Continuous-Time Switched Dynamical
Systems

Profa. Grace S. Deaecto

Faculdade de Engenharia Mecinica / UNICAMP
13083-860, Campinas, SP, Brasil.
grace@fem.unicamp.br

Primeiro Semestre de 2017

Profa. Grace S. Deaecto DMC / FEM - Unicamp 1/71



CHAPTER Il - Switched Linear Systems

@ CHAPTER Il - Switched Linear Systems
@ Min-type Lyapunov function
o Differentiability
@ Stability
@ Lyapunov-Metzler inequalities
@ Closed-loop performance
@ Consistency
@ State feedback control design
@ Problems

Profa. Grace S. Deaecto DMC / FEM - Unicamp



CHAPTER Il - Switched Linear Systems

Note to the reader

@ This text is based on the following main references :

o D. Liberzon, Switching in Systems and Control, Birkhauser,
2003.

o J. C. Geromel and P. Colaneri, “Stability and stabilization of
continuous-time switched linear systems”, SIAM Journal on
Control and Optimization, vol. 45, pp. 1915-1930, 2006.

o J. C. Geromel and G. S. Deaecto, " Stability analysis of
Lur'e-type switched systems”, IEEE Transactions on
Automatic Control, vol. 59, pp. 3046-3050, 2014.

o J. C. Geromel, G. S. Deaecto and J. Daafouz, " Suboptimal
switching control consistency analysis for switched linear
systems”, IEEE Transactions on Automatic Control, vol. 58,
pp. 1857-1861, 2013.
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Switched system

@ Consider the switched linear system with state space
realization

x = Asx, x(0) = xo

z=E;x

where
® x € R"™ is the state
@ z € R™ is the controlled output and
@ o(-) : R™ = {1,---, N} =K is the switching function to be
determined.
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Min-type Lyapunov function

Min-type Lyapunov function

@ Let us define the min-type Lyapunov function

H ! . !
v(x) = min x' P;x = min Aix P;x
(x) iek ! AEA Z o
ieK
with matrices P; > 0, Vi € K, and the unitary simplex A

/\:{AeRN -\ >0, Z/\,-:l}

i€k
@ Adopt the following notation for the convex combination of a
set of matrices {X1, -+, Xy}

Xy =) _AiXi, AeA
icK
@ Important : Notice that v(x) is positive definite, continuous
but not differentiable.
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Differentiability

@ Danskin theorem is the most important result to deal with
derivative of functions described as

() = min f(x.y)

where Y is a compact set and V,f(x,y) exists.

Danskin theorem
The one-sided directional derivative of ¢(x) exists in any direction d and

is given by
. d(x+ed) = o(x)
Drotc) = iy Lt
= min V,.f(x,y)d
A, 4765 7)

where Y(x) = {y : ¢(x) = f(x,y)}.
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Differentiability

o Example : Consider the function ¢(x) with
f(x,1) = x?, f(x,2) =2(x —3/2)? +1/2
defined for all x € R and y € Y = {1,2}. Using Danskin

theorem, determine the one-sided directional derivative of
¢(x) in the direction d in the points x = 0.5 and x = 1.

N % ce f(x, 1
Y R NN = f(x2)
N — ) ¢
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Differentiability

Differentiability

@ Notice that the function ¢(x) is not differentiable in x = 1.
@ We have the sets Y(0.5) = {1} and Y(1) = {1,2}.

Hence, we can calculate
® D, ¢(0.5,d) = min,cy@s VF(x,y)d =d

® Di¢(1,d) = min,cyn) VF(x,y)d = min {2d, -2d} = —2d.
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Differentiability

@ Let us apply Danskin theorem to the min-type function v(x)
for an arbitrary trajectory x(t) of the system

x(t) = Asx(t)
Denote I(x) = {i : v(x) = vi(x)}. We want to calculate

Do v(x(2)) = fim LX(EF) = vIX(t))

e—0t+ €
— fim v(x(t) + eAyx(t))) — v(x(t))
- e—0t+ €
= min V, t)) Ayx(t
,min (1)) Arx(t)
= mi t) (AP, 4+ Py A, )x(t
eeWX'?t))X( ) (AL Py + PiAs)x(t)
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Differentiability

Differentiability

@ Important facts :
@ If we define a switching strategy such that :

o(x(t) = i € I(x(t))
then
Dyv(x(6) = , min  x(t) (AP + PiA)x(2)
< x(t) (AiP; + PAi)x(t)

in which case the upper bound of D v(x(t)) is very simple.

