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Note to the reader

This text is based on the following main references :

D. Liberzon, Switching in Systems and Control, Birkhäuser,
2003.

Z. Sun, and S. S. Ge, Switched Linear Systems : Control and

Design, Springer, London, 2005.

S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan,
Linear Matrix Inequalities in System and Control Theory,
SIAM, Philadelphia, 1994.

J. C. Geromel e R. H. Korogui, “Controle Linear de Sistemas
Dinâmicos : Teoria, Ensaios Práticos e Exerćıcios”, Edgard
Blucher Ltda, 2011.
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Introduction

The switched dynamical system of interest presents the following
state space realization

ẋ(t) = Aσ(t)x(t) + bσ(t) + Bσ(t)u(t) + Hσ(t)w(t)

z(t) = Eσ(t)x(t) + Fσ(t)u(t) + Gσ(t)w(t)

where :

x ∈ R
nx is the state

w ∈ R
nw is the perturbation

u ∈ R
nu is the control input

z ∈ R
nw is the controlled output

σ(·) : t ≥ 0 → K := {1, · · · ,N} is the switching function
that selects one of the N available subsystems at each instant
of time.

bσ is the affine term
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Introduction

If bi = 0, ∀i ∈ K, the switched system is called linear and has
the origin x = 0 as the unique equilibrium point.

If bi 6= 0 for at least one i ∈ K the switched system is called
affine and has several equilibrium points composing a region
in the state space.

Switched systems can model several real world dynamical systems
or can appear only in the controller structure. Indeed switched
controllers can be designed to preserve stability and enhance
performance of nonswitched plants overcoming other control
strategies available in the literature.
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Introduction

Classes of switching functions :

Perturbation : σ(t) : t ≥ 0 → K is a trajectory with dwell
time T > 0

DT = {σ(·) : tk+1 − tk ≥ T ∀k ∈ N}

where tk and tk+1 are two successive instants of time. Notice
that for T → ∞ the function is constant and for T → 0+ it is
arbitrary.
Control : The switching function is of the form
σ(x) : R

nx → K that must be determined in order to preserve
stability and assure good performance for the closed-loop
system.

Our interest is to study the second class. For this case, the
literature presents some sufficient conditions based on
different types of Lyapunov functions.

Profa. Grace S. Deaecto IM420 DMC / FEM - Unicamp 6 / 61



CHAPTER I - Introduction and Preliminaries

Introduction

Some very simple examples are :

Mechanical Engineering : Automatic gear car

Electrical Engineering : DC-DC Boost converter.
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Introduction

The control design of a switching function is very important not
only for practical, but also for theoretical reasons. Indeed
considering a simpler switched system

ẋ(t) = Aσx(t)

we can observe the following interesting characteristics :

If all subsystems are unstable a suitable switching function
can assure stability for the overall system.

If all subsystems are stable a suitable switching function can
enhance performance compared to those of all isolated
subsystems. In this case, the switching function is said to be
strictly consistent. However, an inadequate switching function
can take the system to instability.
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For N = 2 unstable subsystems evolving from x0 = [1 1]′ :
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The adopted switching function is stabilizing !
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For N = 2 stable subsystems evolving from x0 = [1 1]′ :
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The adopted switching function is not stabilizing !
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However for the more general system

ẋ(t) = A
σ(t)x(t) + H

σ(t)w(t)

z(t) = E
σ(t)x(t)

with the previously defined stable matrices A1, A2 and E1 = E2 = I ,

H1 = H2 = [1 1]′ we have
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The switching function is
responsible for an H2 per-
formance gain greater than
73% with respect to that of
each isolated subsystem

The adopted switching function is strictly consistent !
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Time responses of Subsystems 1 and 2 and of the Switched
system.
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The control design of a switching function is a good alternative to
several engineering problems :

Multiobjective Control : The switched control law

u(t) = Kσ(x(t))x(t)

where the gains {K1, · · · ,KN} must be determined together
with the switching function σ(x), is very effective to assure
stability and performance for the Linear Time Invariant (LTI)
system

ẋ(t) = Ax(t) + Bu(t) + Hw(t)

whenever several different and possibly conflicting criteria

z(t) = Eσ(t)x(t) + Fσ(t)u(t)

defined by the pair (Ei ,Fi ),∀i ∈ K, are imposed.
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Linear Parameter Varying (LPV) Systems : The control law
u(t) = Kσ(x(t))x(t) can be applied to the LPV system

