Continuous-Time Switched Dynamical Systems

Profa. Grace S. Deaecto

Faculdade de Engenharia Mecânica / UNICAMP 13083-860, Campinas, SP, Brasil. grace@fem.unicamp.br

Primeiro Semestre de 2017

- Min-type Lyapunov function
- Differentiability
- Stability
- Lyapunov-Metzler inequalities
- Closed-loop performance
- Consistency
- State feedback control design
- Problems

Note to the reader

- This text is based on the following main references :
 - D. Liberzon, *Switching in Systems and Control*, Birkhäuser, 2003.
 - J. C. Geromel and P. Colaneri, "Stability and stabilization of continuous-time switched linear systems", SIAM Journal on Control and Optimization, vol. 45, pp. 1915–1930, 2006.
 - J. C. Geromel and G. S. Deaecto, "Stability analysis of Lur'e-type switched systems", IEEE Transactions on Automatic Control, vol. 59, pp. 3046-3050, 2014.
 - J. C. Geromel, G. S. Deaecto and J. Daafouz, "Suboptimal switching control consistency analysis for switched linear systems", IEEE Transactions on Automatic Control, vol. 58, pp. 1857-1861, 2013.

Switched system

• Consider the switched linear system with state space realization

$$\dot{x} = A_{\sigma}x, \ x(0) = x_0$$

 $z = E_{\sigma}x$

where

- $x \in \mathbb{R}^{n_x}$ is the state
- $z \in \mathbb{R}^{n_z}$ is the controlled output and
- $\sigma(\cdot)$: $\mathbb{R}^{n_x} \to \{1, \cdots, N\} = \mathbb{K}$ is the switching function to be determined.

Min-type Lyapunov function

Min-type Lyapunov function

• Let us define the min-type Lyapunov function

$$v(x) = \min_{i \in \mathbb{K}} x' P_i x = \min_{\lambda \in \Lambda} \sum_{i \in \mathbb{K}} \lambda_i x' P_i x$$

with matrices $P_i > 0, \ \forall i \in \mathbb{K}$, and the unitary simplex Λ

$$\Lambda = \left\{ \lambda \in \mathbb{R}^{N} \ : \ \lambda_{i} \geq 0, \ \sum_{i \in \mathbb{K}} \lambda_{i} = 1 \right\}$$

 Adopt the following notation for the convex combination of a set of matrices {X₁, · · · , X_N}

$$X_{\lambda} = \sum_{i \in \mathbb{K}} \lambda_i X_i, \ \lambda \in \Lambda$$

 Important : Notice that v(x) is positive definite, continuous but not differentiable.

Profa. Grace S. Deaecto

Differentiability

• Danskin theorem is the most important result to deal with derivative of functions described as

 $\phi(x) = \min_{y \in Y} f(x, y)$

where Y is a compact set and $\nabla_x f(x, y)$ exists.

Danskin theorem

The one-sided directional derivative of $\phi(x)$ exists in any direction d and is given by

$$D_{+}\phi(x,d) = \lim_{\epsilon \to 0^{+}} \frac{\phi(x+\epsilon d) - \phi(x)}{\epsilon}$$
$$= \min_{y \in Y(x)} \nabla_{x} f(x,y)' d$$

where $Y(x) = \{y : \phi(x) = f(x, y)\}.$

Differentiability

Differentiability

• **Example :** Consider the function $\phi(x)$ with

$$f(x,1) = x^2$$
, $f(x,2) = 2(x - 3/2)^2 + 1/2$

defined for all $x \in \mathbb{R}$ and $y \in Y = \{1, 2\}$. Using Danskin theorem, determine the one-sided directional derivative of $\phi(x)$ in the direction *d* in the points x = 0.5 and x = 1.

Differentiability

- Notice that the function $\phi(x)$ is not differentiable in x = 1.
- We have the sets $Y(0.5) = \{1\}$ and $Y(1) = \{1, 2\}$.

Hence, we can calculate

•
$$D_+\phi(0.5,d) = \min_{y \in Y(0.5)} \nabla f(x,y)d = d$$

•
$$D_+\phi(1,d) = \min_{y \in Y(1)} \nabla f(x,y)d = \min\{2d, -2d\} = -2d.$$

Differentiability

Differentiability

Let us apply Danskin theorem to the min-type function v(x) for an arbitrary trajectory x(t) of the system

$$\dot{x}(t) = A_{\sigma}x(t)$$

Denote $I(x) = \{i : v(x) = v_i(x)\}$. We want to calculate

$$D_{+}v(x(t)) = \lim_{\epsilon \to 0^{+}} \frac{v(x(t+\epsilon)) - v(x(t))}{\epsilon}$$
$$= \lim_{\epsilon \to 0^{+}} \frac{v(x(t) + \epsilon A_{\sigma}x(t))) - v(x(t))}{\epsilon}$$
$$= \min_{\ell \in I(x(t))} \nabla_{x}v_{\ell}(x(t))'A_{\sigma}x(t)$$
$$= \min_{\ell \in I(x(t))} x(t)'(A'_{\sigma}P_{\ell} + P_{\ell}A_{\sigma})x(t)$$

Differentiability

Differentiability

Important facts :

• If we define a switching strategy such that :

$$\sigma(x(t))=i\in I(x(t))$$

then

$$D_{+}v(x(t)) = \min_{\ell \in I(x(t))} x(t)'(A'_{i}P_{\ell} + P_{\ell}A_{i})x(t)$$
$$\leq x(t)'(A'_{i}P_{i} + P_{i}A_{i})x(t)$$

in which case the upper bound of $D_+v(x(t))$ is very simple.

- Whenever the set I(x(t)) presents only one element the function v(x(t)) is differentiable and the equality holds.
- For more than one element in I(x(t)), sliding modes generally occurs.
- During the sliding mode, the system presents a particular dynamic which is different from those of the subsystems.

Stability

Stability

• Let us study stability by adopting the quadratic Lyapunov function v(x) = x' P x which is the simplest one.