@ Whenever the set /(x(t)) presents only one element the
function v(x(t)) is differentiable and the equality holds.

@ For more than one element in /(x(t)), sliding modes generally
occurs.

@ During the sliding mode, the system presents a particular
dynamic which is different from those of the subsystems.
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Stability

@ Let us study stability by adopting the quadratic Lyapunov
function v(x) = x' Px which is the simplest one.

Lemma : Quadratic stability

If there exist a matrix P > 0 and a vector A € A satisfying

A\P + PAy+ @, <0
with Q; = E/E; then the min-type switching function
o(x) = arg miﬂrgx’(Af-P + PA; + E{E)x
e

is globally asymptotically stabilizing and assures that

1213 < x5 Pxo
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Stability

@ Indeed, notice that the time derivative of v(x) provides

v(x) = X' (ALP + PA, + ELE,)x — 7'z
= r_niﬂg X'(AiP+ PA; + E[E;))x — Z'z

IS
= minx'(A\P + PA — 7
minx'(A\P + PAy + @i)x — 2’z
<X (A\P+ PAy + Q\)x — Z'z
< -7z
where the second equality comes from the choice of the

switching function and the last inequality is due to the fact
that A\P + PAy + Q) < 0.
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Stability

Stability

@ Notice that no stability condition is required from the isolated
subsystems A;, i € K!

@ The sufficient condition is the existence of A € A such that A,
is Hurwitz stable. This is a NP hard problem !

@ Moreover, integrating the inequality both sides from t = 0 to
t — 00, we have

/ T U(x)dt = v(x(0)) — v(x(0)) < — / T () 2(t)de
0 0

which provides [|z||3 < x}Pxp since the asymptotic stability
assures that v(x(o0)) = 0.
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Stability

Stability

@ An important improvement is obtained by adopting the
following min-type Lyapunov function

v(x) = minx'Pix
ieK

and a subclass of Metzler matrices I = {7} € M.,

(1,j) € K x K, with the following properties

S mi=0, 120 Vji#ieKxK
JeEK

@ All matrices belonging to M( is such that

i = — Z 7T'J','§O7 e K
Jj#ieK
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Stability

@ Gershgorin circle theorem : Each eigenvalue of 1 € M, is
inside a circle centered at (7, 0) and with radius
|mii| = Zj;éie]K Tji-

@ Frobenius-Perron theorem : The null eigenvalue is the one
with maximum real part and the associated eigenvector
v € RV is nonnegative. Hence the usual normalization
Y ick Vi = 1 makes v € A.

@ Notice that for an arbitrary v € A the matrix
M= —/+ve

with e =[1 1 --- 1]is a Metzler matrix of the class M..
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Stability

Theorem : Stability

If there exist matrices P; > 0 and a Metzler matrix I1 € M.
satisfying the so called Lyapunov-Metzler inequalities

AP+ PiAi+ ) m;iPj + E[E; <0
jeK

Then the min-type switching function

- inx'P;
o(x) arg min x Pix

is globally asymptotically stabilizing and assures that

2 . !
< P;
(E41P 52']12 Xol"iXo

ot
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Stability

@ Defining I(x) = {i : x'Pix = v(x)}, for i € I(x), and
e M., we have

x' E 7T_,';Pj X:7T;,'X/P;X+ E Tji X,PJ'X

JjeK J#i >0
> 7T,','X/P,'X + Z 7Tj,'X/P,'X
J#i
> Zﬂj,' x'Pix
jeK
=0
>0
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Stability

@ Considering that at an arbitrary instant of time t > 0 we have
o(t) =i € I(x), the one-sided directional derivative of v(x)
provides

Div(x) = erenli(r;) X' (AP + P/A; + EjEj)x — 2z

< X/(Ai-P; —+ P,'A,' + E,-/E;)X — 7'z

< =X E mjiPj | x — 2’z
jeK
>0
< -7z
@ Moreover, making the same procedure as before, we have
I12[13 < v(x0) = min xpPixo
ieK
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Stability