Σ(λ) :=

{

ẋ(t) = Aλ(t)x(t) + Bλ(t)u(t) + Hw(t)

z(t) = Cσ(t)x + Dσ(t)u(t)

with

(Aλ(t),Bλ(t)) =

N∑

j=1

λj(t)(Aj ,Bj), λ(t) ∈ Λ

It is a good alternative to the gain scheduling control
u(t) = Kλ(t)x(t) whenever the uncertain parameter λ ∈ Λ is
not available. The set Λ denotes the unitary simplex defined as

Λ =

{

λ ∈ R
N : λi ≥ 0,

∑

i∈K

λi = 1

}
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The switched control scheme is presented as follows

∑
(λ)

x

K1K1K1

K2

KN

σ(x)

u

zV

u(t) = Kσ(x(t))x(t)
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Power Electronics : In the Boost converter presented bellow
the switches S1 and S2 operates complementarily defining for
x = [iL vC ]

′ the switched affine system

ẋ(t) = Aσ(t)x(t) + bσ(t), x(0) = x0

V

R

RoS1

S2L

Co

iL
vC

A1 =

[
−R/L 0

0 −1/RoCo

]

, A2 =

[
−R/L −1/L
1/Co −1/RoCo

]

,

b1 = b2 =

[
V /L
0

]
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The switching function σ(x) must be designed in order to govern the

system trajectories to the desired equilibrium point xe ∈ Xe with

Xe ⊂ Rnx . The phase portrait bellow shows the equilibrium points in red

and the state trajectories evolving from the origin under the action of the

switching function.
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The design of a suitable switching rule may be more effective than
the PWM technique very common in the literature !
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Networked control : Considering that the control input is
transmitted through a limited bandwidth channel, whose
sampling periods Ti , i ∈ K, are defined by the user respecting
the minimum value allowed for transmission Ti > T⋆ > 0, we
have the system

ẋ(t) = Ax(t) + Buk(t) + Hw(t), x(0) = 0

z(t) = Ex(t) + Fuk(t)

where the control input is a piecewise constant signal

uk(t) = u(tk) = u[k], ∀t ∈ [tk , tk+1)

The interval between two successive instants of time is
tk+1 − tk ∈ T , ∀k ∈ N, with T = {Ti , i ∈ K}.
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We can define a self-triggered control problem that consists in
selecting a suitable sampling period Ti , i ∈ K, at each interval of
time. For each sampling period we can define a discrete-time
switched equivalent system

x [k + 1] = Adσx [k] + Bdσu[k], x(0) = x0

z [k] = Edσx [k] + Fdσu[k]

and to design a switching function σ(x) taking into account two
possibly conflicting criteria, as for instance, the H2 performance,
which generally induces small values for the sampling period, and
the limited bandwidth, which constraints this behavior.
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LTI Systems

Consider a continuous-time LTI system given by

ẋ(t) = Ax(t) + Hw(t), x(0) = x0

z(t) = Ex(t) + Gw(t)

where x ∈ R
nx is the state, w ∈ R

nx is the perturbation and
z ∈ R

nz is the controlled output. The general solution of the
dynamic equation is

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Hw(τ)dτ, ∀t ≥ 0

For w(t) = w0δ(t) with δ(·) the impulse function, we have

x(t) = eAt(x0 + Hw0), ∀t ≥ 0
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LTI Systems

Using the general solution, the controlled output is

z(t) = EeAtx0 +

∫ t

0
EeA(t−τ)Hw(τ)dτ + Gw(t)

= EeAtx0
︸ ︷︷ ︸

hwz0(t)

+

∫ t

0

(

EeA(t−τ)H + Gδ(t − τ)
)

︸ ︷︷ ︸

hwz (t−τ)

w(τ)dτ

= hwz0(t) + hwz(t) ∗ w(t)

where

hwz0(t) depends only on the initial condition without any input.
hwz(t) = EeAtH + Gδ(t) is the impulse response for zero
initial condition.
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LTI Systems

We can characterize the system in the frequency domain by
applying the Laplace Transform to the state space equations

ẑ(s) = Hwz0(s) + Hwz(s)ŵ(s)

with

Hwz0(s) = L{hwz0(t)} = E (sI − A)−1x0

Hwz(s) = L{hwz(t)} = E (sI − A)−1H + G

⇓
Hwz(s) is the transfer function of the system

For SISO systems we can write Hwz (s) = N(s)/D(s) with
N(s) and D(s) being polynomials.
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LTI Systems

The poles of Hwz (s) are the roots of D(s) = det(sI − A) = 0.

