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Abstract

FLORES ALVAREZ, Arturo Moises. H2 Cooperative Control of Dynamical Systems Based on a
Time-Varying Lyapunov Function: Experimental Implementation in an Inverted Pendulum and an
Active Suspension, School of Mechanical Engineering, University of Campinas, 2019. Undergrad-
uate thesis.

This undergraduate thesis treats the control design and practical implementation of a switched
cooperative networked control of a set of linear time-invariant systems. The control design takes
into account that the communication network presents limited bandwidth and that, at each instant
of time, only one of the systems is allowed to receive the updated control signal, while the others
must remain with the previously received controlled input. Hence, our main goal is to synthesize
a cooperative resource sharing dynamic strategy assuring stability and an H2 guaranteed perfor-
mance index. This strategy acts as a coordinator managing the control signal transmission among
the systems and is mathematically represented by a switching rule that will choose at each decision
interval, which system must receive the updated control law. The design conditions are based on
a time-varying Lyapunov function and expressed in terms of Linear Matrix Inequalities (LMIs),
being easy to solve by readily available tools. The control strategy has been experimental validated
in the control of two mechanical systems, an inverted pendulum mounted on a motor-driven car
that moves on a rail and an active suspension. The main idea is to synthesize the control effort to
be transmitted cooperatively through the network to act in both systems in order to maintain the
pendulum in the inverted vertical position, while attenuates the perturbations of the road profile
in the active suspension. Initially, the mechanical system is analyzed, modeled and identified in a
simple and precise manner. Afterward, the control technique is obtained and compared with the
methodology based on Lyapunov-Metzler inequalities. Finally, experimental results and simula-
tions show the efficiency of the proposed control technique.

Keywords: Cooperative control, switched systems, state-feedback control design, time-
varying Lyapunov function, linear matrix inequalities.
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Symbol List

I - Identity matrix.
N - Set of natural numbers.
Z - Set of integer numbers.
R - Set of real numbers.
Rm×n - Set of real matrices of dimension m× n
K - Set of N positive natural numbers {1, . . . , N}.
F (s) - Laplace transform of the function f(t).
F (z) - Z transform of the function f [k].
L{f(t)} - Laplace transform operator applied to the function f(t).
Z {f [n]} - Z transform operator applied to the function f [n].
‖ξ‖22 - Square norm of a trajectory ‖ξ‖22 =

∫∞

0
‖ξ‖2dt (‖ξ‖22 =

∑

n∈N ‖ξ‖2)
for the continuous(discrete)-time domain, where ‖ξ‖2 = ξ′ξ is the
Euclidean norm.

L2 - Set of all the trajectories ξ(t) (ξ[n]) in the continuous(discrete)-time
domain such that ‖ξ‖2 < ∞.

A′ - Transpose of the real matrix A.
A(jω)∗ - Conjugate of the complex matrix A(jω)
A(jω)∼ - Conjugate transpose of the complex matrix A(jω)
P > 0 - Symmetric positive definite matrix P .
P < 0 - Symmetric negative definite matrix P .
diag{A,B}- Diagonal block-matrix formed by the matrices A and B.
tr(A) - Trace of the matrix A.
Λ - Unit simplex defined as Λ = {λ ∈ RN : λi ≥ 0,

∑

i∈K λi = 1}.
Aλ - Convex combination of matrices {A1, · · · , AN}, that is, Aλ =

∑

i∈K λiAi.
a mod b - Definition of the module operation which is the Euclidean division

between the integers a and b.
k(n) - Definition of the k(n) = n mod κ for a given κ ∈ N
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Chapter 1

Introduction

Nowadays, the world is getting more connected. From a simple home network to the world wide
spread internet, we appreciate that most of our daily actions involves create, send and receive
data for multiple purposes. For example, the modern concept of Internet of Things is creating
a necessity of the control in business, industrial and even domestic environments. As a result,
networked control is allowing more users to create interaction among a finite number of of systems,
in which signals from sensors, controllers and actuators are transmitted through shared network
channels with the flexibility of information traffic between their components.

Therefore, during the control design, it is important to take into account physical limitations
that may occur during transmission and are intrinsic of the communication network, such as band-
width limitation, delay and quantization errors. These aspects, which are traditionally studied in
communication theory, must be strongly considered in the control design for a proper performance
and stability of the overall networked systems. An omission of these facts could lead our system to
instability. The references (HESPANHA; NAGHSHTABRIZI; XU, 2007) and (WANG; LIU, 2008)
provide theoretical background and introduce the reader to the main challenges to overcome over
control through communication networks. Based on this, the study of systems with sampled-data
has gained special importance because they allow to model the bandwidth limitation in a com-
munication channel, see (SOUZA et al., 2014). The references (MAZO; TABUADA, 2008) and
(MENG; CHEN, 2014) are also important because they present strategies of self-triggering and
event-triggering as a solution to tackle the consumption of control signal transmission resources
over the network.

On the other hand a topic of great current interest is the study of switched systems. They
are defined by a finite number of subsystems and a switching rule. This rule can be arbitrary,
playing the role of an external disturbance, or a control variable that, when is properly designed,
can ensure stability and improve overall system performance. For this study, we will consider the
case where the switching rule is a control variable to be designed. We recommend the reader to
see the references (DECARLO et al., 2000), (HESPANHA; MORSE, 2002) and (SHORTEN et al.,
2007) and the books (LIBERZON, 2013) and (SUN, 2006) that provide the theoretical basis of this
important class of systems. In the network control context, the strategies based on commutation
have been implemented in (DAI; LIN; GEE, 2009), (DONKERS et al., 2009) in order to prevent
collision of information in the network channel. Figure (1.1) presents the control architecture
scheme to be adopted in this study. As it can be seen, the plants receive the control signal that is
transmitted by the network.

In order to avoid data packet loss, which is quite common when there is information going
through a network, we assume that at each time interval the control signal is sent to only one of the
plants and occupies the communication channel. Therefore, only this plant receives the updated

9
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Figure 1.1: Control Architecture

control signal, while the others maintain the previous control law. Notice that the control law of all
plants must remain constant over a period of time, chosen in order to respect the communication
channel bandwidth. The choice of which plant receives the updated information is made by a
coordinator, represented mathematically by the switching rule. Global control is responsible for
ensuring stability and a guaranteed cost of performance. In this thesis, our aim is to treat the joint
design of state-feedback feedback gains, important to synthesize the control law u(·), and the logic
of the coordinator σ(·) by means of a time-varying Lyapunov function in order to ensure overall
system stability and suitable H2 performance.

The theory is experimentally validated through the cooperative control of an inverted pendu-
lum mounted on a motor-driven car that moves on a trail and an active suspension, both from the
Quanser®company, see (QUANSER, 2012b) and (QUANSER, 2012a). The inverted pendulum
has an interesting characteristic that can be clearly observed, for example, in the dicycle segway ,
which is a brand-new transport system widely used today for tourism and safety schemes around
world. Additionally, the active suspension is important in automotive industries, where one of
the main interest is to design novel control techniques for the suspension in order to isolate the
vehicle chassis from road profile perturbations, maintaining the vehicle stable in irregular surfaces
and promoting a good level of comfort for the passengers. Studies related to cooperative control
can be seen in (LUZ NETTO, 2018), (SOUSA; GEROMEL; DEAECTO, 2015) but taking into
account conditions based on Lyapunov-Metzler inequalities, which are nonconvex and, therefore,
very difficult to solve for an arbitrary number of systems. Our contribution in this thesis is to
provide alternative conditions, but expressed in terms of Linear Matrix Inequalities (LMIs), which
are simpler and can be solved without difficulty by readily available tools. It is important to
highlight that although simpler, the conditions are not more conservative than the ones based on
Lyapunov-Metzler inequalities.
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1.1 Summary description of the chapters

This dissertation is divided into five chapters, which are summarized below:

• Chapter 1: Introduction. In this chapter, we introduce the problem to be addressed in
this thesis. Emphasizing its importance, specially in the context of network control, which
together with the ’Internet of Things’, make up one of the most important subjects currently
being studied by the scientific community of control and computing.

• Chapter 2: Fundamental Concepts. This chapter presents a review of fundamental
concepts related to dynamical systems. Initially, we present the Lyapunov stability criterion
and the calculation of H2 norm for linear and time-invariant systems. Subsequently, we
discuss about topics related to switched systems, as they will be widely used to obtain our
main results. An academical example illustrates important concepts on the control technique
to be adopted in this thesis.

• Chapter 3: Modelling and Identification. In this chapter, we perform a technical
modelling of the inverted pendulum as well as the identification of its parameters. We will
make special emphasis in the parameters that may vary due to external factors such as wear
deterioration. We present also the model of the active suspension, but in this case we have
considered the parameters provided by the manufacturer. At the end of the chapter, we
discuss the models and their validation that will be used in the next chapter for the control
design.

• Chapter 4: Cooperative Control. In this chapter, we present our main results. More
specifically, we develop the cooperative control design conditions based on a time-varying
Lyapunov function and compare the results with the ones derived from Lyapunov-Metzler
inequalities. Additionally, we validate experimentally the theory in the cooperative control
of the pendulum and the suspension showing its efficacy and accuracy.

• Chapter 5: Conclusions and Perspectives for Future Researches. Finally, this chap-
ter draws the main conclusions and provides some interesting topics for future investigation.



Chapter 2

Fundamental Concepts

The aim of this chapter is to introduce some fundamental concepts well established in the literature
that are the basis for the study of dynamical systems. First, we will present the linear time invariant
system to be considered for stability and performance analysis. Then, the Lyapunov stability
criterion is provided together with the definition and the calculus of the H2 norm by observability
gramian and linear matrix inequalities (LMIs). Finally, we will introduce some important concepts
related to switched linear systems, since they are one of the main focus of this undergraduate thesis.

2.1 Linear time invariant systems

Consider a linear time invariant system (LTI) described by the following state space representation

ẋ(t) = Ax(t) +Hw(t), x(0) = 0

z(t) = Cx(t) + Ew(t)
(2.1)

where x(t) ∈ Rnx is the state vector, w(t) ∈ Rnw is the external input and z(t) ∈ Rnz is the
controlled output. The transfer function Hwz(s) ∈ Cnz×nw between the external input w(t) and
the controlled output z(t) is

Hwz(s) = C(sI − A)−1H + E (2.2)

This system is classified as strictly proper when E = 0 or proper otherwise. Next, we discuss
important classical concepts concerning the stability and performance of this system.

2.2 Stability

In this section, we present the Lyapunov stability criterion for LTI systems. This criterion is
one of the most used and can be found in almost all the bibliography of control theory, such as
(GEROMEL; KOROGUI, 2001), (KHALIL, 2002), (SLOTINE; LI, 1991). First, let us consider a
simpler LTI system:

ẋ(t) = Ax(t), x(0) = x0 (2.3)

where whenever matrix A is nonsingular, the origin xe = 0 is its unique equilibrium point. This
point is defined as the one such that x(t0) = xe for some t = t0, then x(t) = xe for all t ≥
t0 ≥ 0. Considering a function V (x) that measures the distance between a generic point x and
the equilibrium xe, if for all initial condition x(0) = x0 the function V (x(t)) decreases and tends
to zero through the time, then the point xe is said to be globally asymptotically stable. The

12



CHAPTER 2. FUNDAMENTAL CONCEPTS 13

Lyapunov criterion is based on the choice of this function and in the imposition that it be always
decreasing with respect to the time t ≥ 0. Then, choosing the following quadratic Lyapunov
function candidate

V (t) = x′Px, (2.4)

where P > 0, we have that its time derivative evaluated for an arbitrary solution of (2.3) is given
by

dV (x(t))

dt
= V̇ (t)

= ẋ′Px(t) + xTP ẋ

= x′(A′P + PA)x (2.5)

Notice that, the function V (x) is positive definite for all x 6= xe whenever matrix P is positive
definite. Analogously, its time derivative V̇ (x) is negative definite for all x 6= xe, whenever following
condition

A′P + PA = −Q < 0 (2.6)

is verified for an arbitrary positive definite matrix Q > 0 given. In this case, we can say that the
equilibrium point xe = 0 is globally asymptotically stable. The next lemma presents the Lyapunov
stability criterion specific for LTI systems.

Lemma 2.1 (GEROMEL; KOROGUI, 2001) The LTI system (2.3) is globally asymptotically sta-
ble if and only if, for a given matrix Q > 0, there exists a matrix P > 0 that is the unique solution
of the Lyapunov equation ATP + PA+Q = 0.