At this point, some remarks are in order :
@ We can write

PN TTh
(A,'—i—%/) P; + P; (A;—i-?”/) —I—.Z 7TJ','P_,'+E,-,E,'<O
Jj#ieK

4

No stability property is required from the isolated subsystems
because 7;; < 0.
@ The conditions are nonconvex due to the matrices product
{mji, Pi} and difficult to solve for more than two subsystems.
@ The conditions assure stability even in the eventual existence
of sliding modes.
@ This phenomenon occurs whenever the set /(x) presents more

than one element.
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Stability

@ The classical Filippov's result establishes that whenever the system
operates in a sliding mode, it is described by

X = Z a;A,-x
iel(x)

where o € ¥(x) with X(x) being the set composed by vectors «
such that «; > 0 and >_ )i = 1. Hence,

iel(x)
D v(x) = emlin aix (AiPy + PyAi) x
€109.575
< max min aix" (AiPy + PiA;) x
a€X(x) Lel(x) .
i€l(x)
< min max aix" (AlPy + PiA;) x
Lel(x) a€X(x) |
i€l(x)
< max x' (AP + P;A;) x <0
iel(x) ~~

because the previous theorem assures D v(x) < 0, Vi € I(x)
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Lyapunov-Metzler inequalities

Modified Lyapunov-Metzler inequalities

The result of the previous theorem remains valid whenever there
exist matrices P; > 0 and a positive scalar v > 0 satisfying the
modified Lyapunov-Metzler inequalities

Af-P,-—l—P,-A,-—i—’y(PJ-—P,-)—i—E,-'E,-<0, I'#jGKXK

@ These conditions were obtained by restricting the Metzler
matrices to those with the same main diagonal v =3_.; mji.

@ Although they are clearly more conservative, for an arbitrary
number of subsystems, they can be solved by LMIs whenever
a scalar v > 0 is fixed.
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Lyapunov-Metzler inequalities

Theorem : Alternative stability conditions

If there exist a matrix P > 0, symmetric matrices W; and a
Metzler matrix 1 € M satisfying the inequalities

AP+ PA + ) miW,; + E[E; <0, i €K
JEK
Then the min-type switching function

- in x' W,
o(x) arg min x Wix

is globally asymptotically stabilizing and assures

2113 < xoPxo

Moreover v(x) = x’Px is a Lyapunov function for the system.

~
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Lyapunov-Metzler inequalities

@ This result is obtained from the Lyapunov-Metzler inequalities
with N(p) = uMN € M, and choosing P; = P + u~1W; with
p > 0, which provide

AYP + p W) +(P + W) Aty (P + W)+ E/E; < 0
. SN—
P; P; Jex Fi
@ Making ;1 — oo we have
AiP +PAi + ) miWj+ E[E <0, i €K
jeK
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Lyapunov-Metzler inequalities

@ The switching function becomes

H / H /
o(x) =argminx’ P; x=argminx W;x
() MR L &M i
P+p~—tW;
Notice that the switching rule does not depend directly on the
Lyapunov function !
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Lyapunov-Metzler inequalities

@ The next lemma presents some instrumental results that are
very important to obtain stability conditions based on an
unique subsystem.

Lemma

Let the symmetric matrices Q;, Vi € K, be given. The following
statements are equivalent :

© There exist matrices W; > 0 and a Metzler matrix 1 € M,
satisfying
Qi+ miW; <0, ieK
jeK
© There exist symmetric matrices R; and v € A satisfying
R, =0 and

Qi+ R <0, iekK
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Lyapunov-Metzler inequalities

@ Indeed, considering that statement 1) is true, choosing
R; = Z?Tj;\/\/j, ek
JjEK

and v € A\ as being the eigenvector associated with the null
eigenvalue of I1, we have

R,/ :ZI/,'ZTFJ','VVJ'

ieK  jeK
= g E miivi |Wj =0
jekK \ieK

and, therefore, statement 2) is true.
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Lyapunov-Metzler inequalities

@ Now, assuming that statement 2) is true, choosing

M=—l+v[l ... 1] , W;=Wn+(Rv—Ri)
we have
N
Y miWj =W, - W;=-R +R =R
j=1

because R, = 0. Hence, from statement 2) we have that
statement 1) is true.