Lemma : Quadratic stability

If there exist a matrix P > 0 and a vector $\lambda \in \Lambda$ satisfying

$$A_{\lambda}'P+PA_{\lambda}+Q_{\lambda}<0$$

with $Q_i = E'_i E_i$ then the min-type switching function

$$\sigma(x) = \arg\min_{i \in \mathbb{K}} x' (A'_i P + PA_i + E'_i E_i) x$$

is globally asymptotically stabilizing and assures that

$$\|z\|_2^2 < x_0' P x_0$$

Stability

• Indeed, notice that the time derivative of v(x) provides

$$\begin{split} \dot{v}(x) &= x'(A'_{\sigma}P + PA_{\sigma} + E'_{\sigma}E_{\sigma})x - z'z \\ &= \min_{i \in \mathbb{K}} x'(A'_{i}P + PA_{i} + E'_{i}E_{i})x - z'z \\ &= \min_{\lambda \in \Lambda} x'(A'_{\lambda}P + PA_{\lambda} + Q_{\lambda})x - z'z \\ &\leq x'(A'_{\lambda}P + PA_{\lambda} + Q_{\lambda})x - z'z \\ &< -z'z \end{split}$$

where the second equality comes from the choice of the switching function and the last inequality is due to the fact that $A'_{\lambda}P + PA_{\lambda} + Q_{\lambda} < 0.$

Stability

Stability

- Notice that no stability condition is required from the isolated subsystems A_i, i ∈ K !
- The sufficient condition is the existence of λ ∈ Λ such that A_λ is Hurwitz stable. This is a NP hard problem !
- Moreover, integrating the inequality both sides from t = 0 to $t \to \infty$, we have

$$\int_0^\infty \dot{v}(x)dt = v(x(\infty)) - v(x(0)) < -\int_0^\infty z(t)'z(t)dt$$

which provides $||z||_2^2 < x'_0 P x_0$ since the asymptotic stability assures that $v(x(\infty)) = 0$.

Stability

Stability

• An important improvement is obtained by adopting the following min-type Lyapunov function

$$v(x) = \min_{i \in \mathbb{K}} x' P_i x$$

and a subclass of Metzler matrices $\Pi = \{\pi_{ji}\} \in \mathcal{M}_c$, $(i, j) \in \mathbb{K} \times \mathbb{K}$, with the following properties

$$\sum_{j\in\mathbb{K}}\pi_{ji}=0,\ \pi_{ij}\geq0,\ \forall j
eq i\in\mathbb{K} imes\mathbb{K}$$

 \bullet All matrices belonging to \mathcal{M}_c is such that

$$\pi_{ii} = -\sum_{j \neq i \in \mathbb{K}} \pi_{ji} \le 0, \ i \in \mathbb{K}$$

Stability

Stability

- Gershgorin circle theorem : Each eigenvalue of Π ∈ M_c is inside a circle centered at (π_{ii}, 0) and with radius |π_{ii}| = ∑_{j≠i∈K} π_{ji}.
- Frobenius-Perron theorem : The null eigenvalue is the one with maximum real part and the associated eigenvector v ∈ ℝ^N is nonnegative. Hence the usual normalization ∑_{i∈K} v_i = 1 makes v ∈ Λ.
- Notice that for an arbitrary $\nu \in \Lambda$ the matrix

$$\Pi = -I + \nu e'$$

with $e' = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ is a Metzler matrix of the class \mathcal{M}_c .

Stability

Stability

Theorem : Stability

If there exist matrices $P_i > 0$ and a Metzler matrix $\Pi \in \mathcal{M}_c$ satisfying the so called Lyapunov-Metzler inequalities

$$A_i'P_i + P_iA_i + \sum_{j\in\mathbb{K}}\pi_{ji}P_j + E_i'E_i < 0$$

Then the min-type switching function

$$\sigma(x) = \arg\min_{i \in \mathbb{K}} x' P_i x$$

is globally asymptotically stabilizing and assures that

$$||z||_2^2 < \min_{i \in \mathbb{K}} x_0' P_i x_0$$

Stability

Stability

• Defining
$$I(x) = \{i : x'P_ix = v(x)\}$$
, for $i \in I(x)$, and $\Pi \in \mathcal{M}_c$, we have

$$x'\left(\sum_{j\in\mathbb{K}}\pi_{ji}P_{j}\right)x = \pi_{ii}x'P_{i}x + \sum_{j\neq i}\underbrace{\pi_{ji}}_{\geq 0}x'P_{j}x$$
$$\geq \pi_{ii}x'P_{i}x + \sum_{j\neq i}\pi_{ji}x'P_{i}x$$
$$\geq \underbrace{\left(\sum_{j\in\mathbb{K}}\pi_{ji}\right)}_{=0}x'P_{i}x$$
$$\geq 0$$

Stability

Stability

 Considering that at an arbitrary instant of time t ≥ 0 we have σ(t) = i ∈ I(x), the one-sided directional derivative of v(x) provides

$$D_{+}v(x) = \min_{\ell \in I(x)} x'(A'_{i}P_{\ell} + P_{\ell}A_{i} + E'_{i}E_{i})x - z'z$$

$$\leq x'(A'_{i}P_{i} + P_{i}A_{i} + E'_{i}E_{i})x - z'z$$

$$< -x'\left(\sum_{j \in \mathbb{K}} \pi_{ji}P_{j}\right)x - z'z$$

$$\leq -z'z$$

• Moreover, making the same procedure as before, we have

$$||z||_2^2 < v(x_0) = \min_{i \in \mathbb{K}} x'_0 P_i x_0$$

1

Stability

Stability

At this point, some remarks are in order :

• We can write

$$\left(A_{i}+\frac{\pi_{ii}}{2}I\right)'P_{i}+P_{i}\left(A_{i}+\frac{\pi_{ii}}{2}I\right)+\sum_{j\neq i\in\mathbb{K}}\pi_{ji}P_{j}+E_{i}'E_{i}<0$$

No stability property is required from the isolated subsystems because $\pi_{ii} \leq 0$.

- The conditions are nonconvex due to the matrices product $\{\pi_{ji}, P_i\}$ and difficult to solve for more than two subsystems.
- The conditions assure stability even in the eventual existence of sliding modes.
- This phenomenon occurs whenever the set I(x) presents more than one element.