In this lemma, the sufficiency follows from (2.6), which indicates that whenever its is verified then
V̇ (x) < 0 and the system is globally asymptotically stable. Now let us show the necessity. Indeed,
supposing that the system is globally asymptotically stable let us show that matrix

P =

∫ ∞

0

eA
′tQeAtdt (2.7)

is the unique positive definite solution of the Lyapunov equation. Indeed, multiplying (2.7) from
the right by ξ and from the left by its transpose, we obtain

ξ′Pξ =

∫ ∞

0

ξ′eA
′tQeAtξdt =

∫ ∞

0

x′Qxdt (2.8)

where x = eAtξ is the solution of the system ẋ = Ax for the initial condition x(0) = ξ. As Q > 0
then ξ′Pξ > 0. Furthermore, it satisfies the Lyapunov equation, as follows:

A′P + PA =

∫ ∞

0

d

dt

(

eA
′tQeAt

)

dt

= lim
t→∞

eA
′tQeAt −Q = −Q

(2.9)

where the third equality is due to the fact that the indicated limit is null, since by hypothesis the
system is globally asymptotically stable. In the next section, we will introduce the definition of
H2 norm of a dynamical system, which will be very useful for the forthcoming developments.
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2.3 H2 Norm

In this section, we present the H2 norm, which is one of the performance criteria more used
for measuring the quality of the control design in dynamical systems (GEROMEL; KOROGUI,
2001). For this purpose let us consider the more general system defined in the beginning of this
chapter and given by (2.1). This norm is defined for strictly proper transfer functions that are
asymptotically stable, but can also be determined from their impulsive responses. This is possible
due to the Parseval’s Theorem, that allows us to obtain a direct relation between the time domain
and the frequency domain, see (GEROMEL; KOROGUI, 2001) for details.

Theorem 2.1 (Parseval’s Theorem) Consider a real function f(t) : R+ → R such that
F (s) = L{f(t)} : D {F (s)} → C with 0 ∈ D {F (s)}, so the following equality is verified:

∫ ∞

0

f(t)2dt =
1

π

∫ ∞

0

F (jω)∗F (jω)dω (2.10)

Proof: In fact, equality (2.10) is based on the inverse Laplace transform of f(t) with s = jω, that
is

f(t) =
1

2πj

∫

Γ

F (s)estdt =
1

2π

∫ +∞

−∞

F (jω)ejωtdω (2.11)

where Γ is the imaginary axis that belongs to the domain of F (s). Taking the definition of L2

norm, we obtain:

‖f(t)‖22 =
∫ ∞

0

f(t)2dt

=

∫ ∞

0

f(t)
( 1

2π

∫ +∞

−∞

F (jω)ejωtdω
)

dt

=
1

2π

∫ +∞

−∞

(

∫ ∞

0

f(t)e−jωtdt
)∗

F (jω)dω

=
1

2π

∫ +∞

−∞

F (jω)∗F (jω)dωdt

(2.12)

Moreover, as f(t) is a real function, then F (jω) = F (−jω) and thus:

‖f(t)‖22 =
1

2π

∫ ∞

−∞

F (jω)∗F (jω)dω =
1

π

∫ ∞

0

F (jω)∗F (jω)dω (2.13)

as provided in (2.10). ✷

The H2 norm for an LTI system can be computed for a transfer function Hwz(s), strictly
proper, analytic in the complex right half-plane including the imaginary axis and it is defined as
follows:

‖Hwz(s)‖2 =
(

1

2π

∫ ∞

−∞

Tr(Hwz(jω)
∼Hwz(jω))dω

)1/2

(2.14)

Using the Parseval’s theorem we can determine this norm alternatively by

‖Hwz(s)‖22 =
∫ ∞

0

Tr(hwz(t)
′hwz(t)dt (2.15)
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where hwz(t) = CeAtH +Eδ(t) is the impulsive response of (2.1). Taking this impulsive response,
we obtain:

‖Hwz(s)‖22 =
∫ ∞

0

Tr
(

(CeAtH + Eδ(t))′(CeAtH + Eδ(t))
)

dt

= Tr
(

H ′
(

∫ ∞

0

eA
′tC ′CeAtdt

)

H
)

+2Tr(H ′C ′E)

+ Tr(E ′E)

∫ ∞

0

δ(t)2dt

(2.16)

Notice that this norm is finite only if the system is strictly proper, since we have
∫ ∞

0

δ(t)2dt =
1

π

∫ ∞

0

dω → ∞ (2.17)

which makes imperative to impose that E = 0.
Therefore, for strictly proper systems, the H2 norm is defined as follows:

‖Hwz(s)‖22 = {Tr(H ′PoH) : A′Po + PoA+ C ′C = 0} (2.18)

where

Po =

∫ ∞

0

eA
′tC ′CeAtdt (2.19)

is the observability Gramian.
Alternatively, this quantity can be computed as a solution of the following convex optimiza-

tion problem.
‖Hwz(s)‖22 = inf

P>0
{Tr(H ′PH) : A′P + PA+ C ′C < 0} (2.20)

In fact, note that each solution P > 0 of the inequality:

A′P + PA+ C ′C < 0 (2.21)

satisfies the Lyapunov ’s equation A′P + PA + C ′C = −S for an arbitrary matrix S > 0. Then,
we obtain

P =

∫ ∞

0

eA
′t(C ′C + S)eAtdt > Po (2.22)

and, therefore, with the infimum presented in (2.20) the solution P approaches arbitrarily of Po.
The problem (2.20) is described in terms of LMIs (see (BOYD et al., 1994)) and can be solved
without difficulty by the algorithms available in the literature. Moreover, this description is more
amenable for output and state feedback control generalizations. The next section presents some
important features of switched systems, which will be our focus throughout this study.
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2.4 Switched systems

A switched system is a dynamical system that is formed by a finite number of subsystems and a
switching function that selects a subsystem at each instant of time in order to assure stability and
improve performance. Some references that discuss about this theme are (FIACCHINI; JUNGERS,
2014), (FIACCHINI; GIRARD; JUNGERS, 2016), (GEROMEL; COLANERI, 2006a). The inter-
est in such kind of systems relies in their capability of modeling complex real systems, as embedded
or networked ones, and also for the theoretical issues involved. In fact, their dynamical properties
are often not intuitive nor trivial. As for instance, a switched system presents intrinsic dynamics
that occur when it evolves on a sliding mode and that do not coincide with the one of any of
the subsystems, see (LIBERZON, 2013). In this sense, a suitable switching function can assure
stability even if all subsystems are unstable (GEROMEL; DEAECTO; DAAFOUZ, 2013).

There exist two important classes of switching functions, which have attracted the attention
of the scientific community in the last decades. In the first, the switching rule is arbitrary and
the goal is to determine the minimum dwell time, that is, a minimum period of time in which
the commutation is not allowed, in order to preserve stability and improve performance. In the
second class, it is a control variable σ(x(t)) : Rnx → {1, 2, . . . , N} := K to be designed in order
to accomplish the same goals.

In this thesis we focus on the second group of switching functions. More specifically, our goal
is to obtain sufficient conditions for the control design of a switching function for discrete-time
switched linear systems taking into account an H2 performance criterion to be defined afterwards.
In this sense, this chapter presents some important results, already available in the literature,
that are specific for this class of systems. Basically, we will provide Lyapunov-Metzler conditions
based on a min-type Lyapunov function obtained from (GEROMEL; COLANERI, 2006b) and
LMI conditions based on a time-varying Lyapunov function available in (DEAECTO; GEROMEL,
2018). These last conditions will be generalized in Chapter 4 to cope with cooperative control
design.

2.4.1 Problem statement

Consider the following switching system defined ∀ n ∈ N− where N− = N ∪ {−1}
x[n + 1] = Aσx[n] +Hσw[n], x[−1] = 0

z[n] = Cσx[n]
(2.23)

where x ∈ R
nx , w ∈ R

nw , z ∈ R
s are the state, the exogenous input and the controlled output,

respectively. Moreover w(n) = δ(n + 1)er is the impulsive response and er is the standard basis.
First, note that this system is equivalent to

x[n + 1] = Aσx[n], x(0) = Hσ[−1]er

z[n] = Cσx[n]
(2.24)

defined for all n ∈ N. This alternative description is usual in the literature, whenever the H2

performance index is taken into account, see (GEROMEL; COLANERI; BOLZERN, 2008) for
details.

For the system in (2.23) the control action is accomplished by means of a switching function
σ(x) : Rnx → K to be designed. For a given performance index J(σ), the main objective is to
determine an optimal switching function that minimizes the following criterion

inf
σ∈V

J(σ) (2.25)



CHAPTER 2. FUNDAMENTAL CONCEPTS 17

where V is the set of all globally asymptotically stable switching functions. This problem is very
difficult to solve due to the nonlinear nature of the switching function. Hence, the idea is to assure
a suitable upper bound for (2.25) and to obtain a suboptimal solution. At this point, it is necessary
to define the performance index to be considered in this thesis.

Definition 2.1 The H2 performance index associated with the closed-loop switched linear system
(2.23) with initial condition x[−1] = 0 is given by

J2(σ) =

nw
∑

r=1

‖zr‖22 (2.26)

where zr is the controlled output corresponding to the impulsive input w[n] = erδ[n + 1], for all
r = 1, ..., nw.

The next subsection presents conditions for the control design of the switching function
assuring an upper bound for the H2 performance index (2.26).

2.4.2 Stability and H2 performance

Let us first consider the min-type Lyapunov function given by

V (x) = min
i∈K

x′Pix (2.27)

where Pi > 0, ∀i ∈ K, as well as the associated switching function

σ(x) = argmin
i∈K

x′Pix (2.28)

Notice that, (2.27) is nonconvex and non-differentiable at the points where the minimum operator
occurs for more than one index. Define the subclass of Metzler matrices Π ∈ M composed by all
matrices Π ∈ RN×N such that

πij ≥ 0, (i, j) ∈ K×K,
∑

i∈K

πji = 1, (2.29)

since it will be important for the forthcoming results. The next theorem, borrowed from reference
(GEROMEL; COLANERI, 2006b) presents the stability conditions for (2.23).

Theorem 2.2 Assume that there exist matrices Pi > 0 and a Metzler matrix Π ∈ M satisfying
the following Lyapunov-Metzler inequalities

A′
i

(

∑

j∈K

πjiPj

)

Ai − Pi + C ′
iCi < 0, i ∈ K (2.30)

Then, the state-dependent switching function (2.28) assures the global asymptotic stability of the
system (2.23) and satisfies

J2(σ) < min
i∈K

Tr(H ′
mPiHm) (2.31)

for a given m = σ[−1].

Proof: The proof is available in (GEROMEL; COLANERI; BOLZERN, 2008) and for this reason
will be omitted. ✷
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About this result, some remarks are in order. The first one is that a necessary condition for the
feasibility of (2.30) is the validity of the following inequalities

(
√
πiiAi)

′
Pi (

√
πiiAi)− Pi < 0, i ∈ K (2.32)

which have been obtained by making
∑

j∈K πjiPj = πiiPi +
∑

j 6=i∈K πjiPj in (2.30). Note that
from the definition of the subclass of Metzler matrices present in (2.29), we have that 0 ≤ πii ≤
1, ∀i ∈ K, and, therefore, matrices

√
πiiAi must be stable as a necessary condition. Hence, it is

not required any stability property of the matrices Ai considered separately. The second remark
regards the computational solution of the Lyapunov-Metzler inequalities (2.30). These inequalities
are nonconvex due to the product of matrix variables {Π, Pi, ∀i ∈ K} and, therefore, extremely
difficult to solve for more than three subsystems. However, a simpler condition can be obtained
by taking into account Metzler matrices with equal elements in the main diagonal, as proposed
in (GEROMEL; COLANERI, 2006b). Although, simpler this alternative condition can be very
conservative.

In order to circumvent this difficulty in the solution of the Lyapunov-Metzler inequalities, the
literature has presented other control proposals, some of them based on LMIs as in the references
(FIACCHINI; GIRARD; JUNGERS, 2016), (DEAECTO; GEROMEL, 2018). The idea is to pro-
vide alternative conditions that are simpler, but not more conservative than the ones presented
in Theorem 2.2. In this direction, let us provide in the next developments the main results of
(DEAECTO; GEROMEL, 2018), since they will be generalized to cope with cooperative control.