The zeros of Hwz(s) are the roots of

N(s) = det(sI − A)Hwz(s)

= det

([
sI − A −H

0 Hwz(s)

])

= det

([
I 0

−E (sI − A)−1 I

] [
sI − A −H

E G

])

= det

([
sI − A −H

E G

])

= 0

Notice that Hwz0(s) and Hwz(s) have the same denominators !
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LTI Systems

The frequency response of a system with transfer function
Hwz(s) is simply given

Hwz(jω), ∀ω ∈ R

which imposes that jω ∈ D{Hwz}. This means that the
imaginary axis must belong to the domain of Hwz(s) and,
consequently, all poles must be located in the region
Re(s) < 0.

The equality

Hwz(jω) =

∫ ∞

0
hwz(t)e

−jωtdt

holds and provides the Fourier transform of hwz(t).
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Norms

Consider a vector x ∈ C
nx and denote x∼ its conjugate

transpose. The quantity

‖x‖ :=
√
x∼x =

√
√
√
√

nx∑

i=1

|xi |2

is the Euclidean norm of the vector x .

Consider a trajectory x(t) ∈ C
nx defined for all t ≥ 0. The

quantity

‖x‖2 :=

√
∫ ∞

0
‖x(t)‖2dt =

√
∫ ∞

0
x(t)∼x(t)dt

is the L2 norm of the trajectory x(t).
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Preliminaries

An important result that relates the integral of a trajectory
x(t) ∈ R

nx defined for all t ≥ 0 with the integral of its Fourier
transform is the Parseval’s Theorem.

Parseval’s Theorem

Consider a function x(t) ∈ R
nx and its Laplace transform

x̂(s) ∈ C
nx such that 0 ∈ D{x̂(s)}, then the following equality

‖x(t)‖22 =
1

π

∫ ∞

0
‖x̂(jω)‖2dω

is verified.

The proof is based on the inverse Laplace transform applied with Γ
being the imaginary axis, that is

x(t) =
1

2πj

∫

Γ

x̂(s)estds =
1

2π

∫
∞

−∞

x̂(jω)e jωtdω
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Preliminaries

From the norm definition we have

‖x‖22 =

∫ ∞

0
x(t)∼x(t)dt

=

∫ ∞

0
x(t)∼

(
1

2π

∫ ∞

−∞
x̂(jω)e jωtdω

)

dt

=
1

2π

∫ ∞

−∞

(∫ ∞

0
x(t)′e−jωtdt

)∗

x̂(jω)dω

=
1

2π

∫ ∞

−∞
x̂(jω)∼x̂(jω)dω

=
1

π

∫ ∞

0
‖x̂(jω)‖2dω

where the last equality is a consequence of x̂(jω)∗ = x̂(−jω)
because x(t) is real.
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Stability

In order to study stability, let us consider the simpler LTI
system

ẋ = Ax , x(0) = x0

which has an equilibrium point at the origin, which is the
unique, whenever det(A) 6= 0. The solution of this system is

x(t) = eAtx0

where the exponential calculation is given by

eAt =
∞∑

k=0

(At)k

k!

If all eigenvalues of matrix A have negative real part, the
system is globally asymptotically stable (Hurwitz stable).
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Stability

The asymptotic stability can also be investigated by using the
Lyapunov method. Let us consider the quadratic Lyapunov
function candidate

v(x) = x ′Px , P = P ′ > 0 ∈ R
nx×nx

which defines a distance of the trajectory x to the origin
x = 0. The time derivative of v(x) along the trajectories of
the linear system provides

v̇(x) = ẋ ′Px + x ′Pẋ = x ′(A′P + PA)x = −x ′Qx

where Q is a symmetric matrix given by

A′P + PA = −Q

If Q is positive definite then v̇(x(t)) < 0, ∀x 6= 0, and we can
conclude that the origin is globally asymptotically stable.
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Stability

The celebrated Lyapunov Theorem is stated as follows :

Lyapunov Theorem

Matrix A is Hurwitz stable if and only if for any given Q > 0
there exists a positive definite symmetric matrix P satisfying the
Lyapunov equation

A′P + PA+ Q = 0

Moreover, matrix P is the unique solution of this equation.