Stability

Stability

• The classical Filippov's result establishes that whenever the system operates in a sliding mode, it is described by

$$\dot{x} = \sum_{i \in I(x)} \alpha_i A_i x$$

where $\alpha \in \Sigma(x)$ with $\Sigma(x)$ being the set composed by vectors α such that $\alpha_i \ge 0$ and $\sum_{i \in I(x)} \alpha_i = 1$. Hence,

$$D_{+}v(x) = \min_{\ell \in I(x)} \sum_{i \in I(x)} \alpha_{i}x' (A_{i}'P_{\ell} + P_{\ell}A_{i}) x$$

$$\leq \max_{\alpha \in \Sigma(x)} \min_{\ell \in I(x)} \sum_{i \in I(x)} \alpha_{i}x' (A_{i}'P_{\ell} + P_{\ell}A_{i}) x$$

$$\leq \min_{\ell \in I(x)} \max_{\alpha \in \Sigma(x)} \sum_{i \in I(x)} \alpha_{i}x' (A_{i}'P_{\ell} + P_{\ell}A_{i}) x$$

$$\leq \max_{i \in I(x)} x' (A_{i}'P_{i} + P_{i}A_{i}) x \qquad \leq 0$$

because the previous theorem assures $D_+v(x) < 0, \forall i \in I(x)$

Lyapunov-Metzler inequalities

Modified Lyapunov-Metzler inequalities

The result of the previous theorem remains valid whenever there exist matrices $P_i > 0$ and a positive scalar $\gamma > 0$ satisfying the modified Lyapunov-Metzler inequalities

$$A'_iP_i + P_iA_i + \gamma(P_j - P_i) + E'_iE_i < 0, \ i \neq j \in \mathbb{K} \times \mathbb{K}$$

- These conditions were obtained by restricting the Metzler matrices to those with the same main diagonal γ = Σ_{i≠i} π_{ii}.
- Although they are clearly more conservative, for an arbitrary number of subsystems, they can be solved by LMIs whenever a scalar $\gamma > 0$ is fixed.

Lyapunov-Metzler inequalities

Theorem : Alternative stability conditions

If there exist a matrix P > 0, symmetric matrices W_i and a Metzler matrix $\Pi \in M_c$ satisfying the inequalities

$$A'_iP + PA_i + \sum_{j \in \mathbb{K}} \pi_{ji}W_j + E'_iE_i < 0, \ i \in \mathbb{K}$$

Then the min-type switching function

$$\sigma(x) = \arg\min_{i\in\mathbb{K}} x' W_i x$$

is globally asymptotically stabilizing and assures

$$||z||_2^2 < x_0' P x_0$$

Moreover v(x) = x' P x is a Lyapunov function for the system.

Lyapunov-Metzler inequalities

 This result is obtained from the Lyapunov-Metzler inequalities with Π(μ) = μΠ ∈ M_c and choosing P_i = P + μ⁻¹W_i with μ > 0, which provide

$$A_{i}'(\underbrace{P + \mu^{-1}W_{i}}_{P_{i}}) + \underbrace{(P + \mu^{-1}W_{i}}_{P_{i}})A_{i} + \sum_{j \in \mathbb{K}} \mu \pi_{ji}(\underbrace{P + \mu^{-1}W_{j}}_{P_{j}}) + E_{i}'E_{i} < 0$$

• Making $\mu \to \infty$ we have

$$A_i'P + PA_i + \sum_{j \in \mathbb{K}} \pi_{ji}W_j + E_i'E_i < 0, \ i \in \mathbb{K}$$

Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

• The switching function becomes

$$\sigma(x) = \arg\min_{i \in \mathbb{K}} x' \underbrace{P_i}_{P+\mu^{-1}W_i} x = \arg\min_{i \in \mathbb{K}} x' W_i x$$

Notice that the switching rule does not depend directly on the Lyapunov function !

Lyapunov-Metzler inequalities

• The next lemma presents some instrumental results that are very important to obtain stability conditions based on an unique subsystem.

Lemma

Let the symmetric matrices Q_i , $\forall i \in \mathbb{K}$, be given. The following statements are equivalent :

● There exist matrices W_i > 0 and a Metzler matrix Π ∈ M_c satisfying

$$Q_i + \sum_{j \in \mathbb{K}} \pi_{ji} W_j < 0, \ i \in \mathbb{K}$$

2 There exist symmetric matrices R_i and $\nu \in \Lambda$ satisfying $R_{\nu} = 0$ and

$$Q_i + R_i < 0, \ i \in \mathbb{K}$$

25 / 71

Lyapunov-Metzler inequalities

Lyapunov-Metzler inequalities

Indeed, considering that statement 1) is true, choosing

$$R_i = \sum_{j \in \mathbb{K}} \pi_{ji} W_j, \ i \in \mathbb{K}$$

and $\nu \in \Lambda$ as being the eigenvector associated with the null eigenvalue of Π , we have

$$R_{\nu} = \sum_{i \in \mathbb{K}} \nu_i \sum_{j \in \mathbb{K}} \pi_{ji} W_j$$
$$= \sum_{j \in \mathbb{K}} \left(\sum_{i \in \mathbb{K}} \pi_{ji} \nu_i \right) W_j = 0$$

and, therefore, statement 2) is true.

Lyapunov-Metzler inequalities

• Now, assuming that statement 2) is true, choosing

$$\Pi = -I + \nu [1 \quad \dots \quad 1] \quad , \quad W_i = W_N + (R_N - R_i)$$

we have

$$\sum_{j=1}^{N} \pi_{ji} W_j = W_{\nu} - W_i = -R_{\nu} + R_i = R_i$$

because $R_{\nu} = 0$. Hence, from statement 2) we have that statement 1) is true.

• Using this lemma the alternative stability conditions can be written as follows.

Lyapunov-Metzler inequalities

Corollary : Alternative stability conditions

If there exist a matrix P > 0, symmetric matrices R_i and $\nu \in \Lambda$ satisfying $R_{\nu} = 0$ and the inequalities

$$A'_iP + PA_i + E'_iE_i + R_i < 0, \ i \in \mathbb{K}$$

Then the max-type switching function

$$\sigma(x) = \arg \max_{i \in \mathbb{K}} x' R_i x$$

is globally asymptotically stabilizing and assures

$$||z||_2^2 < x_0' P x_0$$

Moreover v(x) = x' P x is a Lyapunov function for the system.

Lyapunov-Metzler inequalities

- The inequality follows directly from the previous lemma.
- The switching function is obtained from

$$\sigma(x) = \arg\min_{i \in \mathbb{K}} x' \underbrace{P_i}_{P+\mu^{-1}W_i} x = \arg\min_{i \in \mathbb{K}} x' \underbrace{W_i}_{W_N+(R_N-R_i)} x$$
$$= \arg\max_{i \in \mathbb{K}} x'R_i x$$
$$= \arg\min_{i \in \mathbb{K}} x'(A'_i P + PA_i + E'_i E_i) x$$

- It is simple to see that these conditions are the quadratic stability ones provided in the beginning of this chapter.
- Moreover, they are a particular case of the Lyapunov-Metzler inequalities.