Before proceeding, it is important to make clear that the conditions to be obtained afterwards
are based on a periodic time-varying Lyapunov-function defined as

V (x, n) = x′P [n]x (2.33)

where P [n] = P [k(n)] for all n ∈ N. Notice that, this function presents period κ and that
P [0] = P [κ]. Let us define the unit simplex Λ as being

Λ =

{

λ ∈ R
N : λi ≥ 0,

∑

i∈K

λi = 1

}

(2.34)

that will be important in the next theorem, which presents the stability results and the H2 guar-
anteed cost for this case.

Theorem 2.3 For a given positive scalar 1 ≤ κ ∈ N, assume that there exist vectors λ[n] ∈ Λ and
matrices P [n] > 0 satisfying the inequalities

∑

i∈K

λi[n](A
′
iP [n+ 1]Ai − P [n] + C ′

iCi) < 0 (2.35)

for all n = 0, · · · , κ − 1 with the boundary conditions P [0] = P [κ]. Then the state-dependent
switching function

σ(x[n]) = argmin
i∈K

x[n]′(A′
iP [k(n) + 1]Ai + C ′

iCi)x[n] (2.36)

assures global asymptotic stability of the system (2.21) and satisfies

J2(σ) < Tr(H ′
mP [0]Hm) (2.37)

for a given m = σ[−1].
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Proof: The proof is available in (DEAECTO; GEROMEL, 2018), which assures exponential sta-
bility of the system (2.21). However, due to the importance of this theorem for the Chapter 4, its
proof will be provided here, in a slightly different manner in order to assure asymptotic stability.
Define the difference operator as being ∆V (x, n) = V (x, n+1)−V (x, n) and take into account the
system (2.23) written alternatively as (2.24). Then, for an arbitrary trajectory of (2.24) defined
for n = 0, · · · , κ− 1, we have

∆V (x, n) = x[n + 1]′P [n+ 1]x[n+ 1]− x[n]′P [n]x[n]

= x[n]′(A′
σP [n+ 1]Aσ − P [n] + C ′

σCσ)x[n]− z[n]′z[n]

= min
i∈K

x[n]′(A′
iP [n+ 1]Ai − P [n] + C ′

iCi)x[n]− z[n]′z[n]

= min
λ∈Λ

x[n]′

(

∑

i∈K

λi[n]
(

A′
iP [n+ 1]Ai − P [n] + C ′

iCi

)

)

x[n]− z[n]′z[n]

≤ x[n]′

(

∑

i∈K

λi[n]
(

A′
iP [n+ 1]Ai − P [n] + C ′

iCi

)

)

x[n]− z[n]′z[n]

< −z[n]′z[n] (2.38)

where the third equality comes from the switching function (2.36), the fourth is due to a known
property of the minimum operator and the last inequality follows from the validity of (2.35). From
the periodic continuation P [n] = P [k(n)], we have that inequality (2.35) holds for all n ∈ N. Now,
summing both sides of ∆V (x, n) < −z[n]′z[n] from n = 0 until infinity, we have that

‖z‖22 < V (x, 0) = x[0]′P [0]x[0] (2.39)

since limn→∞ V (x, n) = 0 because the system is asymptotically stable. Remembering that x[0] =
Hmer and from definition (2.1), we have

J2(σ) =

nw
∑

r=1

‖zr‖22

<

nw
∑

r=1

e′rH
′
mP [0]Hmer

= Tr(H ′
mP [0]Hm) (2.40)

completing thus the proof. ✷

Notice that the condition of Theorem 2.3 is nonconvex due to the product of variables (λ[n], P [n])
and, therefore, is extremely difficult to solve. Fortunately, a simplification can be adopted without
loss of generally searching λ[n] only on the vertices of the simplex λ ∈ Λv ⊂ Λ. This will allow
us to describe the conditions (2.35) in terms of LMIs. Before continuing, some definitions are
important. Let us denote the set C(κ) = Kκ which contains Nκ elements. The ℓ-th element is
denoted by Cℓ(κ) ∈ C(κ) where 1 ≤ ℓ ≤ Nκ. Moreover, each element Cℓ(κ) contains κ terms in
which i[n] ∈ Cℓ(κ) for n = 0, · · · , κ− 1. The next corollary provides a representation of Theorem
2.3 described in terms of LMIs.

Corollary 2.1 For a given positive scalar 1 ≤ κ ∈ N, assume that there exist matrices P [n] > 0
solution of the following optimization problem

min
1≤ℓ≤Nk

inf
P [n]>0

Tr(H ′
mP [0]Hm) (2.41)
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subject to
A′

i[n]P [n+ 1]Ai[n] − P [n] + C ′
i[n]Ci[n] < 0 (2.42)

for all n = 0, · · · , κ− 1, i[n] ∈ Cℓ(κ) with the boundary conditions P [0] = P [κ]. Then, the state-
dependent switching function (2.36) assures global asymptotic stability of the system (2.21) and
satisfies (2.37) for a given m = σ[−1].

Proof: The proof follows directly from the fact that we can, without loss of generality, con-
straint the set of λ[n] ∈ Λ to the ones belonging to the vertices, that is, λ[n] ∈ Λv, see reference
(DEAECTO; GEROMEL, 2018) for more details about this proof. ✷

Compared to the Lyapunov-Metzler inequalities of Theorem 2.2, the conditions of Corollary
2.1 are much simpler to solve, since they are described in terms of LMIs. Moreover, as it has been
discussed in (DAIHA et al., 2017), both conditions can not be compared in terms of conservatism.
Indeed, both are a particular case of the time-varying Lyapunov-Metzler inequalities presented in
(DAIHA et al., 2017) which although more general are impossible to solve because, besides the fact
that they are nonconvex, they are also time-varying. The conditions of Theorem 2.2 is obtained
eliminating the time-varying nature of the conditions provided in (DAIHA et al., 2017), while the
conditions of Corollary 2.1 is obtained by imposing time-varying Metzler matrices with the same
columns Π[n] = [λ[n] · · · λ[n]]. Hence, for some cases Theorem 2.2 can be the best choice due to
the generality of π ∈ M and in other cases the conditions (4.25) can provide better results due to
its time-varying nature. In the next subsection, it is presented an illustrative example to compare
both Theorem 2.2 and Corollary 2.1 and show the efficiency of the LMIs (2.42).

2.4.3 Example

Consider the system (2.23) composed of two unstable subsystems defined by Ai = eAcih, i ∈ {1, 2}
with h = 0.1 [s] and the following matrices

Ac1 =





0 1 0
0 0 1

−45 −29 1



 , H1 =





−1
1
1



 , C1 =
[

3 0 2
]

(2.43)

Ac2 =





0 1 0
0 0 1
10 −5 −50



 , H2 =





−1
1
1



 , C2 =
[

1 0 2
]

(2.44)

We have solved the conditions of Theorem 2.2 by searching the parameters of the Metzler matrix
inside a box [0, 1]× [0, 1] with step 0.1. We have obtained for the Metzler matrix

Π =

[

0 1
1 0

]

(2.45)

a guaranteed cost J2(σ) < J2s = 129.91 and the positive definite matrices

P1 =





210.3146 130.9615 −2.1225
130.9615 201.4047 14.5241
−2.1225 14.5241 33.7353



 , P2 =





216.4268 156.8974 5.0755
156.8974 224.3637 4.4851
5.0755 4.4851 4.0918



 (2.46)

that are important for the switching function implementation. Afterwards, we have solved the
LMI conditions of Corollary 2.1 for different values of κ ∈ {2, 3, 4, 5, 6} obtaining the guaranteed
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κ J2s - Cor. 2.1 σP [n] σ(x[n]) J2s - Theo. 2.2
2 129.9 129.9 86.009
3 137.21 137.21 89.179
4 129.9 129.9 96.331 129.91
5 127.691 127.69 95.513
6 124.96 124.96 106.52

Table 2.1: Performance indexes for different cases.

Figure 2.1: State trajectories and switching function.

costs J2s presented in the second column of Table 2.1. For each κ we have implemented the
periodic switching function σP [n], obtaining the actual costs presented in the third column of
the table. Notice that, these costs coincide with the guaranteed ones, indicating as discussed in
(DEAECTO; GEROMEL, 2018) that the conditions of Corollary 2.1 are necessary and sufficient
for the periodic switching function. We have also implemented the state-dependent switching
function proposed in (2.36) obtaining the actual costs provided in the fourth column of Table 2.1.
Notice that, this switching function has always enhanced the actual performance when compared
with the periodic case indicating the efficiency of the adopted control technique.

Notice that the best guaranteed performance J2s = 124.96 has been obtained for κ = 6,
associated to the optimal sequence C53(6) = (2 2 1 2 1 1), and is smaller than the guaranteed
cost obtained from the Lyapunov-Metzler inequalities. Figure 2.1 presents the state trajectories
and the correspondent switching function obtained from the solution of Corollary 2.1 with κ = 6.
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2.5 Final considerations

In this chapter, we have presented a series of fundamental concepts for analysis and control design
of dynamic systems. Moreover, two recent results related to switched systems have been presented
that will be very useful in the next chapters to address the cooperative control of several systems
that share the same communication channel, which is the main subject of this thesis. More specifi-
cally, the concepts of stability and H2 norm were introduced for LTI systems, and after generalized
to cope with switched systems. Regarding this class of systems, we have presented control design
conditions borrowed from two very recent references (GEROMEL; COLANERI; BOLZERN, 2008)
and (DEAECTO; GEROMEL, 2018). We have discussed and compared by means of an academical
example the main features of both methodologies.



Chapter 3

Modeling and Identification

In this chapter, our main objective is to present the models of the two plants that will be used
in Chapter 4 for the experimental validation of the cooperative control technique to be developed
in the same chapter. The plants consist in an inverted pendulum coupled to a motor-driven car
that moves on a rail and in an active suspension, both from Quanser company. The first plant
is clearly nonlinear, which demands us to obtain a very precise model. Therefore, some physical
parameters, as for instance, motor efficiency, viscous friction, among others, will be identified, since
they can suffer alterations with the constant use or the environment where the experimental tests
occur. In this case, the identification techniques will be borrowed from (LUZ NETTO, 2018). At
the end, the model will be validated by comparing the simulation signals with the experimental
measurements. For the second plant, an active suspension, we will adopt the model provided by
the Quanser company, since its dynamics is already stable.

3.1 Mathematical Models

In this section, we present the equations that will describe the behavior of the two mechanical
plants to be considered in this thesis.

3.1.1 Inverted Pendulum

From the Figure 3.1, we appreciate the main parts of the inverted pendulum, identified as IP02
system, which is formed by a motor-driven car an a pendulum attached to it. Additionally, we
add a schematic diagram in Figure 3.2 that shows the main variables that will be considered to
describe the dynamics of the IP02 system.

Linear and Nonlinear model

The equations and developments that can be derived from the schematic of Figure 3.2 are available
in (LUZ NETTO, 2018). From this reference, the nonlinear model of the system is presented as
follows

(Mp +Meq)ẍc + Beqẋc −Mplp cos(θ)θ̈ +Mplp sin(θ)θ̇
2 = AeqVm (3.1)

(Mpl
2
p + Jp)θ̈ +Bpθ̇ −Mplp cos(θ)ẍc −Mplpg sin(θ) = 0 (3.2)

where the equivalent mass is given by

Meq = Mc +
ηgk

2
gJm

r2pm
(3.3)

23
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Figure 3.1: IP02 system, obtained from (QUANSER, 2012b)
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Figure 3.2: Diagram of the car-pendulum set

the equivalent viscous friction is

Beq = Bc +
ηmηgk

2
gktkm

r2pmRm
(3.4)

and, finally, the quantity

Aeq =
ηmηgkgkt
rpmRm

(3.5)

represents the actuation gain. In the Table 4.1 we summarize the parameters that are involved in
the equations (3.1) - (3.2)

The linearized model with respect to the operating point (x0, θ0, ẋ0, θ̇0) = (0, 0, 0, 0) is given
by the equations

(Mp +Meq)ẍc + Beqẋc −Mplpθ̈ = AeqVm (3.6)

(Mpl
2
p + Jp)θ̈ +Bpθ̇ −Mplpgθ −Mplpẍc = 0 (3.7)

and will be widely used for identification and control design.
Defining the state vector as being x = [xc θ ẋ θ̇]′ and the control input as u = Vm, the

system (3.6)-(3.7) can be described by the state space representation

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (3.8)
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Symbol Description Units
Bp Equivalent viscous damping coefficient of the pendulum N.m.s/rad
Mp e lp Mass and length of the pendulum kg
Jp e Jm Moment of inertia of the pendulum and the motor kg.m2

Rm e Lm Motor armature resistance and motor armadure inductance Ω , mH
km e kt Motor back-emf and motor current-torque constant V/(rad/s), N.m/A
ηm e ηg Motor and planetary gearbox efficiency −−
Kg e rpm Planetary gearbox gear ratio and Motor pinion radius −−,m
Mc e Bc Mass of cart and Equivalent viscous damping coefficient of the car kg, N.m.s/rad

Table 3.1: Main parameters associated with the IP02 system

where matrices A and B are given by

A =
1

Jt









0 0 JT 0
0 0 0 JT

0 M2
p l

2
pg −Beq(Mpl

2
p + Jp) −BpMplp

0 Mplpg(Meq +Mp) −BeqMplp −Bp(Meq +Mp)









(3.9)

B =
Aeq

JT









0
0

Mpl
2
p + Jp

Mplp









(3.10)

with JT = Meq(Mpl
2
p + Jp) + JpMp.