Sufficiency : Follows from the already mentioned fact that if
the Lyapunov equation with Q > 0 has a solution P > 0 then
v̇(x(t)) < 0, limt→∞x(t) = 0 and, consequently, the system
is globally asymptotically stable.
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Stability

Necessity : We need to show that, if the system is globally
asymptotically stable, then the Lyapunov equation has a
unique solution. Consider matrix P defined by

P =

∫ ∞

0
eA

′tQeAtdt

a possible solution of the Lyapunov equation. This integral
always exists since Re(λi (A)) < 0, i ∈ K. Moreover,
multiplying to the right by an arbitrary vector 0 6= χ ∈ R

nx

and to the left by the transpose, we have

χ′Pχ =

∫ ∞

0
x ′Qxdt

with x(t) = eAtχ. We can conclude that P is symmetric and
positive definite since Q > 0.
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Stability

Now substituting the solution P at the equation, we have

A′P + PA = A′

(∫ ∞

0
eA

′tQeAtdt

)

+

(∫ ∞

0
eA

′tQeAtdt

)

A

=

∫ ∞

0

d

dt

(

eA
′tQeAt

)

dt = eA
′tQeAt

∣
∣
∣

∞

0

= lim
t→∞

eA
′tQeAt − Q

= −Q

where the last equality is a consequence of the fact that A is
Hurwitz stable and, therefore

lim
t→∞

eA
′tQeAt = 0
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In order to show that it is the unique solution, suppose that
there exists another one P̃ 6= P , which provides

A′(P − P̃) + (P − P̃)A = 0

Multiplying to the left by eA
′t and to the right by the

transpose, we have

eA
′t
(

A′(P − P̃) + (P − P̃)A
)

eAt =
d

dt

(

eA
′t(P − P̃)eAt

)

= 0

Hence
eA

′t(P − P̃)eAt = cte, ∀t ≥ 0

Evaluating the equality for t = 0 and t → ∞ we conclude
that P = P̃ is the unique solution.
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H2 Norm

For a stable LTI system, we can define two important
performance indexes : the H2 and H∞ norms.

In order to calculate both norms, let us recall the LTI system
of interest

ẋ(t) = Ax(t) + Hw(t), x(0) = 0

z(t) = Ex(t) + Gw(t)

with the associated transfer function

Hwz(s) = E (sI − A)−1H + G
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H2 Norm

H2 norm

For strictly proper asymptotically stable LTI systems, the H2 norm
is defined as

‖Hwz (s)‖2 =

(∫ ∞

0
Tr

(
hwz(τ)

′hwz(τ)
)
dτ

)1/2

Notice that it depends on the impulse response of the system.
However, using the Parseval’s Theorem, we can express it in the
frequency domain as being

‖Hwz (s)‖22 =
1

2π

(∫ ∞

−∞
Tr

(
Hwz(−jω)′Hwz(jω)

)
dω

)
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H2 Norm

The impulse response of the system is

hwz(t) = EeAtH + Gδ(t)

and, therefore, we have

‖Hwz (s)‖22 =

∫ ∞

0
Tr

(

(EeAtH + Gδ(t))′(EeAtH + Gδ(t))
)

dt

= Tr

(

H ′
( ∫ ∞

0
eA

′tE ′EeAtdt
)

H

)

+ 2Tr(H ′E ′G )

+ Tr(G ′G )

∫ ∞

0
δ(t)2dt

Notice that
∫ ∞

0
δ(t)2dt =

1

π

∫ ∞

0
dω → ∞
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H2 Norm

Hence, the H2 norm can be calculated only for strictly proper
systems, that is, for G = 0 and is given by

‖Hwz (s)‖22 = {Tr(H ′PoH) : A′Po + PoA+ E ′E = 0}
where

Po =

∫ ∞

0
eA

′tE ′EeAtdt

is the observability gramian.