Example 1 - Stability

• Consider a system defined by two unstable subsystems

$$A_1 = \begin{bmatrix} 0 & 1 \\ -5 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 0 & 1 \\ 2 & -5 \end{bmatrix}, \ E_1 = E_2 = I$$

The equilibrium point of the first subsystem is an unstable focus $\lambda{A_1} = {0.5 \pm 2.1794}$, while the equilibrium point of the second is a saddle $\lambda{A_2} = {0.3723, -5.3723}$.

• We have solved problem

$$\inf_{P_i > 0, \gamma > 0} \gamma$$

subject to the Lyapunov Metzler inequalities with

$$P_i - \gamma I < 0, i \in \mathbb{K}$$

Notice that the guaranteed cost is given by

$$||z||_2^2 < \min_{i \in \mathbb{K}} x_0' P_i x_0 < \gamma x_0' x_0$$

Example 1 - Stability

 \bullet We have obtained $\gamma^*=1.4482$ and the matrices

$$P_1 = \begin{bmatrix} 1.3428 & 0.2994 \\ 0.2994 & 0.4576 \end{bmatrix}, \ P_2 = \begin{bmatrix} 1.3566 & 0.3039 \\ 0.3039 & 0.4401 \end{bmatrix}$$

associated with the choice

$$\Pi = egin{bmatrix} -p & q \ p & -q \end{bmatrix}$$

with $(p^*, q^*) = (144, 160)$ determined by unidimensional search inside the box $(p, q) \in [0, 160] \times [0, 160]$ with step 2.

• We have determined the switching surface by making

$$x'(P_1-P_2)x=0$$

Lyapunov-Metzler inequalities

Example 1 - Stability

• Phase portrait of both isolated subsystems.

Lyapunov-Metzler inequalities

Example 1 - Stability

• Phase portrait of the switched system.

It is clear the sliding mode surface and the dynamics of both subsystems !

Lyapunov-Metzler inequalities

Example 1 - Stability

• State trajectories of the switched system.

Profa. Grace S. Deaecto

Lyapunov-Metzler inequalities

Example 2 - Stability

• Consider a third order switched linear system defined by

$$A_1 = \begin{bmatrix} -3 & -6 & 3\\ 2 & 2 & -3\\ \alpha & 0 & -2 \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & 3 & 3\\ \beta & -3 & -3\\ 0 & 0 & -2 \end{bmatrix}$$

and $E_1 = E_2 = I$.

 We have varied the pair α, β inside the interval [0.5, 2], [-2, 1], respectively, analyzing the feasibility of the Lyapunov Metzler inequalities for

$$\Pi = \begin{bmatrix} -p & q \\ p & -q \end{bmatrix}$$

with (p,q) belonging to the box $[0,20] \times [0,20]$.

Example 2 - Lyapunov-Metzler

- The region in gray (dark and light) is the feasibility region for the Lyapunov-Metzler inequalities.
- The region in dark gray does not admit a Hurwitz stable convex combination of the subsystems matrices.

This makes clear that the Lyapunov-Metzler inequalities are less conservative than asking for A_{λ} be Hurwitz stable !
Lyapunov-Metzler inequalities

Example 2 - Lyapunov-Metzler

 For (α, β) = (1.0, -0.9) the switched system does not present a stable convex combination of the subsystems matrices. However, matrices

	3.6048	8.0420	-6.7034
$P_1 =$	8.0420	34.4956	-33.0632
	6.7034	-33.0632	34.3784
	4.6089	4.6781	-0.4977
$P_2 =$	4.6781	11.6580	-12.0200
		10 0000	22 7412

with (p, q) = (1.86, 1.79) satisfy the Lyapunov-Metzler inequalities.

Lyapunov-Metzler inequalities

Example 2 - Lyapunov-Metzler

• The state trajectories obtained by implementing the switching rule with matrices P_1 , P_2 are presented as follows

Closed-loop performance

Consider now a more general switched linear system described by

$$\mathcal{G}_{\sigma(t)} := \begin{cases} \dot{x}(t) = A_{\sigma(t)}x(t) + H_{\sigma(t)}w(t), \ x(0) = 0\\ z(t) = E_{\sigma(t)}x(t) + G_{\sigma(t)}w(t) \end{cases}$$

where

• $w(t) \in \mathbb{R}^{n_w}$ is the external input.

In our context we will adopt two classes of external inputs :

• The impulsive type $w(t) = e_k \delta(t)$, for which the dynamic equation can be written alternatively as

$$\dot{x}(t) = A_{\sigma(t)}x(t), \ x(0) = H_{\sigma(0)}e_k$$

 e_k is the k-th column of the identity matrix.

• Those belonging to the set $w \in \mathcal{L}_2$.

Closed-loop performance

Performance indexes

- For a stabilizing given trajectory $\sigma(t)$ we have :
 - *H*₂ performance index : For *G_i* = 0, ∀*i* ∈ K, the controlled output *z*(*t*) associated with the external input *w*(*t*) = *e_kδ*(*t*), allows us to define the following *H*₂ index

$$J_2(\sigma) = \sum_{k=1}^m \|z_k\|_2^2$$

*H*_∞ performance index : The controlled output *z*(*t*) associated with any arbitrary external input *w*(*t*) ∈ *L*₂ allows us to define the following *H*_∞ index

$$J_{\infty}(\sigma) = \sup_{0 \neq w \in \mathcal{L}_2} \frac{\|z\|_2^2}{\|w\|_2^2}$$

Both indexes are difficult to be calculated then the idea is to find a suitable upper bound !