Identification of Physical Parameters

Due to the necessity of obtaining a suitable mathematical model that describes with precision the
dynamics of the system, our goal is to identify parameters related to the viscous friction coefficients
Bp , Bc and the efficiencies ηm and ηg of the IP02 system. More specifically, we want to identify
the parameters Meq, B⌉∐, Aeq, Bp and Jp. The focus on these parameters comes from their strong
dependence on external factors, like the rail wear and the experimental environment, while the
rest of the quantities Mc, Mp and lp may be easily measured. The experimental tests done during
the identification process will also allow to identify nonlinearities that have not been taken into
account during the modeling.

To identify the mentioned parameters we need to change the operating point for (xc, α) =
(0, θ+ π) which is stable, differently from the previous one. In this situation, the pendulum is not
inverted and is placed in an equilibrium position. Naturally, the linearized model becomes

(Mp +Meq)ẍc + Beqẋc +Mplpα̈ = AeqVm (3.11)

(Mpl
2
p + Jp)α̈ +Bpα̇+Mplpgα+Mplpẍc = 0 (3.12)

described now in terms of α.

Identification of the car/motor set

Our goal at this moment is to identify the parameters Meq, B⌉∐ and Aeq. From the equations
(3.11)-(3.12) it is possible to notice that the group car/motor and the pendulum can be analyzed



CHAPTER 3. MODELING AND IDENTIFICATION 26

separately. In this case, we may uncouple the pendulum from the car, making Mp = 0 in equation
(3.11), obtaining the motion equation of the car, which assumes the format:

Meqẍc + Beqẋc = AeqVm (3.13)

In the physical system, this adaptation is made simply by removing of the pendulum from the
support rod. Defining ẋc = vc, the linear speed of the car, we obtain a first order differential linear
equation given by

τ v̇c + vc = κ0Vm (3.14)

with

κ0 =
Aeq

Beq
, τ =

Meq

Beq
(3.15)

The response of this system for an input Vm(t) = υ0, ∀t ≥ 0, is given by

vc(t) = κ0υ0(1− e
t

τ ) (3.16)

which allows us to determine the time constant τ and the gain κg by the following procedure based
on two simple steps:

• For t → ∞, it is simple to verify that κ0υ0 is the steady-state value of vc(t)

• For t = τ we have vc(τ) = κ0(1 − e−1) and, consequently, τ is the instant in which the
response vc(t) reaches the 63% of its steady-state value.

Notice that from this test, it is not possible to find separately the three parameters of interest
Aeq, Meq and Beq. This difficulty may be circumvented with the support of an extra experimental
test of the same type. The idea is to couple a known mass Mk to the car in such a way that the
dynamic equation (3.14) be identical but with a new time constant

τ ′ =
Meq +Mk

Beq
(3.17)

which, along with (3.15) allow us to determine

Beq =
Mk

τ ′ − τ
, Meq = Beqτ, Aeq = Beqκ0 (3.18)

We have submitted the IP02 system to these experimental tests using an additional mass of Mk =
0.369 [kg]. The identification has been done for a range of amplitudes from 2.5[V ] to 4[V ] with an
increment of 0.5[V ] between tests, being the value presented in Table 3.2 obtained as the mean of
the values.

Identified parameters - Car/Motor

E. IP02 Aeq [N/V] Meq [kg] Beq [kg/s]

N o 1 1.0274 1.1570 6.2542

Table 3.2: Identified parameters of the car

In order to validate the identified model, we have obtained the response vc(t) for a step input
of 0.7 [V] and 3 [V] and compared the experimental measurements with the response of (3.14)
with the identified parameters. Figure 3.5 presents these responses. Notice that for an input of
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Figure 3.3: Car response to a step input of 0.7 [V] (left) and 3 [V] (right)

0.7 [V] of amplitude, the response vct is not satisfactory due to the influence of external factors
as the encoder cable and the Coulomb friction. Both phenomena have not been considered in the
modeling process. However, for greater amplitudes, the identified model has presented a response
very similar to that provided by the real system, indicating that the influence of these nonlinearities
and perturbations is considerably attenuated. This validates the identification process and confirms
that the identified parameters represent with precision the real system.

Pendulum Identification

To identify the parameters Bp and Jp present in equation (3.12) we may lock up the movement
of the car and consider only the oscillation of the pendulum. In this case, ẍc is eliminated of the
equation (3.12), which can be rewritten as

α̈ + 2ξωnα̇ + ω2
nα = 0 (3.19)

where

2ξωn =
Bp

(Mpl2p + Jp)
, ω2

n =
Mplpg

(Mpl2p + Jp)
(3.20)

From the determination of ωn and ξ, it is possible to obtain the desired parameters. The next de-
velopments are based on (GEROMEL; KOROGUI, 2001). In fact, considering that the pendulum
evolves from the rest with the initial condition α(0) = α0, applying the Laplace Transformation in
(3.19) we obtain:

α̂(s) =
α0(s+ 2ξωn)

s2 + 2ξωns+ ω2
n

= α0

(

s+ ξωn

(s+ ξωn)2 + ω2
d

+

(

ξωn

ωd

)

ωd

(s+ ξωn)2 + ω2
d

) (3.21)

in which ωd = ωn

√

1− ξ2 is the angular frequency of the damped oscillation. The inverse Laplace
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transform allows us to find the following time response

α(t) =
α0e

−ξωnt

ωd
(ωd cos(ωdt) + ξωn sin(ωdt))

=
α0e

−ξωnt

sin(φ)
sin(ωdt+ φ)

(3.22)

where
tg(φ) =

ωd

ξωn

=
√

ξ−2 − 1 (3.23)

for 0 < ξ < 1. It is important to note that, from the equation (3.22) , the derivative of α(t) with
respect to time allows us to observe that the points of maximum and minimum of the function
satisfy the equality tg(ωdt + φ) = tg(φ) and, therefore

ωdti = iπ, i = 0, 1, 2 . . . (3.24)

Then, taking into account that ωd(ti+1 − ti) = π, we have that the mean value related to m points
of maximum and minimum obtained from the measurement of the angular displacement provides
the relation

ωd =
(m− 1)π

∑m−1
i=1 (ti+1 − ti)

(3.25)

Applying the same time instants in the equation (3.21), we obtain:

α(ti) = α0e
−ξωnti(−1)i, i = 0, 1, 2, . . . (3.26)

which indicates that the points of maximum and minimum satisfy the relation

|α(ti+1)|
|α(ti)|

= e−ξωn(ti+1−ti) = e−π/tg(φ) (3.27)

Finally, in an equivalent way, after algebraic manipulations, we reach the equality

tg(φ) =
(m− 1)π

∑m−1
i=1 (ln(|α(ti|)− ln(|α(ti+1|))

(3.28)

Note that, after determining ωd from the (3.25), using the equation (3.28) along with (3.23) allows
us to obtain the value of ξ and, consequently, of the natural frequency ωn. With these values we
can determined

Jp =
Mplpg

ω2
n

−Mpl2p, Bp = 2ξωn(Mpl
2
p + Jp) (3.29)

In the physical system, the car is fixed and the pendulum evolves from the initial condition
α0 = −0.6243 [rad]. Using the values of maximum and minimum of α(t), we have determined ξ,
ωn and, consequently, the desired parameters Bp and Jp as shown in Table 3.3.

Identified parameters - Pendulum

E. IP02 ξ ωn [rad/s] Bp [kg.m2.rad/s] Jp [kg.m2]
N o 1 0.0028 4.7201 0.00087 0.0084

Table 3.3: Identified parameters of the pendulum
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Figure (3.4) compares the measured angular displacement with the one obtained from the
model identified. Notice that the identified parameters precisely represented the behavior of the
real system, since the responses of the identified and physical models were very similar. However,
after 80 [s] both graphs have presented a slightly different behavior, since the physical system goes
to the origin more rapid than the identified system. This fact is related to the omission of the
Coulomb friction force in the model, which acts over the pendulum when the speed changes its
direction and whose influence is more important when the velocity becomes smaller.

Figure 3.4: Angular displacement of the pendulum

Validation

The identified parameters are presented in Table 3.4 as well as a comparison with the values
provided by the Quanser company. Figure 3.5 presents the responses to a square wave with
frequency of 1.5 [Hz] and amplitude of 4 [V] applied to Vm(t). It has been considered the real
system, the identified model and the model obtained with parameters provided by Quanser®. It
is remarkable that the identification of the system allowed us to obtain of a more precise model
when compared to the one provided by the company.

Identified variables versus provided by Quanser

E. IP02 N1 Quanser Identified Unit Variation
Aeq 1.0717 1.0274 [N/V] −5%
Beq 5.4 6.2542 [kg/s] 16%
Meq 1.2863 1.1570 [kg] −10%
Bp 0.0024 0.00087 [kg.m2.rad/s] −64%
Jp 0.00788 0.0084 [kg.m2] 7%

Table 3.4: Comparison among the results
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Figure 3.5: Response comparison for a square wave with 1.5 [Hz] and 4 [V]

With the identified parameters, we have obtained the linearized model (3.8) with matrices

A =









0 0 1 0
0 0 0 1
0 1.3931 −5.1494 −0.0016
0 25.4435 −11.6949 −0.0297









, B =









0
0

0.8459
1.9212









(3.30)

which will be used in the next chapter for control design purposes. The next section is dedicated
to obtain the mathematical model of the active suspension.

3.2 Suspension model

Figure 3.6 shows to the left the real active suspension used for the experimental tests and to
the right its schematic diagram that presents the main variables, as well as the reference system
used to describe its dynamics. Table 3.5 presents the description of the suspension parameters
together with their units. Based on this diagram and defining the state vector as being x =
[(zs − zus) żs (zus − zr) ˙zus]

′, the control input as u = Fc and the external input as w = żr, the
suspension is described by the following state space realization:

ẋ(t) = Ax(t) +Bu(t) +Hw(t), x(0) = x0 (3.31)

with matrices

A =









0 1 0 −1
−Ks

Ms
− Bs

Ms
0 Bs

Ms

0 0 0 1
Ks

Mus

Bs

Mus
−Kus

Mus
−Bs+Bus

Mus









, B =









0
1
Ms

0
− 1

Mus









, H =









0
0
−1
Bus

Mus









(3.32)
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Ks Fc Bs

Ms
zs

zus

zr

Kus Bus

Mus

Figure 3.6: Active suspension from Quanser and its schematic

Symbol Description Units
Ms and Mus Sprung and unsprung mass kg
Bs andBus Spring stiffness coefficients N.s/m
Ks and Kus Damping coefficients N/m
zr Displacement of the gray plate m
zus Displacement of the red plate m
zs Displacement of the blue plate m
Fc Force provided by the actuator N

Table 3.5: Main parameters associated to the active suspension

Considering the numerical values borrowed from reference (QUANSER, 2012a) as being Ms = 2.45
[kg], Mus = 1 [kg], Ks = 900 [N/m], Kus = 2300 [N/m], Bs = 7.5 [N.s/m] and Bus = 5 [N.s/m],
we obtain that (3.31) is given as follows

A =









0 1 0 −1
−367.35 −3.06 0 3.06

0 0 0 1
900 7.50 −2300 −12.50









, B =









0
0.4082

0
−1









, H =









0
0
−1
5









(3.33)

which will be very useful for the control purpose to be developed in the next chapter.
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3.3 Final Considerations

This chapter has been dedicated to the description of the mechanical systems to be considered in
the next chapter for cooperative control, via communication networks. More specifically, we have
presented the nonlinear and linear models of the inverted pendulum, which is unstable, as well as
the model of the suspension, which is already stable. In order to obtain a more precise pendulum
model we have identified some of its parameters and validated the identified model, while for the
suspension we have used the parameters provided in the manual (QUANSER, 2012a).