Alternatively, this quantity can be determined as the solution
of a convex optimization problem. Indeed, notice that the
solution P > 0 of the inequality

A′P + PA+ E ′E < 0

satisfies the Lyapunov equation A′P + PA+ E ′E = −S for an
arbitrary S > 0.
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H2 Norm

Hence, we have

P =

∫ ∞

0
eA

′t(E ′E + S)eAtdt > Po

and, therefore, we have

‖Hwz(s)‖22 = inf
P>0

{Tr(H ′PH) : A′P + PA+ E ′E < 0}

Alternatively, using in the H2 norm definition and the
circularity property Tr (hwz(τ)

′hwz(τ)) = Tr (hwz(τ)hwz (τ)
′)

we can obtain the H2 norm from the controllability gramian.

‖Hwz(s)‖22 = {Tr(EPcE
′) : APc + PcA

′ + HH ′ = 0}

‖Hwz (s)‖22 = inf
P>0

{Tr(EPE ′) : AP + PA′ + HH ′ < 0}
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H∞ Norm

The H∞ norm is defined as follows.

H∞ norm

For asymptotically stable LTI systems, the H∞ norm is defined as

‖Hwz (s)‖∞ = sup
ω∈R

µmax{Hwz (jω)}

where µmax{·} is the maximum singular value of Hwz(jω)

The maximum singular value can be calculated as

µmax{Hwz (jω)} = max
i=1,··· ,nx

√

λi{Hwz (jω)∼Hwz(jω)}

where λi{V } is the i -th eigenvalue of matrix V .
For SISO systems µmax{Hwz(jω)} = |Hwz (jω)|.
Differently from the H2 case, it does not require that the
system be strictly proper.
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H∞ Norm

Notice that the H∞ norm depends on the transfer function of
the system.

However, using the Parseval’s Theorem it is possible to find a
condition on the time-domain. Indeed, considering that
w(t) ∈ L2 and ẑ(s) = Hwz(s)ŵ (s) we can write
∫ ∞

0
z(t)′z(t) =

1

π

∫ ∞

0
ẑ(jω)∼ẑ(jω)dω

=
1

π

∫ ∞

0
ŵ(jω)∼Hwz (jω)

∼Hwz(jω)ŵ (jω)dω

≤ ‖Hwz (s)‖2∞
∫ ∞

0
w(t)′w(t)dt

and, therefore, we have

‖Hwz (s)‖2∞ ≤ ρ ⇐⇒ ‖z(t)‖22 ≤ ρ‖w(t)‖22
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H∞ Norm

Notice that, adopting the quadratic Lyapunov function
v(x) = x ′Px , P > 0, and imposing

v̇(x(t)) < −z(t)′z(t) + ρw(t)′w(t), ∀t ≥ 0

for some ρ > 0, after integrating both sides from t = 0 until
t → ∞ we obtain

∫ ∞

0
v̇(x(t)) <

∫ ∞

0
−z(t)′z(t) + ρw(t)′w(t)dt

Since the system is globally asymptotically stable
v(x(∞)) = 0. Moreover v(x(0)) = 0 because x(0) = 0 and as
a consequence

∫ ∞

0
z(t)′z(t)− ρw(t)′w(t)dt < 0

which leads us to the conclusion that ‖Hwz (s)‖2∞ ≤ ρ.
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H∞ Norm

Hence, it suffices to impose that the inequality

v̇(x(t)) =
{
ẋ(t)′Px(t) + x(t)′Pẋ(t) + z(t)′z(t)− ρw(t)′w(t)

}

− z(t)′z(t) + ρw(t)′w(t)

=

[
x(t)
w(t)

]′ [
A′P + PA+ E ′E PH + E ′G

H ′P + G ′E G ′G − ρI

] [
x(t)
w(t)

]

− z(t)′z(t) + ρw(t)′w(t)

< −z(t)′z(t) + ρw(t)′w(t)

is verified, which is true whenever

[
A′P + PA+ E ′E PH + E ′G

H ′P + G ′E G ′G − ρI

]

< 0
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H∞ Norm

The H∞ norm can be calculated by the optimization problem

‖Hwz (s)‖2∞ = inf
{ρ>0,P>0}

{

ρ :

[
A′P + PA+ E ′E PH + E ′G

H ′P + G ′E G ′G − ρI

]

<0

}

or, alternatively, using duality by

‖Hwz (s)‖2∞ = inf
{ρ>0,P>0}

{

ρ :

[
AP + PA′ + HH ′ PE ′ + HG ′

EP + GH ′ GG ′ − ρI

]

<0

}
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Linear Matrix Inequalities

Linear matrix inequalities (LMIs) are essential in the analysis
and control design of dynamical systems and to several
optimization problems.