Closed-loop performance

Performance indexes

- For a stabilizing given trajectory $\sigma(t)$ we have :
 - *H*₂ performance index : For *G_i* = 0, ∀*i* ∈ K, the controlled output *z*(*t*) associated with the external input *w*(*t*) = *e_kδ*(*t*), allows us to define the following *H*₂ index

$$J_{2}(\sigma) = \sum_{k=1}^{m} ||z_{k}||_{2}^{2} = \underbrace{||E_{i}(sI - A_{i})^{-1}H_{i}||_{2}^{2}}_{\sigma(t) = i, \forall t \geq 0}$$

*H*_∞ performance index : The controlled output *z*(*t*) associated with any arbitrary external input *w*(*t*) ∈ *L*₂ allows us to define the following *H*_∞ index

$$J_{\infty}(\sigma) = \sup_{0 \neq w \in \mathcal{L}_2} \frac{\|z\|_2^2}{\|w\|_2^2} = \underbrace{\|E_i(sI - A_i)^{-1}H_i + G_i\|_{\infty}^2}_{\sigma(t) = i, \forall t \ge 0}$$

Both indexes are difficult to be calculated then the idea is to find a suitable upper bound !

 \mathcal{H}_2 performance

Theorem : \mathcal{H}_2 performance

If there exist matrices P_i , $i \in \mathbb{K}$, and a Metzler matrix $\Pi \in \mathcal{M}_c$ satisfying the Lyapunov-Metzler inequalities

$$A_i'P_i + P_iA_i + \sum_{j\in\mathbb{K}}\pi_{ji}P_j + E_i'E_i < 0$$

then the min-type switching function

$$\sigma(x) = \arg\min_{i \in \mathbb{K}} x' P_i x$$

is globally asymptotically stabilizing and satisfies

$$J_2(\sigma) < \min_{i \in \mathbb{K}} \operatorname{Tr}(H'_i P_i H_i)$$

\mathcal{H}_2 performance

• From the previous results we have

$$J_{2}(\sigma) < \sum_{k=1}^{n_{w}} \min_{i \in \mathbb{K}} \left(H_{\sigma(0)}e_{k}\right)' P_{i}\left(H_{\sigma(0)}e_{k}\right)$$
$$< \min_{i \in \mathbb{K}} \underbrace{\sum_{k=1}^{n_{w}} \left(H_{\sigma(0)}e_{k}\right)' P_{i}\left(H_{\sigma(0)}e_{k}\right)}_{\operatorname{Tr}\left(H_{\sigma(0)}'P_{i}H_{\sigma(0)}\right)}$$
$$< \min_{i \in \mathbb{K}} \operatorname{Tr}\left(H_{i}'P_{i}H_{i}\right)$$

where $\sigma(0) = i$ can be imposed since $\sigma(0)$ is arbitrary. • The best \mathcal{H}_2 guaranteed cost is given by

$$J_2^{so} = \inf_{\{\Pi, P_i\} \in \mathcal{X}_2} \min_{i \in \mathbb{K}} \operatorname{Tr}(H'_i P_i H_i)$$

where \mathcal{X}_2 is the set of feasible solutions of the Lyapunov-Metzler inequalities.

Profa. Grace S. Deaecto

Theorem : \mathcal{H}_{∞} performance

If there exist matrices P_i , $i \in \mathbb{K}$, a Metzler matrix $\Pi \in \mathcal{M}_c$ and a scalar $\rho > 0$ satisfying the Riccati-Metzler inequalities

$$\begin{bmatrix} A'_i P_i + P_i A_i + \sum_{j \in \mathbb{K}} \pi_{ji} P_j + E'_i E_i & \bullet \\ H'_i P_i + G'_i E_i & -\rho I + G'_i G_i \end{bmatrix} < 0$$

then the min-type switching function

$$\sigma(x) = \arg\min_{i \in \mathbb{K}} x' P_i x$$

is globally asymptotically stabilizing and satisfies

 $J_{\infty}(\sigma) < \rho$

Closed-loop performance

\mathcal{H}_{∞} performance

• Consider that the Riccati-Metzler inequalities hold. Adopting the min-type Lyapunov function $v(x) = \min_{i \in \mathbb{K}} x' P_i x$ and assuming that $\sigma(t) = i \in I(x(t))$ for a $t \ge 0$, we have

$$D_{+}v(x) = \min_{\ell \in I(x)} 2(A_{i}x + H_{i}w)'P_{\ell}x$$

$$< \begin{bmatrix} x \\ w \end{bmatrix}' \begin{bmatrix} A'_{i}P_{i} + P_{i}A_{i} & \bullet \\ H'_{i}P_{i} & 0 \end{bmatrix} \begin{bmatrix} x \\ w \end{bmatrix}$$

$$< -x' \left(\sum_{j \in \mathbb{K}} \pi_{ji}P_{j} \right) x - z'z + \rho w'w$$

$$< -z'z + \rho w'w$$

where the second inequality comes from the validity of the Riccati-Metzler inequalities.

$$\mathcal{H}_{\infty}$$
 performance

• Integrating both sides from t = 0 to $t \to \infty$ we obtain

$$v(x(\infty)) - v(x(0)) < -\|z\|_2^2 + \rho \|w\|_2^2$$

where the left hand side is null since $v(x(\infty) = 0$ because the system is stable and v(x(0)) = 0 because x(0) = 0.

 \bullet The best \mathcal{H}_∞ guaranteed cost is given by

$$J^{so}_{\infty} = \inf_{\{\Pi, P_i, \rho\} \in \mathcal{X}_{\infty}} \rho$$

where \mathcal{X}_∞ is the set of feasible solutions of the Riccati-Metzler inequalities.

Consistency

Consistency

• Consistency is an important concept related to stabilizing switching rules. Consider $\alpha = \{2, \infty\}$, define S as the set of all stabilizing switching rules and C as the set of all constant rules $\sigma(t) = i \in \mathbb{K}$ for all $t \ge 0$.

Consistency

A switching rule $\sigma_{\alpha} \in S$ is said to be consistent whenever it provides a performance better than the one of each isolated subsystem, that is

$$J_{lpha}(\sigma_{lpha}) \leq J_{lpha}(\sigma), \,\, \sigma \in \mathcal{C}$$

when the inequality is strict the switching rule σ_{α} is said to be strictly consistent.

