For item c), find the corresponding state dependent stabilizing
switching function σ(x).
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Problems

Problems

8) Concerning the previous problem, is it possible to associate a
stabilizing switching function σ(x) with the norm of
‖E (sI − Aλ)

−1Hλ + G‖2∞ and what about σ(x ,w) ?

9) Consider the system of Problem #7 with

A1 =

[
−1 0
0 1

]

, A2 =

[
1 0
0 −7

]

, H =

[
2
2

]

, E ′ =

[
1
1

]

,G = 0

Elaborate a Matlab program to find λ ∈ Λ is order to obtain :
a) The smallest ‖Hwz(s)‖

2
2.

b) Implement the correspondent switching function σ(x), show
that the state trajectories converge indeed to the origin and,
by numerical simulation, determine ‖z‖22.

c) Solve the Lyapunov-Metzler inequalities with Π ∈ Mc and
provide Π, P1, P2 important to implement the switching
function σ(x) = argmini∈K x ′Pix .
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Problems

Problems

d) Show that the state trajectories converge indeed to the origin and,
by numerical simulation, provide‖z‖22.

e) Compare the costs obtained in the itens a), b), c), and d).

10) Consider the system of pag 59 with matrices

A1 =









0 1 0 0
0 0 1 0
0 0 0 1

−4 0 −9 5









,A2 =









0 1 0 0
0 0 1 0
0 0 0 1

−6 −7 1 0









B =









0
0
0
1









, H =









−1
1
0
1









, E
′ =









1
1
1
1









, F = 1, G = 0

with Hi = H, Ei = E , Bi = B , Fi = F , Gi = G for all
i = 1, 2.

a) For each isolated subsystem, find the gains Ki , i = {1, 2} that
minimizes the H2 norm and present the correspondent norm.
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Problems

b) Using the gains determined in the previous item, solve the
conditions of Theorem : H2 performance (pag 41) for the
closed-loop system. Provide the state trajectories, the cost Jso2 and
the solution P1, P2, Π. Compare Jso2 with the norms of each
subsystem based on the concept of consistency.

c) Solve the conditions of Theorem : H2 control (pag 60). Provide the

state trajectories, the cost Jso2 and the solution P1, P2, K1, K2 and

Π. Compare the cost obtained with item b).
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Problems

Problems

11) Consider the LPV system

Σ(λ) :=

{

ẋ(t) = Aλ(t)x(t) + Bλ(t)u(t) + Hw(t)

z(t) = Cσ(x(t))x + Dσ(x(t))u(t)

where λ(t) ∈ Λ is a time-varying uncertain parameter. Based
on the Lyapunov-Metzler inequalities with a
parameter-dependent Metzler matrix Π(λ) ∈ Mc defined as

πji (λ) :=

{
γiλj , j 6= i

γi (λi − 1), j = i

find the conditions for which the control law

u(t) = Kσ(x(t))x(t)

assures global asymptotic stability of the equilibrium point
and an H2 guaranteed cost.
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