Linear Matrix Inequality

An LMI is expressed as
A(x) < 0

with

A(x) = A0 +

n∑

i=1

Aixi

where Ai ∈ R
m×m, i = 0, · · · , n are symmetric matrices and

xi ∈ R is the i -th component of vector x .
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Linear Matrix Inequalities

Notice that A(x) : Rn → R
m×m is a linear function of the

vector x ∈ R.

Convex set

The set of vectors x ∈ R satisfying the linear matrix inequality
A(x) < 0 is convex.

Indeed, notice that for two generic points xa, xb ∈ R
n the

segment between them is x = αxa + (1− α)xb for 0 ≤ α ≤ 1.
Assuming that A(xa) < 0 and A(xb) < 0, we have

A(x) = A(αxa + (1− α)xb)

= αA(xa) + (1− α)A(xb)

< 0

where the second equality is due to the fact that A(x) is
linear.
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Linear Matrix Inequalities

An important result used to linearise some nonlinear
constraints is the Schur Complement.

Schur Complement

A linear matrix inequality

A(x) =

[
S(x) V (x)
V (x)′ Q(x)

]

< 0

is equivalent to any of the two nonlinear inequalities

a) S(x) < 0 and Q(x)− V (x)′S(x)−1V (x) < 0

b) Q(x) < 0 and S(x)− V (x)Q(x)−1V (x)′ < 0
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Indeed for part a), notice that S(x) < 0 also implies that
S(x)−1 < 0. As a consequence, matrix

U(x) =

[
I 0

V (x)′S(x)−1 I

]

is nonsingular and allows us to write A(x) = U(x)B(x)U(x)′,
where

B(x) =
[
S(x) 0
0 Q(x)− V (x)′S(x)−1V (x)

]

Hence matrix A(x) < 0 if and only if B(x) < 0. The proof of
part b) is similar.
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Example 1 : Convert the linear inequalities 2x1 + 3x2 < 7,
−x1 + x2 < 5 and 2x1 − 4x2 < −4 in a matrix form.

Answer :

A0 =





−7 0 0
0 −5 0
0 0 4





A1 =





2 0 0
0 −1 0
0 0 2





A2 =





3 0 0
0 1 0
0 0 −4




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Example 2 : Convert the nonlinear inequality
(x1 − 1)2 + 2(x2 − 2)2 < 52, which is an ellipse with focus in
(1,2), in a linear matrix inequality.

Answer :

Performing the Schur Complement, we have that it is
equivalent to

[
2(x2 − 2)2 − 25 x1 − 1

x1 − 1 −1

]

< 0

performing it again, we obtain




−25 x1 − 1 x2 − 2
x1 − 1 −1 0
x2 − 2 0 −1/2



 < 0

where matrices A0, A1, A2 ∈ R
3×3 can be directly determined
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Linear Matrix Inequalities

The concepts we have just presented are important to solve
optimization problems described as

inf
x
{c ′x : A(x) < 0}

where c ∈ R
n.

In the specific context of control design, two very important
problems can be written as the optimization problem just
presented, to know, the H2 and the H∞ norms of the system
characterized by the transfer function

Hwz(s) = E (sI − A)−1H + G

.
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As already mentioned the H2 norm of the system Hwz(s) can
be determined through the solution of the following convex
optimization problem

‖Hwz(s)‖22 = inf
P>0

{Tr(H ′PH) : A′P + PA+ E ′E < 0}

Notice that, this problem can be written as

inf
x
{c ′x : A(x) < 0}
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Indeed, considering the decision vector x = [x1, · · · , xm]′, we
have

P =

[
x1 x2
x2 x3

]

=

[
1 0
0 0

]

︸ ︷︷ ︸

F1

x1 +

[
0 1
1 0

]

︸ ︷︷ ︸

F2

x2 +

[
0 0
0 1

]

︸ ︷︷ ︸

F3

x3 > 0

and

A′P + PA+ E ′E =

= (A′F1 + F1A)x1 + (A′F2 + F2A)x2 + (A′F3 + F3A)x3 + E ′E < 0

The objective function can be written as

inf
x

[
Tr(H ′F1H) Tr(H ′F2H) Tr(H ′F3H)

]

︸ ︷︷ ︸

c′

x
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Example 3 : Given a system with transfer function

H(s) =
s + 2

s3 + 2.4s2 + 2.8s + 0.8

Determine the system state space realization.