Consistency

Consistency

- As it will be clear in the sequel the min-type switching function is consistent for the H₂ and H_∞ indexes.
- In order to show this, let us notice that
 - Matrix $\Pi=\Pi_0=0$ belongs to the subclass of Metzler matrices $\Pi_0\in \mathcal{M}_c.$
 - Matrix $\Pi=\Theta_\ell$ defined as

$$\pi_{ii} = -\beta, \ \pi_{\ell i} = \beta, \ \forall i \in \mathbb{K}, \ \ell \neq i$$

with $\beta > 0$ also belongs to $\Theta_{\ell} \in \mathcal{M}_c$. For N = 4 and $\ell = 2$:

$$\Pi = \Theta_2 = \begin{bmatrix} -\beta & 0 & 0 & 0 \\ \beta & 0 & \beta & \beta \\ 0 & 0 & -\beta & 0 \\ 0 & 0 & 0 & -\beta \end{bmatrix}$$

In this case

$$\sum_{j\in\mathbb{K}}\pi_{ji}P_j=\beta(P_\ell-P_i),\;\forall i\in\mathbb{K}$$

Consistency

Consistency

• For the \mathcal{H}_2 performance, since that $\Pi=\Pi_0$ is feasible, we have

$$J_{2}(\sigma) < \inf_{\substack{P_{i} > 0}} \{ \operatorname{Tr}(H'_{i}P_{i}H_{i}) : A'_{i}P_{i} + P_{i}A_{i} + E'_{i}E_{i} < 0 \}$$

$$< \underbrace{\|E_{i}(sI - A_{i})^{-1}H_{i}\|_{2}^{2}}_{J_{2}(i)}$$

which holds for all $i \in \mathbb{K}$.

- Hence, the min-type switching rule is consistent.
- In general, we have $J_2(\sigma) \ll J_2(i)$ which indicates that $\sigma(x)$ is strictly consistent.
- Moreover, with $\Pi = \Pi_0$ we have

$$J_2^{so} = \min_{i \in \mathbb{K}} \|E_i(sI - A_i)^{-1}H_i\|_2^2$$

Consistency

Consistency

• For the \mathcal{H}_∞ performance, since that $\Pi=\Pi_0$ is feasible, we have

$$J_{\infty}(\sigma) < \inf_{\substack{P_i > 0, \rho > 0}} \{ \rho : \begin{bmatrix} A'_i P_i + P_i A_i + E'_i E_i & \bullet \\ H'_i P_i + G'_i E_i & -\rho I + G'_i G_i \end{bmatrix} < 0 \}$$

$$< \inf_{\rho > 0} \{ \rho : \underbrace{\|E_i (sI - A_i)^{-1} H_i + G_i\|_{\infty}^2}_{J_{\infty}(i)} < \rho \}$$

$$< \max_{i \in \mathbb{K}} \|E_i (sI - A_i)^{-1} H_i + G_i\|_{\infty}^2$$

- Hence, differently from the H₂ case, matrix Π₀ can not be used to prove consistency in the H_∞ framework.
- Moreover, with $\Pi = \Pi_0$ we have

$$J_{\infty}^{so} = \max_{i \in \mathbb{K}} \|E_i(sI - A_i)^{-1}H_i + G_i\|_{\infty}^2$$

Consistency

Consistency

 However, considering G_i = G, i ∈ K and adopting Π = Θ_ℓ with ℓ ∈ K, the Riccati-Metzler inequalities become

$$\begin{bmatrix} A'_i P_i + P_i A_i + E'_i E_i + \beta (P_\ell - P_i) & \bullet \\ H'_i P_i + G' E_i & -\rho I + G' G \end{bmatrix} < 0$$

which is feasible whenever $\beta > 0$ is large enough, $P_i > P_\ell \forall i \neq \ell$ and

$$\begin{bmatrix} A'_{\ell}P_{\ell} + P_{\ell}A_{\ell} + E'_{\ell}E_{\ell} & \bullet \\ H'_{\ell}P_{\ell} + G'E_{\ell} & -\rho I + G'G \end{bmatrix} < 0$$

which is equivalent to

$$\|E_\ell(sI-A_\ell)^{-1}H_\ell+G\|_\infty^2<\rho$$

Consistency

Consistency

• Consequently, we can conclude that

$$J_{\infty}(\sigma) < \inf_{\rho > 0} \{\rho : \|E_{\ell}(sI - A_{\ell})^{-1}H_{\ell} + G\|_{\infty}^{2} < \rho\}$$
$$< \underbrace{\|E_{\ell}(sI - A_{\ell})^{-1}H_{\ell} + G\|_{\infty}^{2}}_{J_{\infty}(\ell)}$$

which holds for all $\ell \in \mathbb{K}$.

- Hence, the min-type switching rule is consistent.
- In general, we have $J_{\infty}(\sigma) \ll J_{\infty}(i)$ which indicates that $\sigma(x)$ is strictly consistent.

Consistency

Example 3 - \mathcal{H}_2 performance

Consider a switched linear system composed of two stable subsystems

$$A_{1} = \begin{bmatrix} 0 & 1 \\ -2 & -9 \end{bmatrix}, A_{2} = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}, H = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$$
$$E_{1} = \begin{bmatrix} 1 & 0 \end{bmatrix}, E_{2} = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

we can calculate

$$J_{2}(\sigma) = \min_{\ell \in \{1,2\}} \|E_{\ell}(sI - A_{\ell})^{-1}H_{\ell}\|_{2}^{2}$$

= min{ 2.7778 , 25.0000}
 $\sigma(t)=1, \forall t \geq 0$

Consistency

Example 3 - \mathcal{H}_2 performance

• Adopting a Metzler matrix of the form

$$extsf{T} = \left[egin{array}{cc} -p & q \ p & -q \end{array}
ight]$$

we have determined the minimum guaranteed cost for all (p,q) inside the box $[0,2] \times [0,2]$ as shown in the next figure where the plane surface concerns $\min_{\sigma \in C} J_2(\sigma)$.

Consistency

Example 3 - \mathcal{H}_2 performance

• The best guaranteed cost was obtained for

$$\Pi^* \approx \begin{bmatrix} -0.45 & 0\\ 0.45 & 0 \end{bmatrix} \Rightarrow J_2^{so} = 2.1929$$

• By numerical simulation we have determined the actual cost given by

 $J_2(\sigma_{so}) = 1.6357$

We can conclude that the min-type switching rule $\sigma(\cdot)$ is strictly consistent with a cost reduction of 40%!

Consistency

Example 3 - \mathcal{H}_2 performance

• The state trajectories and the switching rule.

Notice the existence of stable sliding modes !