@ Using this lemma the alternative stability conditions can be
written as follows.
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Lyapunov-Metzler inequalities

Corollary : Alternative stability conditions

If there exist a matrix P > 0, symmetric matrices R; and v € A
satisfying R, = 0 and the inequalities

AP+ PA +EEi+R <0, ieK
Then the max-type switching function

/
= Ri
o(x) = arg max x'Rix

is globally asymptotically stabilizing and assures

12113 < x5 Pxo

Moreover v(x) = x’Px is a Lyapunov function for the system.
. ot
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Lyapunov-Metzler inequalities

@ The inequality follows directly from the previous lemma.
@ The switching function is obtained from

o(x) = arg miﬂgx’ P, x = arg miﬂgx’ W,  x
ie ~— ic ~—
P+p=tW; Wi+(Rnv—R;)

= argmaxx'Rix
ieK

= arg miﬂg X'(ALP + PA; + E/E;)x
e

@ It is simple to see that these conditions are the quadratic
stability ones provided in the beginning of this chapter.

@ Moreover, they are a particular case of the Lyapunov-Metzler
inequalities.
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Example 1 - Stability

@ Consider a system defined by two unstable subsystems
01 0 1
A1—|:_5 J’Az—[z _5}751—52—/

The equilibrium point of the first subsystem is an unstable
focus AM{A1} = {0.5 £ 2.1794}, while the equilibrium point of
the second is a saddle A{A2} = {0.3723, —5.3723}.

@ We have solved problem

inf
P;>0,v>0

subject to the Lyapunov Metzler inequalities with
Pi—~1<0, ieK
@ Notice that the guaranteed cost is given by

2 . / /
< minxgP;xg <
llz|2 I.E'K XpFiXo < YXpXo
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Example 1 - Stability

@ We have obtained v* = 1.4482 and the matrices

p _ [1:3428 02994)  _ [1.3566 0.3039
1= 10.2004 0.4576|° "2~ |0.3039 0.4401

associated with the choice
-7
p —q

with (p*, g*) = (144,160) determined by unidimensional
search inside the box (p, q) € [0,160] x [0, 160] with step 2.

@ We have determined the switching surface by making
X/(Pl — P2)X =0
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Example 1 - Stability

@ Phase portrait of both isolated subsystems.
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Example 1 - Stability

@ Phase portrait of the switched system.

o \\

It is clear the sliding mode sur-
face and the dynamics of both
subsystems !

X2
o
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Example 1 - Stability

@ State trajectories of the switched system.

Profa. Grace S. Deaecto / i 34 /71



CHAPTER Il - Switched Linear Systems
0000000000000 0e000

Lyapunov-Metzler inequalities

Example 2 - Stability

@ Consider a third order switched linear system defined by

-3 -6 3 1 3 3
Al=1| 2 2 -3|,A=|8 -3 -3
a 0 -2 0 0 -2

and E1 = E2 =1.
@ We have varied the pair «, /3 inside the interval [0.5, 2],
[—2,1], respectively, analyzing the feasibility of the Lyapunov

Metzler inequalities for
n= {_p "]
p —q

with (p, q) belonging to the box [0, 20] x [0, 20].
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Example 2 - Lyapunov-Metzler

@ The region in gray (dark and light) is the feasibility region for
the Lyapunov-Metzler inequalities.

@ The region in dark gray does not admit a Hurwitz stable
convex combination of the subsystems matrices.

1

This makes clear that
the Lyapunov-Metzler in-
equalities are less conser-
vative than asking for Ay
be Hurwitz stable!
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Example 2 - Lyapunov-Metzler

@ For (o, 3) = (1.0,—0.9) the switched system does not present
a stable convex combination of the subsystems matrices.
However, matrices

[ 36048  8.0420 —6.7034]
Py = | 80420 344956 —33.0632
|—6.7034 —33.0632  34.3784]

[ 4.6089 4.6781 —0.4977 ]
P,=| 46781 11.6580 —12.0200
| —0.4977 —12.0200  22.7412 ]

with (p, q) = (1.86,1.79) satisfy the Lyapunov-Metzler
inequalities.
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Example 2 - Lyapunov-Metzler

@ The state trajectories obtained by implementing the switching
rule with matrices Py, P> are presented as follows

2.5 q

05 1 15 2 25 3 3.5
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Closed-loop performance