Chapter 4

Cooperative Control

This chapter presents the main results of this thesis. It treats cooperative control, through a
communication network with limited bandwidth, of several linear time invariant plants. More
specifically, the main goal is to design a control law that cooperatively shares the resources among
the LTI systems, assuring global asymptotic stability and an H2 guaranteed performance index. A
coordinator, represented mathematically by a switching rule, must select at each interval of time
the LTI system to receive the updated control signal, while the others maintain the previously
received one. This problem has already been treated in (SOUSA; GEROMEL; DEAECTO, 2015)
and (LUZ NETTO, 2018) but through conditions based on Lyapunov-Metzler inequalities, which
are nonconvex and very difficult to solve for an arbitrary number of plants. The main contribution
of this thesis is to obtain alternative conditions described in terms of linear matrix inequalities,
which are simple to solve by readily available tools. We have compared our methodology with
the existent one by means of an academical example. Moreover, we have validated the proposed
technique by making the cooperative control of the two mechanical plants, whose models and
discussions have been presented in the previous chapter.

4.1 Problem Statement

First, let us consider a Networked Control System (NCS) composed by N LTI plants that must be
simultaneously controlled in a cooperative perspective. These plants have the following state-space
realization in the continuous-time domain

ẋi(t) = Aixi(t) +Biui(t) +Hiwi(t), xi(0) = 0

zi(t) = Cixi(t) +Diui(t)
(4.1)

where for all t ≥ 0 and all i ∈ K, xi(·) ∈ Rnx, ui(·) ∈ Rnu , wi(·) ∈ Rnw and zi(·) ∈ Rnz are
the state, the control input, the exogenous input and the controlled output, respectively. Let us
assume that the external input is of impulsive type wi = eqδ(t), in which eq is the q-th column
of the nw order identity matrix. Moreover, the control law ui(t) must satisfy the following design
requirements

• Channel bandwidth limitation is implemented by adopting the sampled-data control
strategy

ui(t) = ui(tn) = ui[n], t ∈ [tn, tn+1) (4.2)

for i ∈ K and where tn∈N are successive sampling instants such that t0 = 0, tn+1 − tn =
h > 0 , and lim

n→∞
tn = ∞. The sampling frequency 1/h characterizes the bandwidth of the

transmission channel.

33
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• Cooperative resource sharing indicates that at any sampling time tn ≥ 0 the transmission
channel is used to control only the plant defined by the index σ[n] ∈ K through the adoption
of a state feedback control law of the form

ui[n] =

{

Kiui[n− 1] + Lixi[n] , i = σ[n]
ui[n− 1] , i 6= σ[n]

(4.3)

where (Ki, Li) are matrix gains of compatible dimensions to be determined, ∀i ∈ K. These
variables must be designed in order to improve the closed-loop system performance.

• H2 performance index is defined as being

J2(σ) = inf
Ki,Li,σ∈Ω

N
∑

i=1

nw
∑

q=1

∫ ∞

0

zqi (t)
′zqi (t)dt (4.4)

where Ω is the set of all stabilizing switching functions. The controlled output zqi (t) is the
response of the i-th plant to the impulse response wi = eqδ(t), in which as already mentioned
eq is the q-th column of the nw order identity matrix.

Notice that the control strategy (4.3) keeps the previously received control signal ui[n] = ui[n− 1]
for the plants where i 6= σ[n] ∈ K, since the communication channel is dedicated to the i-th plant.
This plant, by its turn, receives the updated state feedback control law ui[n] = Kiui[k−1]+Lixi[n],
since i = σ[n]. Hence, the switching law is responsible by choosing at each time tn ≥ 0 which plant
must receive the updated control signal.

4.1.1 Switched System Modeling

First, let us notice that due to the impulsive external input wi = eqδ(t), system (4.1) can be
written alternatively as

ẋi(t) = Aixi(t) +Biui(t), xi(0) = Hieq

zi(t) = Cixi(t) +Diui(t)
(4.5)

Now, defining the scalar variable δij ∈ {0, 1} for all (i, j) ∈ K×K as being

δij =

{

1 , i = σ[n]
0 , i 6= σ[n]

(4.6)

we can rewrite the control signal (4.3) as follows

ui[n] = (1− δiσ)ui[n− 1] + δiσ(Kiui[n− 1] + Lixi[n]) (4.7)

which will be widely used afterwards.
The fact that this control signal is constant inside the entire time interval defined by two

successive sampling instants, as presented in (4.2), makes possible to determine an equivalent
discrete-time system with state space realization

xi[n+ 1] = Aihxi[n] +Bihui[n], xi[0] = Hieq

zi[n] = Cihxi[n] +Dihui[n],
(4.8)
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This system is equivalent to (4.5) in the sense that the equality
∫ ∞

0

zi(t)
′zi(t)dt =

∑

k∈N

zi[n]
′zi[n] (4.9)

is preserved, see references (SOUZA et al., 2014) and (CHEN; FRANCIS, 2012) for more details
about this discretization. Defining the augmented matrices

Fi =

[

Ai Bi

0 0

]

, Gi =
[

Ci Di

]

(4.10)

matrices (Aih, Bih) are obtained from the identity

eFih =

[

Aih Bih

0 I

]

(4.11)

whereas the output matrices (Cih, Dih) follows from

∫ h

0

eF
′
i
tGiG

′
ie

Fitdt =

[

C ′
ih

D′
ih

]

[

C ′
ih D′

ih

]′
(4.12)

Defining the augmented state space vector ηi[n] = [xi[n]
′ ui[n − 1]′]′ and connecting the

control input (4.7) to the system (4.8), we obtain the closed-loop system given by

ηi[n+ 1] = (Aiσ + BiσKi)ηi[n], ηi0 = Hieq

zi[n] = (Ciσ +DiσKi)ηi[n]
(4.13)

in which Hi = [H ′
i 0]′, the gain is Ki = [Li Ki] and the augmented matrices are

Aiσ =

[

Aih (1− δiσ)Bih

0 (1− δiσ)I

]

,Biσ =

[

δiσBih

δiσI

]

, Ciσ =
[

Cih (1− δiσ)Dih

]

,Diσ =
[

δiσDih

]

(4.14)

which depends in two matrices gains (Li, Ki) for all i ∈ K. In order to present the system in a
clearer way we can express the closed-loop system for i = σ[n] as follows

ηi[n + 1] =

[

Aih +BihLi BihKi

Li Ki

]

ηi[n], ηi0 = Hieq

zi[n] =
[

Cih +DihLi DihKi

]

ηi[n]

(4.15)

and for i 6= σ[n] as follows

ηi[n+ 1] =

[

Aih Bih

0 I

]

ηi[n], ηi0 = Hieq

zi[n] =
[

Cih Dih

]

ηi[n]

(4.16)

Notice that whenever the pair (Aih, Bih) is stabilizable there always exist state feedback gains
(Ki, Li) such that the closed-loop matrix of (4.15) is stable, which is clear by making Ki = 0.
However, all other plants i 6= σ[n] will be unstable, since from equation (4.16) their models presents
at least nu unitary common eigenvalues. Hence, we can conclude that the switching rule is essential
to control the overall networked control systems mainly because the H2 criterion (4.4) depends on
the controlled output of all plants and, consequently, the control must be able to stabilize all of
them by taking into account the channel transmission constraints under consideration.
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4.1.2 Switching Control Design

In this section, we aim to design a switching control for resource allocation for the switched linear
system (4.13) supposing, at this first moment, that the gain Ki is given. Hence, the system under
consideration can be rewritten as

ηi[n + 1] = Ãiσηi[n], ηi[0] = Hieq (4.17)

zi[n] = C̃iσηi[n] (4.18)

with Ãij = Aij+BijKi and C̃ij = Cij+DijKi. Let us consider the quadratic time-varying Lyapunov
function candidate

V (ηi[n], n) =

N
∑

i=1

ηi[n]
′Pi[n]ηi[n] (4.19)

where N represents the number of plants and P[n] = P[k(n)] is a periodic positive definite matrix.
As in Chapter 2 this matrix presents period equal to κ and satisfies the boundary conditions P[0] =
P[κ]. The next theorem presents the conditions for the control design of a globally asymptotically
state-dependent switching function for the system (4.17)-(4.18).

Theorem 4.1 For a given positive scalar 1 ≤ κ ∈ N, assume that there exist vectors λ[n] ∈ Λ and
matrices P[n] > 0 satisfying the inequalities

N
∑

j=1

λj[n]
(

Ã′
ijPi[n+ 1]Ãij − Pi[n] + C̃′

ij C̃ij
)

< 0 (4.20)

for all i ∈ K and n = 0, · · · , κ − 1, respecting the boundary condition P[0] = P[κ]. Then, the
state-dependent switching function

σ(η) = argmin
j∈K

N
∑

i=1

ηi[n]
′(Ã′

ijPi[k(n) + 1]Ãij + C̃′
ij C̃ij)ηi[n] (4.21)

assures the global asymptotic stability of the system (4.17)-(4.18) and satisfies the guaranteed cost
∑

i∈K

‖zi‖22 <
∑

i∈K

ηi[0]
′Pi[0]ηi[0] (4.22)

Proof: Defining ∆V (η, n) = V (η, n+1)−V (η, n), we have that in the time interval 0 ≤ n ≤ κ−1,
the inequality (4.20) together with the switching function (4.21), yield

∆V (η, n) =

N
∑

i=1

ηi[n]
′
(

Ã′
iσPi[n+ 1]Ãiσ −Pi[n] + C̃′

iσC̃iσ
)

ηi[n]−
N
∑

i=1

zi[n]
′zi[n]

= min
j∈K

N
∑

i=1

ηi[n]
′
(

Ã′
ijPi[n+ 1]Ãij − Pi[n] + C̃′

ij C̃ij
)

ηi[n]−
N
∑

i=1

zi[n]
′zi[n]

= min
λ[n]∈Λ

N
∑

i=1

ηi[n]
′

(

N
∑

j=1

λj [n]
(

Ã′
ijPi[n+ 1]Ãij −Pi[n] + C̃′

ij C̃ij
)

)

ηi[n]−
N
∑

i=1

zi[n]
′zi[n]

≤
N
∑

i=1

ηi[n]
′

(

N
∑

j=1

λj [n]
(

Ã′
ijPi[n+ 1]Ãij − Pi[n] + C̃′

ij C̃ij
)

)

ηi[n]−
N
∑

i=1

zi[n]
′zi[n]

< −
N
∑

i=1

zi[n]
′zi[n] (4.23)



CHAPTER 4. COOPERATIVE CONTROL 37

where the second equality is due to the switching function and the third one comes from a known
property of the minimum operator. The first inequality is also a consequence of the minimum
operator and last one is due to the validity of the inequality (4.20). Notice that ∆V (η, n) <
−
∑N

i=1 zi[n]
′zi[n] < 0 indicating that the switching function is globally asymptotically stable.

Now, summing recursively both sides of this inequality from n = 0 to n → ∞, we obtain

V (η[∞],∞)− V (η[0], 0) < −
N
∑

i=1

∞
∑

n=0

zi[n]
′zi[n] (4.24)

which leads us to the guaranteed cost (4.22) since V (η[∞],∞) = 0 due to the asymptotic stability
of the system. The proof is concluded. ✷

Notice that the condition of Theorem 4.1 is nonconvex due to the product of variables (λ[n],P[n])
and, therefore, is extremely difficult to solve. Fortunately, a simplification can be adopted without
loss of generally searching λ[n] only on the vertices of the simplex λ ∈ Λv ⊂ Λ. This simplification
is possible thanks to the switching function (4.21), and allows us to solve the conditions of Theorem
4.1 as the solution of a set of convex subproblems as it will be clear afterwards. At this point, it
is important to recall the definitions of the sets C(κ), Cℓ(κ) provided just after Theorem 2.3. The
next corollary presents this new description together with the H2 guaranteed cost.