Consistency

Example 4 - \mathcal{H}_{∞} performance

Consider a switched linear system composed of two stable subsystems

$$A_{1} = \begin{bmatrix} 0 & 1 \\ -2 & -9 \end{bmatrix}, A_{2} = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}, H = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$$
$$E_{1} = \begin{bmatrix} 1 & 0 \end{bmatrix}, E_{2} = \begin{bmatrix} 0 & 1 \end{bmatrix}, G_{1} = G_{2} = 1$$

we can calculate

$$J_{\infty}(\sigma) = \min_{\ell \in \{1,2\}} \|E_{\ell}(sI - A_{\ell})^{-1}H_{\ell} + G\|_{\infty}^{2}$$

= min{36.0463, 35.9356}
 $\sigma(t)=2, \forall t \geq 0$

Consistency

Example 4 - \mathcal{H}_{∞} performance

• Adopting a Metzler matrix of the form

$$extsf{T} = \left[egin{array}{cc} -p & q \ p & -q \end{array}
ight]$$

we have determined the minimum guaranteed cost for all (p,q) inside the box $[0,2] \times [0,2]$ as shown in the next figure where the plane surface concerns $\min_{\sigma \in \mathcal{C}} J_{\infty}(\sigma)$.

Consistency

Example 4 - \mathcal{H}_{∞} performance

• The best guaranteed cost was obtained for

$$\Pi^* \approx \begin{bmatrix} -5.0 & 4.5\\ 5.0 & -4.5 \end{bmatrix} \Rightarrow J_{\infty}^{so} = 18.0677$$

• The obtained cost was

$$J_{\infty}(\sigma_{so}) < \underbrace{18.0677}_{J_{\infty}^{\infty}} < \min_{\sigma \in \mathcal{C}} J_{\infty}(\sigma) = 35.9356$$

We can conclude that the min-type switching rule $\sigma(\cdot)$ is strictly consistent with a cost reduction of at least 50% !

State feedback control design

State feedback control design

• The idea now is to generalize the previous \mathcal{H}_2 and \mathcal{H}_∞ conditions to deal with the continuous-time system

$$\begin{aligned} \dot{x}(t) &= A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t) + H_{\sigma(t)}w(t), \ x(0) = 0\\ z(t) &= E_{\sigma(t)}x(t) + F_{\sigma(t)}u + G_{\sigma(t)}w(t) \end{aligned}$$

where the control law

$$u(t) = K_{\sigma(x(t))}x(t)$$

must be designed together with the switching rule $\sigma(x)$ in order to preserve stability and \mathcal{H}_2 or \mathcal{H}_∞ performance.

• Connecting *u* to the system, we obtain the closed loop system

$$\dot{x}(t) = (A_{\sigma(t)} + B_{\sigma(t)}K_{\sigma(t)})x + H_{\sigma(t)}w(t), x(0) = 0 z(t) = (E_{\sigma(t)} + F_{\sigma(t)}K_{\sigma(t)})x(t) + G_{\sigma(t)}w(t)$$

State feedback control design

State feedback control

Defining
$$\operatorname{He}\{X\} = X + X'$$
 we have :

Theorem : \mathcal{H}_2 control

If there exist symmetric matrices S_i , T_{ij} , matrices Y_i and a Metzler matrix $\Pi \in \mathcal{M}_c$ satisfying the Lyapunov-Meztler inequalities

$$\begin{bmatrix} \operatorname{H}_{\mathrm{e}}\{A_{i}S_{i}+B_{i}Y_{i}\}+\sum_{j\neq i=1}^{N}\pi_{ji}T_{ij} \bullet\\ E_{i}S_{i}+F_{i}Y_{i} & -I \end{bmatrix} < 0, \ i \in \mathbb{K}$$

$$\begin{bmatrix} T_{ij} + S_i & \bullet \\ S_i & S_j \end{bmatrix} > 0, \ i \neq j \in \mathbb{K} \times \mathbb{K}$$

then the switching rule $\sigma(x) = \arg \min_{i \in \mathbb{K}} x' S_i^{-1} x$ and the state feedback gains $K_i = Y_i S_i^{-1}$ assure the global asymptotic stability of the origin and satisfies

$$J_2(\sigma) < \min_{i \in \mathbb{K}} \operatorname{Tr}(H'_i S_i^{-1} H_i)$$

State feedback control design

State feedback control

Theorem : \mathcal{H}_{∞} control

If there exist symmetric matrices S_i , T_{ij} , matrices Y_i and a scalar $\rho > 0$ and a Metzler matrix $\Pi \in \mathcal{M}_c$ satisfying the Riccati-Meztler inequalities

$$\begin{bmatrix} H_{e}\{A_{i}S_{i} + B_{i}Y_{i}\} + \sum_{j \neq i=1}^{N} \pi_{ji} T_{ij} & \bullet & \bullet \\ H_{i}' & -\rho I & \bullet \\ E_{i}S_{i} + F_{i}Y_{i} & G_{i} & -I \end{bmatrix} < 0(*), \ i \in \mathbb{K}$$
$$\begin{bmatrix} T_{ij} + S_{i} & \bullet \\ S_{i} & S_{i} \end{bmatrix} > 0, \ i \neq j \in \mathbb{K} \times \mathbb{K}$$

then the switching rule $\sigma(x) = \arg \min_{i \in \mathbb{K}} x' S_i^{-1} x$ and the state feedback gains $K_i = Y_i S_i^{-1}$ assure the global asymptotic stability of the origin and satisfies $J_{\infty}(\sigma) < \rho$.

State feedback control design

State feedback control

• Both conditions were obtained from the from the fact that $T_{ij} > S_i S_i^{-1} S_i - S_i$ for all $i \neq j$ which provides

- For the \mathcal{H}_{∞} case, considering this inequality and multiplying both sides of (*) by diag $\{S_i^{-1}, I, I\}$, we obtain the original Riccati-Metzler inequalities after performing the Schur Complement with respect to the last row and column and making the replacements $A_i \rightarrow A_i + B_i K_i$ and $E_i \rightarrow E_i + F_i K_i$.
- Similar procedure can be made in the \mathcal{H}_2 case.

Problems

Problems

Consider the switched linear system

$$\dot{x} = A_{\sigma}x, \ x(0) = x_0$$

 $z = E_{\sigma}x$

1) Adopting the min-type Lyapunov-function

$$v(x) = \min_{i \in \mathbb{K}} x' P_i x$$

- Find the conditions that assure stability for an arbitrary switching rule $\sigma(t)$.
- Do the obtained conditions require some stability property of each isolated subsystem ?
- Show that the obtained conditions contain the quadratic ones $A'_iP + PA_i + E'_iE_i < 0, \ \forall i \in \mathbb{K}$, as particular case.