Consider now a more general switched linear system described by

L X(t) = Ag(t)X(t) + Hg(t)W(t), X(O) =0
Got) = { z(t) = Eye)x(t) + Gypyw(t)

where
@ w(t) € R™ is the external input.
In our context we will adopt two classes of external inputs :

@ The impulsive type w(t) = ed(t), for which the dynamic
equation can be written alternatively as

x(t) = Ayryx(t), x(0) = Hy(oyex

ey is the k-th column of the identity matrix.
@ Those belonging to the set w € Ls.
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Performance indexes

@ For a stabilizing given trajectory o(t) we have :
o H, performance index : For G; =0, Vi € K, the controlled
output z(t) associated with the external input w(t) = exd(t),
allows us to define the following H5 index

h(o) = ZHZk”%
k=1

o Moo performance index : The controlled output z(t) associated
with any arbitrary external input w(t) € L allows us to define
the following H~o index

Iz[15

Jo(o) =
=(0) = S Wl

Both indexes are difficult to be calculated then the idea is to find a
suitable upper bound!
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Closed-loop performance

Performance indexes

@ For a stabilizing given trajectory o(t) we have :
o H, performance index : For G; =0, Vi € K, the controlled
output z(t) associated with the external input w(t) = exd(t),
allows us to define the following H5 index

m
Do) = llzll3 = | Ei(sl — A)) " Hill3
k=1 o(t)=i,vt>0
o Moo performance index : The controlled output z(t) associated

with any arbitrary external input w(t) € L allows us to define
the following H~o index

Iz[15

./oo(O') = = ||E,(S/ — A,‘)ilH,' + G,Hic

o(t)=i,Vt>0

orwes, w3

Both indexes are difficult to be calculated then the idea is to find a
suitable upper bound!
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‘H, performance

Theorem : H» performance

If there exist matrices P;, i € K, and a Metzler matrix 1 € M,
satisfying the Lyapunov-Metzler inequalities

AP+ PiAi+ > m;iPj + E/E; <0
jeK

then the min-type switching function

- inx'P;
o(x) arg min x' Pix

is globally asymptotically stabilizing and satisfies

. ! . .
h(o) < min Tr(H; P;H;)

ot
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‘H, performance

@ From the previous results we have
Ny
JQ(U) < [;2']12 (HU(O)ek)/ P,' (HU(O)ek)
k=1
Ny
. !/
<min ) (Howex) Pi (Ho(o)e)
k=1

Ty(/-/;,(o) PfH(,(O))

< minTr (HIIP,H,)
ieK

where ¢(0) = i can be imposed since o(0) is arbitrary.
@ The best H; guaranteed cost is given by

5= _inf  minTr(H!P;iH;)
{N,P}eXx, ieK

where X, is the set of feasible solutions of the Lyapunov-Metzler
inequalities.
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Closed-loop performance

H~ performance

Theorem : H, performance

If there exist matrices P;, i € K, a Metzler matrix 1 € M. and a
scalar p > 0 satisfying the Riccati-Metzler inequalities

Ai-Pi + P;A; + ZjEK 7TJ','Pj -+ EI.’EI- °

HIP; + GIE; ol +GiG| <°

then the min-type switching function
N
o(x) = arg min x P;x
(x) B <

is globally asymptotically stabilizing and satisfies

Jo(o) < p

-
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H~ performance

@ Consider that the Riccati-Metzler inequalities hold. Adopting
the min-type Lyapunov function v(x) = min;cg x'P;x and
assuming that o(t) =i € I(x(t)) for a t > 0, we have

Dyv(x) = erenli(r;) 2(Aix + H,'W),ng
< X ! A;P,' + P/A; e | x
w H!P; 0| |w

<X D miPj | x =2z 4 pw'w
jeK
<—-Zz+ pW’W
where the second inequality comes from the validity of the
Riccati-Metzler inequalities.
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H~ performance

@ Integrating both sides from t = 0 to t — oo we obtain

v(x(00)) = v(x(0)) < —llz[l3 + pllwl3

where the left hand side is null since v(x(co) = 0 because the
system is stable and v(x(0)) = 0 because x(0) = 0.
@ The best Ho, guaranteed cost is given by

J2 = inf
NP p}EX P

where X, is the set of feasible solutions of the
Riccati-Metzler inequalities.
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Consistency

@ Consistency is an important concept related to stabilizing
switching rules. Consider o = {2, 00}, define S as the set of
all stabilizing switching rules and C as the set of all constant
rules o(t) =i € K for all t > 0.