Corollary 4.1 For a given positive scalar 1 ≤ κ ∈ N, assume that there exist matrices P[n] > 0
solution of the following optimization problem

J2(σ) < min
1≤ℓ≤Nκ

inf
P[n]>0

N
∑

i=1

Tr(H′
iPi[0]Hi) (4.25)

subject to
Ã′

ij[n]Pi[n + 1]Ãij[n] −Pi[n] + C̃′
ij[n]C̃ij[n] < 0 (4.26)

for all i ∈ K, n = 0, · · · , κ− 1, j[n] ∈ Cℓ(κ) with the boundary conditions P[0] = P[κ]. Then, the
state-dependent switching function (4.21) assures global asymptotic stability of the system (4.17)-
(4.18) and satisfies the H2 guaranteed cost (4.25).

Proof: The conditions (4.26) can be obtained directly from (4.20) following the same arguments
provided in the proof of Corollary 2.1 of Chapter 2. To obtain the guaranteed cost (4.25), let
us remember the definition of the H2 performance index (4.4) and that, from (4.17), we have
ηi[0] = Hieq, which allow us to write

J2(σ) = inf
Ki,Li,σ∈Ω

N
∑

i=1

nw
∑

q=1

‖zqi ‖22

< inf
Ki,Li,σ∈Ω

N
∑

i=1

nw
∑

q=1

e′qH′
iP[0]Hieq

= inf
Ki,Li,σ∈Ω

N
∑

i=1

Tr(H′
iP[0]Hi)

(4.27)

which leads us to the guaranteed cost (4.25), concluding thus the proof. ✷
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4.1.3 Joint Design

In this subsection, let us consider that the gains Ki, ∀i ∈ K are not given. Our main goal is to
jointly design the state feedback gains (Li, Ki) and the matrices Pi[n] > 0 that will be important
for the implementation of the switching function (4.21). The co-design conditions are presented in
the next theorem and represent the main contribution of this thesis.

Theorem 4.2 For a given positive scalar 1 ≤ κ ∈ N, assume that there exist symmetric matrices
Xi[n], Wi and generic matrices Yi, Gi solution of the following optimization problem

J2(σ) < min
1≤ℓ≤Nκ

inf
Xi[·],Yi,Gi,Wi

∑

i∈K

Tr(Wi) (4.28)

subject to




G ′
i + Gi − Xi[n] • •

Aij[n]Gi + Bij[n]Yi Xi[n+ 1] •
Cij[n]Gi +Dij[n]Yi 0 I



 > 0, j[n] = i (4.29)





Xi[n] • •
Aij[n]Xi[n] Xi[n+ 1] •
Cij[n]Xi[n] 0 I



 > 0, j[n] 6= i (4.30)

[

Wi •
Hi Xi[0]

]

> 0 (4.31)

for all i ∈ K, n = 0, · · · , κ− 1, and j[n] ∈ Cℓ(κ) and the boundary conditions Xi[0] = Xi[κ], then
the switching function (4.21) with Pi[·] = Xi[·]−1 and the control law (4.4) with Ki = YiG−1

i assure
(4.17)-(4.18) and satisfies the H2 guaranteed cost (4.28).

Proof: We need to demonstrate that the conditions (4.29)-(4.31) satisfy the inequalities (4.26) for
the close-loop system (4.13). Performing suitably the Schur Complement, we can rewrite (4.26) as





Pi[n] • •
Ãij[n] Pi[n+ 1]−1 •
C̃ij[n] 0 I



 > 0 (4.32)

Notice that, from (4.16) for i 6= j[n] we have that Ãij[n] = Aij[n] and C̃ij[n] = Cij[n] and, therefore,
multiplying both sides of (4.33) for diag{P[n]−1, I, I} we obtain directly (4.30). Now, considering
the case in which i = j[n] and multiplying to the right of (4.33) by diag{Gi, I, I} and to the left
by its transpose, we obtain





G ′
iPi[n]Gi • •

(Aij + BijKi)Gi Pi[n+ 1]−1 •
(Cij +DijKi)Gi 0 I



 > 0 (4.33)

Using the well known lower bound proposed in (OLIVEIRA; BERNUSSOU; GEROMEL, 1999)

G ′
iXi[n]

−1Gi ≥ Gi + G ′
i −Xi[n] (4.34)

and take into account that Ki = YiG−1
i we obtain (4.29). The last inequality (4.31) comes directly

from the upper bound H′
iPi[0]Hi < Wi. The proof is concluded. ✷
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Notice that this theorem is expressed in terms of LMIs and, therefore, can be solved without any
difficulty. The same remark can not be drawn on the cooperative control technique proposed in
(SOUSA; GEROMEL; DEAECTO, 2015) since it is based on Lyapunov-Metzler inequalities that
are nonconvex and therefore very difficult to solve.

Academical Example: In order to compare our methodology with respect to the one
proposed in (SOUSA; GEROMEL; DEAECTO, 2015), we have solved the conditions of Theorem
4.2 for the same practical application example presented in (SOUSA; GEROMEL; DEAECTO,
2015). It consists on the control of two decoupled inverted pendulums with masses m1 = 2
[kg], m2 = 4 [kg] and equal lengths ℓ1 = ℓ2 = 1 [m], mounted on two cars with equal masses
M1 = M2 = 10 [kg] that are subject to horizontal forces with intensities fi, i ∈ {1, 2}. It is
adopted g = 9.8 [m/s2]. The model is given by

(Mi +mi)r̈i −miℓiθ̈i = fi

r̈i − ℓiθ̈i + gθi = 0 (4.35)

The input variables are ui = fi and the controlled output variable is zi = [ri θi diui]
′.The force

intensity has the weights d1 = d2 = 0.5. Matrices H1 = [0 0 π/3 0]′ and H2 = [0 0 − π/4 0]′

define the initial condition of each pendulum in radians with respect to the vertical. The sampling
period is h = 200 [ms]. Solving the conditions of Theorem 4.2 for κ = 4, we have obtained an H2

guaranteed cost of J2(σ) < 1.5212 × 104, correspondent to C6(4) = [1 2 1 2] and the following
state feedback gains

L1 =
[

0.4517 1.9632 −159.5755 −46.8147
]

L2 =
[

0.4083 1.8744 −179.4035 −48.9317
]

with K1 ≈ K2 ≈ 0. For this particular example, we have obtained almost same guaranteed perfor-
mance of reference (SOUSA; GEROMEL; DEAECTO, 2015) indicating that our methodology is
easier to solve but not more conservative than the one based on Lyapunov-Metzler inequalities.

The next section validates experimentally the theory by means the cooperative control of an
inverted pendulum and an active suspension.

4.2 Experimental Results

In this section, the H2 cooperative control strategy proposed in Theorem 4.2 is implemented for con-
trolling jointly the inverted pendulum (QUANSER, 2012b) and the active suspension (QUANSER,
2012a), whose models have been presented in the previous chapter. The design must be carried out
cooperatively sharing the same communication channel, that is, while one of the plants receives
the updated control signal, the other keeps the signal previously received.

Figure 4.1 presents a photo of the experimental arrangement in the laboratory. It can be
seen the active suspension to the left, the data acquisition board with the actuator in the middle
and the pendulum to the right. The inverted pendulum presented in Chapter 4 presents the state
space vector x1 = [xc θ ẋc θ̇]

′ and the control input u1 = Vm1 and its mathematical model is given
in (3.8) with matrices presented in (3.30). The state space representation of the active suspension
is given in (3.31) with matrices provided in (3.33). Its mathematical model has been defined for
the state vector x2 = [(zs − zus) żs (zus − zr) ˙zus]

′ and the control effort u2 = Fc2. The simulation
and numerical routines have been performed on a computer with Windows 10 Pro using MATLAB
R2018b 64-bit software with the help of the LMILab toolbox and Simulink. The numerical routine
of Theorem 4.2 is available in the appendix of this thesis.
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Figure 4.1: Real system mounted on the laboratory

4.2.1 H2 Control

For the H2 cooperative control, the system (4.1) is defined with the matrices already provided in
Chapter 4 where the pendulum is identified as the first plant with H1 = x0 = [0 − π/18 0 0]′

and the active suspension as the second plant. Let us consider that both plants evolve from the
rest and that they have been discretized with a sampling period of h = 10 [ms]. We have solved
the conditions of Theorem 4.2 for several values of κ ∈ {2, 3, 4, 5, 6, 7} obtaining the guaranteed
costs provided in the Table 4.1 as well the optimal combination Cℓ(κ)

∗.

Tests for different κ

κ Guaranteed cost Optimal Cℓ(κ)
∗

2 4.1164 [1 2]
3 4.1212 [1 2 2]
4 4.1164 [1 2 1 2]
5 4.1196 [1 2 1 2 2]
6 4.1164 [1 2 2 1 2 2]
7 4.1189 [1 2 1 2 1 2 2]

Table 4.1: Determination of the best κ for the experimental test

Hence, for κ = 4 we have obtained the state-feedback gains

L1 =
[

38.8004 −108.1505 34.2317 −22.5134
]

L2 =
[

230.5545 −81.6769 88.3745 −0.0034
]

with K1 = K2 ≈ 0 as well as the Lyapunov matrices

P10 =













58.6598 −45.5979 19.7390 −9.6379 −6.2328e−9

−45.5979 59.9692 −22.9206 12.5981 1.0183e−7

19.739 −22.9206 9.1359 −4.8260 −1.3390e−8

−9.6379 12.5981 −4.8260 2.6470 1.2648e−9

−6.2328e−9 1.0183e−7 −1.3390e−8 1.2648e−9 2.3954−9
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P11 =













58.9528 −49.0841 20.8516 −10.3640 −0.0301

−49.0841 69.3661 −25.9196 14.5554 0.0812

20.8516 −25.9196 10.0930 −5.4506 −0.0259

−10.3640 14.5554 −5.4506 3.0547 0.0169

−0.0301 0.0812 −0.0259 0.0169 0.0007













P12 =













58.6598 −45.5980 19.7390 −9.6379 −3.2601e−9

−45.5979 59.9693 −22.9207 12.5982 8.6059e−7

19.7390 −22.9206 9.1359 −4.8260 −2.7069e−8

−9.6379 12.5982 −4.8260 2.6470 11.7090e−9

−3.2601e−9 8.6059e−7 −2.7069e−7 1.7090e−7 7.1063e−9













P13 =













59.9528 −49.0841 20.8515 −10.3640 −0.0301

−49.5980 69.3659 −25.9195 14.5553 0.0812

20.8515 −25.9195 10.0929 −5.4506 −0.0259

−10.3640 14.5553 −5.4506 3.0547 0.0169

−0.0301 0.0812 −0.0259 0.0169 0.0007













for the first subsystem, and

P20 =













1.7760 −0.0015 1.8741 −0.0005 −2.7905e−5

−0.0015 0.0088 0.0058 0.0009 2.3785e−5

1.8741 0.0058 2.2967 0.0003 5.0450e−6

−0.005 0.0009 0.0003 0.0002 1.8201e−6

−2.7905e−5 2.3785e−5 5.0450e−6 1.8201e−6 2.4236e−7













P21 =













1.7760 −0.0020 1.8776 −0.0002 1.3304e−6

−0.0020 0.0066 0.0058 0.0007 4.82615e−7

1.8776 0.0058 2.2986 0.0002 6.7122e−7

−0.0002 0.0007 0.0002 0.0002 1.8201e−6

1.3304e−6 4.82615e−7 6.7122e−7 1.8201e−6 2.6736e−7













P22 =













1.7760 −0.0020 1.8776 −0.0002 2.5429e−5

−0.0012 0.0066 0.0058 0.0007 3.9168e−5

1.8743 0.0058 2.2986 0.0002 1.7453e−5

−0.0004 0.0007 0.0002 0.0002 2.8100e−6

2.5429e−5 3.9168e−5 1.7453e−5 2.8100e−6 3.7517e−7













P23 =













1.7760 −0.0025 1.8789 −0.0002 4.1465e−6

−0.0025 0.0068 0.0062 0.0007 1.2699e−6

1.8789 0.0062 2.2994 0.0002 2.4122e−6

−0.0002 0.0007 0.0002 0.0002 5.2975e−8

4.1465e−6 1.2699e−6 2.4122e−6 5.2975e−8 6.4567e−7













for the second subsystem. which are essential for switching function implementation.
This control strategy has been implemented in the laboratory for the pendulum evolving

from x0 = H1 and the suspension perturbed by the external input w(t) = żr(t) where zr is the
road profile represented by a square wave signal with amplitude 0.02 [m] and period of 4 [s] with
50% of pulse width. This signal has been differentiated by means of a filter with transfer function
2.5e5s/(s2 + 1e3s + 2.5e5) in order to obtain the disturbance w = żr. We have repeated the
experimental tests 25 times. Figure 4.2 presents the state trajectories of the pendulum at the top
and the active suspension at the bottom. In this figure, the shaded area represents one standard
deviation of the mean, the dashed line corresponds to one of the measures among the 25 available
ones and the continuous line the correspondent numerical simulation.