Problems

Problems

2) Is it possible to assure global asymptotic stability by adopting the max-type Lyapunov function

$$V(x) = \max_{i \in \mathbb{K}} x' P_i x$$

associated with the switching function

$$\sigma(x) = \arg \max_{i \in \mathbb{K}} x' P_i x$$

- If the answer is positive, present the stability conditions.
- If negative, justify mathematically.
- 3) Show that the modified Lyapunov-Metzler inequalities are indeed a particular case of the original ones.

Problems

Problems

4) For the switched linear system defined by matrices

$$A_1 = \begin{bmatrix} 0 & 1 \\ 2 & -9 \end{bmatrix}, \ A_2 = \begin{bmatrix} 0 & 1 \\ -2 & 2 \end{bmatrix}, \ x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 $E_1 = E_2 = I$. Elaborate a Matlab program to solve

$$\min_{i\in\mathbb{K}}\inf_{P_i>0}x_0'P_ix_0$$

subject to the Lyapunov-Metzler inequalities Theorem : Stability (pag 16).

- Provide P_1 , P_2 , Π and the guaranteed cost for a generic $\Pi \in \mathcal{M}_c$.
- Provide P_1 , P_2 , Π and the guaranteed cost for $\Pi \in \mathcal{M}_c$ with the same main diagonals.
- Provide P_1 , P_2 , Π and the guaranteed cost for $\Pi = -l + \nu [1 \ 1] \in \mathcal{M}_c, \ \nu \in \Lambda.$
- Compare the results.

Problems

Problems

5) For the same switched linear system, solve the problem

 $\inf_{P>0} x_0' P x_0$

for the conditions of Lemma : Quadratic stability (pag 11) by searching inside the simplex $\lambda \in \Lambda$. Provide the solution P, $\lambda \in \Lambda$ and compare the result with Problem 3).

6) Implement the switching rule of Problem 4) for the generic $\Pi \in \mathcal{M}_c$ and the switching rule of Problem 5) and show that in both cases the state trajectories converge indeed to the origin.

Problems

Problems

7) For the more general switched linear system

$$\dot{x} = A_{\sigma}x + Hw, \ x(0) = 0$$

 $z = Ex + Gw$

Define $H_{wz}(s) = E(sI - A_{\lambda})^{-1}H + G$, $\lambda \in \Lambda$, show that :

- a) Considering G = 0, the norm $||H_{wz}(s)||_2^2$ is an upper bound for the \mathcal{H}_2 performance index $J_2(\sigma)$. Obtain the conditions as a particular case of the Lyapunov-Metzler inequality.
- b) For the previous item, find the corresponding stabilizing state dependent switching function $\sigma(x)$.
- c) The norm $||H_{wz}(s)||_{\infty}^{2}$ is an upper bound for the \mathcal{H}_{∞} performance index $J_{\infty}(\sigma)$. Obtain the associated conditions based on an unique matrix P > 0.
- d) For the previous item, find the corresponding state-input dependent stabilizing switching function $\sigma(x, w)$.
- e) For item c), find the corresponding state dependent stabilizing switching function $\sigma(x)$.

Problems

Problems

- Concerning the previous problem, is it possible to associate a stabilizing switching function σ(x) with the norm of ||E(sI − A_λ)⁻¹H_λ + G||²_∞ and what about σ(x, w)?
- 9) Consider the system of Problem #7 with

$$A_1 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ A_2 = \begin{bmatrix} 1 & 0 \\ 0 & -7 \end{bmatrix}, \ H = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \ E' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, G = 0$$

Elaborate a Matlab program to find $\lambda \in \Lambda$ is order to obtain :

- a) The smallest $||H_{wz}(s)||_2^2$.
- b) Implement the correspondent switching function $\sigma(x)$, show that the state trajectories converge indeed to the origin and, by numerical simulation, determine $||z||_2^2$.
- c) Solve the Lyapunov-Metzler inequalities with $\Pi \in \mathcal{M}_c$ and provide Π , P_1 , P_2 important to implement the switching function $\sigma(x) = \arg\min_{i \in \mathbb{K}} x' P_i x$.

Problems

Problems

- d) Show that the state trajectories converge indeed to the origin and, by numerical simulation, provide $||z||_2^2$.
- e) Compare the costs obtained in the itens a), b), c), and d).
- 10) Consider the system of pag 59 with matrices

$$A_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & 0 & -9 & 5 \end{bmatrix}, A_{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -6 & -7 & 1 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \ H = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \ E' = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \ F = 1, \ G = 0$$
with $H_{i} = H, \ E_{i} = E, \ B_{i} = B, \ F_{i} = F, \ G_{i} = G \text{ for all}$
$$= 1, 2.$$

a) For each isolated subsystem, find the gains K_i , $i = \{1, 2\}$ that minimizes the \mathcal{H}_2 norm and present the correspondent norm.

ν

Problems

Problems

- b) Using the gains determined in the previous item, solve the conditions of Theorem : \mathcal{H}_2 performance (pag 41) for the closed-loop system. Provide the state trajectories, the cost J_2^{so} and the solution P_1 , P_2 , Π . Compare J_2^{so} with the norms of each subsystem based on the concept of consistency.
- c) Solve the conditions of Theorem : H₂ control (pag 60). Provide the state trajectories, the cost J₂^{so} and the solution P₁, P₂, K₁, K₂ and Π. Compare the cost obtained with item b).

Problems

Problems

11) Consider the LPV system

$$\Sigma(\lambda) := \begin{cases} \dot{x}(t) = A_{\lambda(t)}x(t) + B_{\lambda(t)}u(t) + Hw(t) \\ z(t) = C_{\sigma(x(t))}x + D_{\sigma(x(t))}u(t) \end{cases}$$

where $\lambda(t) \in \Lambda$ is a time-varying uncertain parameter. Based on the Lyapunov-Metzler inequalities with a parameter-dependent Metzler matrix $\Pi(\lambda) \in \mathcal{M}_c$ defined as

$$\pi_{ji}(\lambda) := \left\{ egin{array}{cc} \gamma_i \lambda_j, & j
eq i \ \gamma_i(\lambda_i-1), & j=i \end{array}
ight.$$

find the conditions for which the control law

$$u(t) = K_{\sigma(x(t))}x(t)$$

assures global asymptotic stability of the equilibrium point and an \mathcal{H}_2 guaranteed cost.

Profa. Grace S. Deaecto