Consistency

A switching rule o, € § is said to be consistent whenever it
provides a performance better than the one of each isolated
subsystem, that is

Jo(oa) < Ju(o), o €C

when the inequality is strict the switching rule o, is said to be
strictly consistent.
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Consistency

@ As it will be clear in the sequel the min-type switching
function is consistent for the H> and H, indexes.
@ In order to show this, let us notice that
@ Matrix N = My = 0 belongs to the subclass of Metzler
matrices g € M..
o Matrix 1 = ©, defined as

i ==, mi =B, Vie K, L #i
with 8 > 0 also belongs to ©, € M.. For N=4and { =2

-3 0 0 O

o _ | B 0 B B
N=0=, -8 0
0 0 0 -7

In this case

E 7TJ, = /3 ,'), Vie K
JjeK
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@ For the H, performance, since that 1 = [y is feasible, we
have

JQ(O') < Pinfo{Tl"(H,{P,'H,') : A;P; + P;A; + E,-/E,' < 0}
>
< ||Ei(sl — A)) " Hill3
(i)
which holds for all i € K.

@ Hence, the min-type switching rule is consistent.

@ In general, we have J (o) < Jo(i) which indicates that o(x) is
strictly consistent.

@ Moreover, with 1 = Iy we have

5’ = min IEi(sl — A)) " Hill3
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Consistency

@ For the H, performance, since that 1 = Iy is feasible, we

have
_ [ALP; + PA; + EIE; d
Iolo) < ot R s —pv e <O
< inf{p:||Ei(sl — A)7 H; + Gj|>, < p}
p>0
Joo (1)
< max || Ei(sl — A) " H; + Gil|%,

ieK
@ Hence, differently from the H> case, matrix g can not be
used to prove consistency in the H,, framework.
@ Moreover, with 1 = 1y we have

J% = max |[Ei(sl — A) " H; + Gi|| %
ieK
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@ However, considering G; = G, i € K and adopting 1 = ©,
with £ € K, the Riccati-Metzler inequalities become

A'P; + PiA; + E[E; + B(Py — P;) . <0
H!P; + G'E; —pl+ G'G
which is feasible whenever 5 > 0 is large enough,
P; > P,Vi # ¢ and
A}Pg + PoAp + EéEg ° <0
H,P; + G'E, —pl +G'G

which is equivalent to
IEe(sl — A) T He+ G2, < p
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Consistency

@ Consequently, we can conclude that
Joo(o) < inf{p: || Ee(sl — A" Hp + G35, < p}
P

< || Ee(sl — Ae) T Hy + G|,

Joo(0)

which holds for all ¢ € K.
@ Hence, the min-type switching rule is consistent.

@ In general, we have Jy(0) < Jso(i) which indicates that o(x)
is strictly consistent.
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Example 3 - ‘H, performance

@ Consider a switched linear system composed of two stable
subsystems

0 1 0 1 0
Sl E R I N )

EE=[10],E=[0 1]

we can calculate

b(0) = eer?lig}HEe(S/—Ae)_lHeH%
= min{ 2.7778 , 25.0000}
—
o(t)=1, Vt>0
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Example 3 - ‘H, performance

@ Adopting a Metzler matrix of the form

n— [ -p q ]
p —q
we have determined the minimum guaranteed cost for all

(p, q) inside the box [0,2] x [0,2] as shown in the next figure
where the plane surface concerns min,cc J2(0).
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Example 3 - ‘H, performance

@ The best guaranteed cost was obtained for

—0.45 0

* 0 SO —

n" =~ [ 045 0 } = J; 2.1929

@ By numerical simulation we have determined the actual cost
given by

Jo(0s0) = 1.6357

We can conclude that the min-type switching rule o(-) is
strictly consistent with a cost reduction of 40% !
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Example 3 - ‘H, performance

@ The state trajectories and the switching rule.

x(t)

) 05 1 15 2 25 3 35 4
t[s]

a(x(t))

0 05 1 15 2 25 3 35 4
t[s]

Notice the existence of stable sliding modes !
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Example 4 - H ., performance