Figure 4.3 presents the control effort ui[n] and the switching rule (coordinator σ[n]) related
to the same experimental test previously chosen, for i = 1, 2. Notice in the zoom made in the
graph the cooperative nature of the control efforts, that is, when u1[n] is updated u2[n] remains
constant and vice-versa.
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Figure 4.2: State trajectories of the pendulum at the top and the suspension at the bottom

Figure 4.3: Cooperative control law and the correspondent switching function
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Analysing and comparing the responses, we can conclude that the cooperative control tech-
nique is very efficient in stabilizing both plants. Moreover, the measures were very near the
simulated data. Notice that the difference observed in the displacement of the chassis zs is due to
the Coulomb friction which has not been considered in the model. It is important to emphasize
the robustness of the control strategy despite several phenomena and uncertainties that have been
ignored during system modeling.

4.3 Final Considerations

In this chapter, we have presented the main results of this thesis. More specifically, an H2 cooper-
ative control technique has been elaborated based on a time-varying periodic Lyapunov function,
which is easier, but not more conservative, than other control techniques available in the literature.
These conditions have been experimentally validated in the cooperative control of the inverted pen-
dulum and the active suspension presented in the previous chapter.The obtained measures made
clear the validity of the theory and the efficiency of the control methodology.



Chapter 5

Conclusion

In this thesis, we have proposed a novel cooperative control technique for LTI systems that share
the same communication network with limited bandwidth. More specifically, the control law must
respect the bandwidth limitation of the communication channel as well as operate in a cooperative
way, sharing the resources adequately among the available plants. A coordinator, represented
by the switching function, is responsible for selecting at each sampling instant which plant must
receive the updated control signal, while the others keep the previous information. The switching
rule has an essential role in the cooperative system to assure global asymptotic stability for all
the plants as well as a good H2 guaranteed performance. This problem has already been treated
in the literature, but by means of non-convex conditions expressed in terms of Lyapunov-Metzler
inequalities, which are very difficult to solve, (SOUSA; GEROMEL; DEAECTO, 2015). Our main
contribution in this sense is to provide alternative conditions expressed by LMIs and that can be
solved without difficulty. These conditions are based on a time-varying periodic Lyapunov function
and represents a generalization of the results from (DAIHA et al., 2017) that treats analysis and
control design of switched linear systems, exclusively, without considering networked control nor
cooperative control. The proposed control methodology bas been applied in an inverted pendulum
and an active suspension, both from Quanser® company. Our experimental results have clearly
shown the efficiency and the accuracy of the proposed technique.
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Appendix

Codes

5.0.1 Theorem 2.2

1 function [Pio,Jop,Po] = Example_LyapunoMetzler(A,C,Periodo,ci,Precision)

2 % El sistema descrito por A, C debe ser en tiempo continuo.

3

4

5 %Normal matrixes

6 Ac{1}=A{1};

7 Ac{2}=A{2};

8 T=Periodo;

9 N = size(Ac,2);

10 nx=size(Ac{1},1);

11 %Discretisacion

12 for k=1:N

13 Ad{k}=expm(Ac{k}*T); %expm is matrix exponential..

14 %exp just applies exp function to

15 %every matrix entry

16 end

17 Cd{1}=C{1};

18 Cd{2}=C{2};

19 x0=ci; %vector columna

20 nz = size(Cd{1},1);

21 %Inicializamos este valor

22 Jop = inf;

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%

24 %%%%%%%%%%%%%%%%%%%%%%%%Problema%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26 ps = 0:Precision:1;

27 qs = 0:Precision:1;

28 for i=1:length(ps)

29 for j=1:length(qs)

30 % Resetea las LMI internas

31 Pim=[ps(i) 1-qs(j) ;1-ps(i) qs(j)];

32 [Ps,Js] = lyapunov_metzler(Ad,Cd,Pim,x0);

33 if isempty(Ps)

34 cost(i,j) = NaN;

35 else

36 cost(i,j)= Js;

37 if Js<Jop

38 Po = Ps;

39 Jop = Js;

45
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40 Pio = Pim;

41 end

42 end

43 end

44 end

45 %mesh(qs,ps,cost)clc

46 %axis([200,400,200,400,300,1000])

47

48 function [Ps,Js] = lyapunov_metzler(Ad,Cd,Pim,x0)

49 nx = size(Ad{1},1);

50 N = size(Ad,2);

51

52 setlmis([]);

53 %Declaracion de variables

54 %===============

55 for i=1:N

56 P{i} = lmivar(1,[nx 1]);

57 end

58 W = lmivar(1,[nx 1]);

59 %===============

60 %Primer y segundo LMI

61 for i=1:N

62 ct = newlmi;

63 lmiterm([-ct,1,1,P{i}],1,1);

64 for j=1:N

65 lmiterm([-ct,2,1,P{j}],Pim(j,i),Ad{i});

66 lmiterm([-ct,2,2,P{j}],Pim(j,i),1);

67 end

68 lmiterm([-ct,3,1,0],Cd{i});

69 lmiterm([-ct,3,3,0],1);

70 end

71

72 %Tercer y cuarta LMI

73 for i=1:N

74 ct = newlmi;

75 lmiterm([-ct,1,1,P{i}],1,1);

76 end

77 ct = newlmi;

78 for i = 1:N

79 lmiterm([ct,1,1,P{i}],1,1);

80 end

81 lmiterm([ct,1,1,W],-1,1);

82

83 lmisys = getlmis;

84 options = [1e-4,2000,1e9,1000,0];

85 np = decnbr(lmisys);

86 c = zeros(np,1);

87

88 for h=1:np

89 % defcx returns the values V1,...,Vk of these variables when the

90 % n-th decision variable is set to one and all others to zero.

91 [Wh] = defcx(lmisys,h,W);

92 %Definiendo la funcion objetivo de acuerdo a cada uno de las ...

variables de

93 %decision ( de P )

94 c(h) = x0'*Wh*x0;

95 end
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96

97 %Minimize linear objective under LMI constraints

98 [copt,xopt] = mincx(lmisys,c,options);

99 if (isempty(copt))

100 Ps = [];

101 Js = [];

102 else

103 %Devuelve el valor de P en base a xopt

104 for i=1:N

105 Ps{i} = dec2mat(lmisys,xopt,P{i});

106 end

107 Js = copt; % Norma ao quadrado

108 end

109

110 end

111 end

5.0.2 2.4.3 Example

1 function [Po,Jop,otimacom] = Example_tvLyapunov(A,C,ci,kappa,Period)

2 %El sistema A, C debe ser presentado en tiempo continuo.

3

4 T=Period;

5 N = size(A,2);

6 nx=size(A{1},1);

7 %Discretisacion

8 for k=1:N

9 Ad{k}=expm(A{k}*T); %expm is matrix exponential..

10 %exp just applies exp function to

11 %every matrix entry

12 end

13 Cd{1}=C{1};

14 Cd{2}=C{2};

15 x0=ci;

16 nz = size(Cd{1},1);

17 %Inicializamos este valor

18 Jop = inf;

19 %Numero de elemetos a permutar

20 Item = N;

21 desired=kappa;

22 Kappa_T=zeros(desired-1,1);

23 Js_T=zeros(desired-1,Item^desired);

24 J_LMI=zeros(desired-1,1);

25 J_argmin=zeros(desired-1,1);

26 for Kap=2:desired

27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%LMI%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

31 %L matriz que tiene las permutaciones

32 L = permutations(Item,Kap);

33 for i=1:Item^Kap

34 % Resetea las LMI internas

35 [Ps,Js] = lmi_condition(Ad,Cd,x0,L(i,:));
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36 if isempty(Ps)

37 cost(i) = NaN;

38 else

39 cost(i)= Js;

40 Js_T(Kap-1,i)=Js;

41 if Js<Jop

42 Po = Ps;

43 Po_T{Kap-1,:}=Po;

44 Jop = Js;

45 J_LMI(Kap-1,1)=Jop;

46 otimacom = L(i,:);

47 Otimacom_T{Kap-1,:}=otimacom;

48 end

49 end

50 end

51 %Restart the Jop;

52 Jop = inf;

53 Kappa_T=[2:desired]';

54 end

55

56 %mesh(qs,ps,cost)

57 %axis([200,400,200,400,300,1000])

58

59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

60 %%%%%%%%%%%%%%%%%%%%%%%%%ONLINE_SWITCHING%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62

63 nmax=fix(10/T);

64 x0=[-1 1 1]';

65 sig=zeros(1,nmax-1);

66 x=zeros(nx,nmax);

67 z=zeros(nz,nmax-1);

68 x(:,1)=x0;

69

70 %%

71 for Kap=2:desired

72 Po=Po_T{Kap-1,:};

73 for n=2:nmax

74 for i=1:N

75 v(i)=x(:,n-1)'*(Ad{i}'*Po{mod(n-1,Kap)+1}*Ad{i}+ Cd{i}'*Cd{i})*x(:,n-1);

76 end

77 [vmin,idx] = min(v);

78 x(:,n)=Ad{idx}*x(:,n-1 );

79

80 sig(n-1)=idx;

81 z(:,n-1) = Cd{idx}*x(:,n-1);

82 end

83 actual_cost = trace(z'*z);

84 J_argmin(Kap-1,1)=actual_cost;

85 end

86

87 % Para graficar

88

89 subplot(2,1,1)

90 axis=subplot(2,1,1)

91 stairs(0:nmax-1,x(1,:),'LineWidth',2,'Marker','o','MarkerFaceColor','c')

92 hold on
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93 stairs(0:nmax-1,x(2,:),'LineWidth',2,'Marker','o','MarkerFaceColor','r')

94 hold on

95 stairs(0:nmax-1,x(3,:),'LineWidth',1.5,'Marker','o','MarkerFaceColor','g')

96 set(gca,'FontSize',20)

97 legend({'$x_{1}$','$x_{2}$','$x_{3}$'},'FontSize',14,'Interpreter','latex')

98 ylabel('$x(n)$','FontSize',20,'Interpreter','latex')

99 set(axis,'FontWeight','bold','TickLabelInterpreter','latex');

100 %axis([0 100 -2.5 1.2])

101

102

103

104 subplot(2,1,2)

105 axis=subplot(2,1,2)

106 stairs(0:nmax-2,sig,'LineWidth',1,'MarkerFaceColor','b')

107 hold on

108 plot(0:nmax-2,sig,'or','LineWidth',2)

109 set(gca,'FontSize',18)

110 ylabel('$\sigma(n)$','FontSize',20,'Interpreter','latex')

111 xlabel('$n$','FontSize',20,'Interpreter','latex')

112 set(axis,'FontWeight','bold','TickLabelInterpreter','latex');

113 ylim([0.8 2.2])

114 %axis([0 100 0.8 2.2])

115

116 %%

117

118 %Conmutacion

119 %Tiempo de simulacion

120 Time=10

121 %Puntos de la simulacion

122 nmax=ceil(Time/T);

123

124 sig=zeros(1,nmax-1);

125 x=zeros(nx,nmax);

126 z=zeros(nz,nmax-1);

127

128 %Inicializando

129 x(:,1)=x0;

130

131 %%%%%%%%%%%%%

132 %Permutation%

133 %%%%%%%%%%%%%

134 for Kap=2:desired

135 L=Otimacom_T{Kap-1,:};

136 %

137 nl = size(L,2);

138 %Contains all the subindexes

139 Permut=[];

140 for n=1:ceil(nmax/nl)

141 Permut=[Permut,L];

142 end

143

144 for n=2:nmax

145 idx=Permut(1,n-1);

146 x(:,n)=Ad{idx}*x(:,n-1);

147 z(:,n-1)= Cd{idx}*x(:,n-1);

148 end

149 actual_cost_periodic = trace(z'*z)
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150 J_periodic(Kap-1,1)=actual_cost_periodic;

151 end

152

153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

154 %TABLE=table(Kappa_T,Js_T,J_LMI,Otimacom_T,J_argmin,J_periodic);%

155 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

156

157 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

158 TABLE=table(Kappa_T,J_LMI,J_periodic,J_argmin);%

159 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

160

161

162 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

163 DEFINICION DE FUNCIONES%%%%%%%%%%%%%%%%%%%%%%%%%%%%

164 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

165

166 function [Ps0,Js] = lmi_condition(Ad,Cd,x0,L)

167 %Cuantas incognitas wtiene nuestra variable

168 nx = size(Ad{1},1);

169 %Cuantas LMI vamos ter

170 N = size(Ad,2);

171

172 setlmis([]);

173 Kap = length(L);

174 for i=1:Kap

175 P{i} = lmivar(1,[nx 1]);

176 end

177

178 P{Kap+1} = P{1};

179

180 for i=1:Kap

181 ct = newlmi;

182 lmiterm([ct,1,1,P{i+1}],Ad{L(1,i)}',Ad{L(1,i)});

183 lmiterm([ct,1,1,0],Cd{L(1,i)}'*Cd{L(1,i)});

184 lmiterm([ct,1,1,P{i}],-1,1);

185 end

186

187 %Third LMI

188

189 for i=1:Kap

190 ct = newlmi;

191 lmiterm([-ct,1,1,P{i}],1,1);

192 end

193

194 lmisys = getlmis;

195 options = [1e-6,2000,1e9,10000,1];

196 np = decnbr(lmisys);

197 c = zeros(np,1);

198

199 for h=1:np

200 % defcx returns the values V1,...,Vk of these variables when the

201 % n-th decision variable is set to one and all others to zero.