Using the LMILAB from Matlab solve the optimization
problems in order to calculate H2 and H∞ norms.

Compare the results with the ones obtained by the commands
“normh2” and “normhinf” from Matlab.
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1) Obtain the state space realization of the following systems

H(s) =
s2 + 5s + 3

s(s2 + 5s + 6)

H(s) =
s2 + 0.1s

s2 + 0.1s + 10

2) Show that for an arbitrary nonsingular matrix T ∈ R
n×n the

state space realization (T−1AT ,T−1B ,CT ,D) also represents
the transfer function H(s) with realization (A,B ,C ,D).
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3) Consider the differential equation

θ̈ + 4θ̇ + 4θ = 0, θ(0) = 1, θ̇(0) = 0

Determine its solution θ and the output θ̇ + 2θ.
Determine its state space representation.
Determine an equivalent state space representation for null
initial conditions.

4) Using Laplace transform show that for A ∈ R
n×n the equality

(sI − A)−1 =
I

s
+

A

s2
+

A2

s3
+ · · ·
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5) Consider the following continuous-time system and determine :

ẋ =

[
0 1

−4 −5

]

x +

[
1
0

]

w , x(0) =

[
0
2

]

z =
[
1 0

]
x

The response z(t) to the input w(t) = e−2t .
The transfer function Hwz(s), its domain and the impulse
response hwz(t).
The integral value I =

∫
∞

0
hwz(t) sin(t)dt.

6) Show that for any matrix M ∈ R
nx×nx we have

Tr(M) =

nx∑

i=1

λi(M), and det(M) = Πnx
i=1λi

where λi (M), i = 1, · · · , nx are the eigenvalues of matrix M.
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7) Using Parseval’s Theorem determine the value of the integral

I =

∫ ∞

0
f (t)2dt

for f (t) = e−2t .
8) Figure presents the Bode diagram of the minimum phase

system ẑ = Hwz(s)ŵ with real poles

−60 dB/dec

1 rad/s

20 log(4)

Determine the H2 norm.
Determine the H∞ norm.

Profa. Grace S. Deaecto IM420 DMC / FEM - Unicamp 57 / 61



CHAPTER I - Introduction and Preliminaries

Problems

Problems

9) Consider the following asymptotically stable transfer functions

H(s) = (s+2)
(s2+2s+5)(s+1)

H(s) = (s−2)
(s2+2s+5)(s+1)

H(s) = (s−2)2

(s2+2s+5)(s+1)

Determine the H2 norm of each transfer function using
gramians and a numerical routine of LMIsolver.

10) Consider the following asymptotically stable transfer functions

H(s) = (s+2)
(s2+2s+5)(s+1)

H(s) = (s−2)
(s2+2s+5)(s+1)

H(s) = 1 + (s−2)2

(s2+2s+5)(s+1)

Determine the H∞ norm of each transfer function using the
singular value diagram and a numerical routine of LMIsolver.
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11) Consider matrices A ∈ R
nx×nx and H ∈ R

nx×nw . Using the
Laplace transform, show that the square matrix

Γ =

[
A H

0 0

]

is such that

eΓt =

[
eAt

∫ t

0 eAtdtH

0 I

]

12) Show that for T−1AT = Λ ∈ R
nx×nx diagonal, we have

eAt = TeΛtT−1
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13) Consider a symmetric matrix M = M ′ ∈ R
nx×nx . Show that :

All its eigenvalues and eigenvectors are real.
All its eigenvectors are orthogonal.
Determine V ∈ R

nx×nx and Λ ∈ R
nx×nx diagonal such that

V−1RV = Λ, V−1 = V ′

For all x 6= 0 ∈ Mnx it is true that

λmin ≤ x ′Mx

x ′x
≤ λmax

where λmin and λmax are the minimum and maximum
eigenvalues of M , respectively.
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14) Consider the system ẋ = Ax and that there exist matrices
P > 0 and Q > 0 such that

A′P + PA+ Q = 0

Show that :

The inequality v(x(t)) = e−αtv(x(0)) is verified and
determine α.
All eigenvalues of A are such that Re(λj(A)) < −α/2,
∀j = 1, · · · , nx where α/2 is the decay rate of the system.
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