@ Consider a switched linear system composed of two stable
subsystems

0 1 0 1 0
Sl E R I N )

EE=[10],B=[01], G=G=1

we can calculate

Joo(0) = eenf{'{g} IEe(sl — Ae)~ He + G%,
= min{36.0463 , 35.9356 }
—_
o(t)=2, Vt>0
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Example 4 - H ., performance

@ Adopting a Metzler matrix of the form

n— [ -p q ]
p —q
we have determined the minimum guaranteed cost for all

(p, q) inside the box [0,2] x [0,2] as shown in the next figure
where the plane surface concerns min,cc Joo ().
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Example 4 - H ., performance

@ The best guaranteed cost was obtained for

N* = [ —-5.0 45

50 a8 ] = J3 = 18.0677

@ The obtained cost was

Joo(020) < 18.0677 < min Joo() = 35.9356

so
Jr)c

We can conclude that the min-type switching rule o(-) is
strictly consistent with a cost reduction of at least 50% !
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State feedback control design

@ The idea now is to generalize the previous Hy and Ho
conditions to deal with the continuous-time system

x(t) = Aa(t x(t) + Byryu(t) + Horyw(t), x(0) =0
z(t) = 0 X(t) + Fopyu + Gopyw(t)

where the control law

u(t) = Ko(x(e)x(t)
must be designed together with the switching rule o(x) in
order to preserve stability and Hy or H, performance.
@ Connecting u to the system, we obtain the closed loop system
x(t) = (As(e) + Bo(e)Ko(e))X + Hoeyw(t), x(0) =0
z(t) = (Esxr) + Fo(e)Koge))x(t) + Go‘(t) w(t)
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State feedback control

Defining He{X} = X 4+ X’ we have :

Theorem : H> control

If there exist symmetric matrices S;, Tj;, matrices Y; and a Metzler
matrix 1 € M satisfying the Lyapunov-Meztler inequalities

H{AiSi+ B Y} + S miTy o _
= 0 K
[ EiSi + F;Y; gl =% e

{T,-j+5,- °

s Sj}>0,l;£j€K><K

then the switching rule o(x) = arg min;cx x’Sflx and the state feedback
gains K; = Y,-S,f1 assure the global asymptotic stability of the origin and

satisfies
h(o) < miﬂg Tr(H!S; ' H;)

e

. -
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State feedback control

Theorem : H, control

If there exist symmetric matrices S;, Tj;, matrices Y; and a scalar

p > 0 and a Metzler matrix 1 € M. satisfying the Riccati-Meztler
inequalities

H{ASi + BiYi} + Zj’\;izl miT; .
; —pl o | <0(x), ieK
LSy G —I

T,'j+5,' ] . .
[ s SJ}>O,I;£]€K><K

then the switching rule o(x) = arg min;ecx x’Sflx and the state feedback
gains K; = Y,-Si_1 assure the global asymptotic stability of the origin and
satisfies Jo () < p.

ot
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State feedback control

@ Both conditions were obtained from the from the fact that
Tj > 5;5;1S; — S for all i # j which provides

N N
domiTy > >, milSiS S - SiS'S)
jAi=1 J#i=1

N
> Z 7Tj,'5,'5j_15,'
=1

@ For the H, case, considering this inequality and multiplying
both sides of (*) by diag{S;*,/,/}, we obtain the original
Riccati-Metzler inequalities after performing the Schur
Complement with respect to the last row and column and
making the replacements A; — A; + B;K; and E; — E; + FiK;.

@ Similar procedure can be made in the H; case.
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Problems

Consider the switched linear system

x = Aysx, x(0) = xo

z=E;x

1) Adopting the min-type Lyapunov-function

v(x) = minx'Pix
ieK

@ Find the conditions that assure stability for an arbitrary
switching rule o(t).

o Do the obtained conditions require some stability property of
each isolated subsystem ?

@ Show that the obtained conditions contain the quadratic ones
AP+ PA; + E/E; < 0, Vi € K, as particular case.
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Problems

2) lIs it possible to assure global asymptotic stability by adopting
the max-type Lyapunov function

V(x) = maxx’'P;x
ieK

associated with the switching function
!/
o(x) = arg max x’ Pjx
(x) g

o If the answer is positive, present the stability conditions.
o If negative, justify mathematically.