202 [Psopt] = defcx(lmisys,h,P{Kap+1});

203 %Defining la funcion objetivo de acuerdo a cada uno de las variables de

204 %decision ( de P )

205 c(h) = x0'*Psopt*x0;

206 end



CHAPTER 5. CONCLUSION 51

207

208 %Minimize linear objective under LMI constraints

209 [copt,xopt] = mincx(lmisys,c,options);

210 if (isempty(copt))

211 Ps0 = [];

212 Js = [];

213 else

214 %Devuelve el valor de P en base a xopt

215 for n=1:Kap

216 Ps0{n}= dec2mat(lmisys,xopt,P{n});

217 end

218 Ps0{n+1} = Ps0{1};

219 Js = copt; % Norma ao quadrado

220 end

221

222 end

223

224

225 %Crea todas las permutaciones

226 function[L] = permutations(N,Kappa)

227 %Lista de los sistemas a permutar

228 %Num={1,2,3,...N}

229 Num=1:N;

230 %Matriz con todas las permutaciones

231 L = zeros(N^Kappa,1);

232 %Posicion en la lista

233 c = 1;

234 for a=1:Kappa

235 for b=1:N^Kappa

236 conj=(N^Kappa)/(N^a);

237 if (c-1) == N

238 c=1;

239 end

240 if (mod(b,conj)) 6= 0

241 L(b,a) = Num(c);

242 else

243 L(b,a) = Num(c);

244 c=c+1;

245 end

246 end

247 c=1;

248 end

249 end

250 %Lyapunov

251 %H2

252 %Conditions for exponential stability, given a discrete linear system.

253 end

5.0.3 Proposed Methodology

1 function [Po,Ka,Jopt,otimacom] = ...

ProposedMethodology(An,Bn,Cn,Dn,Hn,Periodo,Kappa)

2 %El sistema An, Bn, Cn, Dn debe ser presentado en tiempo continuo.

3 T=Periodo;
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4

5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

6 %Para el carro y el pendulo%

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 %Variables d estado : [Desp Angle dot(Desp) dot(Angle)]

10

11 A{1}=An{1};

12 B{1}=Bn{1};

13 %Aca tienes que empezar a hacer la ponderacion

14 C{1} = Cn{1};

15 D{1}= Dn{1};

16 H{1}=Hn{1};%Vector columna

17

18 %%%%%%%%%%%%%%%%%%%%

19 %Para la suspension%

20 %%%%%%%%%%%%%%%%%%%%

21 %Set the model parameters of the Active Suspension.

22 %This section sets the A,B,C and D matrices for the Active Suspension model.

23

24 A{2} = An{2};

25 B{2} = Bn{2};

26 C{2} = Cn{2};

27 D{2} = Dn{2};

28 H{2}=Hn{2};

29

30 %Extrayendo numero de subsistemas

31 N = size(A,2);

32 %Discretizing

33 for k=1:N

34 [Ad{k}, Bd{k}, Cd{k}, Dd{k}] = c2discrete(A{k}, B{k}, C{k}, D{k}, T);

35 end

36

37 % Augmented system

38

39 nx = size(Ad{1},1);

40 nu = size(Bd{1},2);

41 nw = size(H{1},2);

42

43

44 for i = 1:N

45 for j=1:N

46 if i==j

47 Aa{i,j}=[Ad{i} 0*Bd{i}; zeros(nu,nx) 0*eye(nu)];

48 Ba{i,j}=[Bd{i};eye(nu)];

49 Ca{i,j}=[Cd{i} 0*Dd{i}];

50 Da{i,j}=[Dd{i}];

51 else

52 Aa{i,j}=[Ad{i} Bd{i}; zeros(nu,nx) eye(nu)];

53 Ba{i,j}=[0*Bd{i};0*eye(nu)];

54 Ca{i,j}=[Cd{i} Dd{i}];

55 Da{i,j}=[0*Dd{i}];

56 end

57 end

58 Ha{i} = [H{i};zeros(nu,nw)];

59 end

60
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61 %Inicializamos este valor

62 Jop = inf;

63 %Numero de elemetos a permutar

64 Item = N;

65 %Desidered = Kappa (Horizont)

66 %%%%%%%%%%%%

67 Kap = Kappa;%

68 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%LMI%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

71 L = permutations(Item,Kap);

72 Jopt = inf;

73

74 for i=1:size(L,1)

75 % Resetea las LMI internas

76 [Gs,Ys,Xs,Js] = lmi_condition(Aa,Ba,Ha,Ca,Da,L(i,:));

77 if Js<Jopt

78 %THIS STORES ALL THE VALUES!!! ( AFTER THE SIMULATION YOU CAN

79 %CHEACK THE RESULTS WITH THE MATRIX 'COST'. is going to have

80 %N^desired elements, which correspond to the cost for each combination

81 Jopt = Js;

82 Xo = Xs;

83 Go = Gs;

84 Yo = Ys;

85 otimacom = L(i,:);

86 end

87 end

88

89 Jopt

90 otimacom

91

92 for i=1:N

93 for n=1:Kap

94 Po{i,n}=Xo{i,n}^(-1);

95 end

96 Ka{i}=Yo{i}/Go{i};

97 end

98

99 for j=1:N

100 for i = 1:N

101 Aat{i,j} = Aa{i,j}+Ba{i,j}*Ka{i};

102 Cat{i,j} = Ca{i,j}+Da{i,j}*Ka{i};

103 end

104 end

105

106

107 %%

108 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

109 %%%%%%%%%%%%%%%%%%%%%%%LMI DECLARATION%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

110 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

111 function[Gs,Ys,Xs,Js] = lmi_condition(Aa,Ba,Ha,Ca,Da,idx)

112 %Cuantas incognitas wtiene nuestra variable

113 nx = size(Aa{1},1);

114 nu = size(Ba{1},2);

115 nw = size(Ha{1},2);

116

117 %Cuantas LMI vamos ter
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118 N = size(Aa,2);

119 Kap = length(idx);

120

121 setlmis([]);

122 %%%%%%%%%%%%%%%%%%%%%%%%%

123 %%Variables definition%%%

124 %%%%%%%%%%%%%%%%%%%%%%%%%

125 for i=1:N

126 %We are adding one more (nx +1) because we are going to have ...

augmented matrices

127 %later

128 W{i} = lmivar(1,[nw,1]);

129 G{i} = lmivar(2,[nx,nx]);

130 Y{i} = lmivar(2,[nu,nx]);

131 for n=1:Kap

132 X{i,n} = lmivar(1,[nx 1]);

133 end

134 X{i,Kap+1} = X{i,1};

135 end

136 R = lmivar(1,[nw,1]);

137 %%%%%%%%%%%%%%%

138 %FIRST LMIS%

139 %%%%%%%%%%%%%%%

140 for i = 1:N

141 for n = 1:Kap

142 if idx(n) == i

143 ct = newlmi;

144 lmiterm([-ct,1,1,G{i}],1,1,'s');

145 lmiterm([-ct,1,1,X{i,n}],-1,1);

146 lmiterm([-ct,2,1,G{i}],Aa{i,idx(n)},1);

147 lmiterm([-ct,2,1,Y{i}],Ba{i,idx(n)},1);

148 lmiterm([-ct,2,2,X{i,n+1}],1,1);

149 lmiterm([-ct,3,1,G{i}],Ca{i,idx(n)},1);

150 lmiterm([-ct,3,1,Y{i}],Da{i,idx(n)},1);

151 lmiterm([-ct,3,3,0],1);

152 else

153 ct = newlmi;

154 lmiterm([-ct,1,1,X{i,n}],1,1);

155 lmiterm([-ct,2,1,X{i,n}],Aa{i,idx(n)},1);

156 lmiterm([-ct,2,2,X{i,n+1}],1,1);

157 lmiterm([-ct,3,1,X{i,n}],Ca{i,idx(n)},1);

158 lmiterm([-ct,3,3,0],1);

159 end

160 end

161 ct = newlmi;

162 lmiterm([-ct,1,1,W{i}],1,1);

163 lmiterm([-ct,2,1,0],Ha{i});

164 lmiterm([-ct,2,2,X{i,1}],1,1);

165 end

166 ct = newlmi;

167 for i = 1:N

168 lmiterm([ct,1,1,W{i}],1,1);

169 end

170 lmiterm([ct,1,1,R],-1,1);

171

172 lmisys = getlmis;

173 options = [1e-6,200,1e9,10000,0];
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174

175 np = decnbr(lmisys);

176 c = zeros(np,1);

177

178 for i = 1:np

179 Ri = defcx(lmisys,i,R);

180 c(i) = trace(Ri);

181 end

182

183 [copt,xopt] = mincx(lmisys,c,options);

184 if (isempty(copt))

185 Xs = NaN;

186 Js = NaN;

187 Gs = NaN;

188 Ys = NaN;

189 return

190 else

191 Js = copt;

192 for i = 1:N

193 for n = 1:Kap

194 Xs{i,n}= dec2mat(lmisys,xopt,X{i,n});

195 end

196 Gs{i}= dec2mat(lmisys,xopt,G{i});

197 Ys{i}= dec2mat(lmisys,xopt,Y{i});

198 X{i,n+1} = X{i,1};

199 end

200 end

201 end

202 %Todas las permutaciones se crearon en otro entorno

203 function[L] = permutations(N,Kappa)

204 %Lista de los sistemas a permutar

205 %Num={1,2,3,...N}

206 Num=1:N;

207 %Matriz con todas las permutaciones

208 L = zeros(N^Kappa,1);

209 %Posicion en la lista

210 c = 1;

211 for a=1:Kappa

212 for b=1:N^Kappa

213 conj=(N^Kappa)/(N^a);

214 if (c-1) == N

215 c=1;

216 end

217 if (mod(b,conj)) 6= 0

218 L(b,a) = Num(c);

219 else

220 L(b,a) = Num(c);

221 c=c+1;

222 end

223 end

224 c=1;

225 end

226 end

227 function [Ad, Bd, Cd, Dd] = c2discrete(A, B, C, D, T)

228 %Discrete-time model

229 eps = 1e-8;

230 n = size(A,1);
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231 m = size(B,2);

232 p = size(C,1);

233

234 Aa = [A, B; zeros(m,n), zeros(m)];

235 G = [C,D];

236 M = expm(Aa*T);

237 Ad = M(1:n,1:n);

238 Bd = M(1:n,n+1:n+m);

239

240 F = @(x) (G * expm(Aa*x))'*(G * expm(Aa*x));

241 %Use accumulator matrix, if given

242 Qd = quadv(F,0,T,eps);

243

244 %Using SVD to decompose the matrix

245 [Q,S] = svd(Qd);

246 G = sqrt(S(1:n+m,1:n+m))*Q(:,1:n+m)';

247 Cd = G(:,1:n);

248 Dd = G(:,n+1:n+m);

249 end

250

251 end
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