3) Show that the modified Lyapunov-Metzler inequalities are
indeed a particular case of the original ones.
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Problems

4) For the switched linear system defined by matrices

0 1 0 1 1
Sl B R

Ey = E; = |. Elaborate a Matlab program to solve
. /
TR ATy 00
subject to the Lyapunov-Metzler inequalities Theorem :
Stability (pag 16).
@ Provide Py, P,, I and the guaranteed cost for a generic
MneM..
@ Provide Py, P,, I and the guaranteed cost for [1 € M with
the same main diagonals.
o Provide Py, P,, Il and the guaranteed cost for
M=—/+vl 1]e M., veA
o Compare the results.
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5) For the same switched linear system, solve the problem

inf x\P

o xoPo
for the conditions of Lemma : Quadratic stability (pag 11) by
searching inside the simplex A € A. Provide the solution P,
A € N\ and compare the result with Problem 3).

6) Implement the switching rule of Problem 4) for the generic
M € M, and the switching rule of Problem 5) and show that
in both cases the state trajectories converge indeed to the
origin.
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7) For the more general switched linear system
x=Asx+ Hw, x(0)=0
z=Ex+ Gw

Define Hy.(s) = E(sl — A\)"*H + G, A € A, show that :

a) Considering G = 0, the norm ||H,.(s)||3 is an upper bound for
the #H, performance index J(o). Obtain the conditions as a
particular case of the Lyapunov-Metzler inequality.

b) For the previous item, find the corresponding stabilizing state
dependent switching function o(x).

c) The norm ||H,.(s)||%, is an upper bound for the H
performance index Joo(c). Obtain the associated conditions
based on an unique matrix P > 0.

d) For the previous item, find the corresponding state-input
dependent stabilizing switching function o(x, w).

e) For item c), find the corresponding state dependent stabilizing
switching function o(x).
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8) Concerning the previous problem, is it possible to associate a
stabilizing switching function o(x) with the norm of
|E(sl — Ay)"YHy + G||%, and what about o(x, w)?

9) Consider the system of Problem #7 with

[-1 0 1o 21 o 1]
S g R P R AR R

Elaborate a Matlab program to find A € A is order to obtain :

a) The smallest ||Hy.(5)]|3.

b) Implement the correspondent switching function o(x), show
that the state trajectories converge indeed to the origin and,
by numerical simulation, determine | z||3.

c) Solve the Lyapunov-Metzler inequalities with N € M. and
provide I, P;, P, important to implement the switching
function o(x) = arg minjcg x’'P;x.
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d) Show that the state trajectories converge indeed to the origin and,
by numerical simulation, provide||z||3.

e) Compare the costs obtained in the itens a), b), ¢), and d).
10) Consider the system of pag 59 with matrices

01 0 0 0 1 00
00 1 0 0 0 1 0
A=l o0 011" o 00 1
-4 0 -9 5 -6 -7 1 0
0 -1 1
o 1 ;1 _ B
B=|gl - H=1| o| - E=|{| - F=1 6=0
1 1 1
with H; =H, E,=E, Bi=B, F; = F, G; = G for all

i=12.
a) For each isolated subsystem, find the gains K;, i = {1,2} that

minimizes the 7> norm and present the correspondent norm.
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b) Using the gains determined in the previous item, solve the
conditions of Theorem : H{, performance (pag 41) for the
closed-loop system. Provide the state trajectories, the cost J5° and
the solution Py, P,, . Compare J5° with the norms of each
subsystem based on the concept of consistency.

c) Solve the conditions of Theorem : Hy control (pag 60). Provide the
state trajectories, the cost J5° and the solution P;, P>, Ki, K> and
M. Compare the cost obtained with item b).
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11)

Profa.

Consider the LPV system

X(/\) ._ {X(t) = A)\(t X(t) + B)\(t U(t) + HW(t)
() = Cox()) X + Dox(eyyu(t)
where A(t) € A is a time-varying uncertain parameter. Based

on the Lyapunov-Metzler inequalities with a
parameter-dependent Metzler matrix M(\) € M. defined as

Ny ViNjs JFI

w0 = {0y, 12

find the conditions for which the control law
u(t) = Ky(x(e))x(t)

assures global asymptotic stab|||ty of the equilibrium point
and an H; guaranteed cost.
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