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Abstract Gravitational flow of grains in pipes is frequently encountered in industry. When
the grains and pipes are size-constrained, granular flow mayresult in density waves consist-
ing of alternate high- and low-compactness regions. This paper discusses the length scale of
density waves that appear when fine grains fall vertically inpipes. A one-dimensional model
and a linear stability analysis of the model are presented. The analysis suggests the presence
of long-wavelength instability for the most unstable mode,moreover, a cut-off wavenum-
ber from which the length scale is estimated. Finally, the model results are compared to
experimental data.
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1 List of Symbols

A1 toA9 = constants;
a = constant;
B = constant;
B1 toB5 = constants;
b = constant;
C1 toC5 = constants;
c = granular compactness;
D = tube diameter (m);
d = grain diameter (m);
g = gravity acceleration (m/s2);
H = humidity index;
k = wavenumber (m−1);
P = pressure (Pa);
Patm = atmospheric pressure (Pa);
R = tube radius (m);
vs = velocity of individual grains (m/s);
W = grain flow rate (kg/s);
z = vertical coordinate (m).

Greek symbols
κ = redirection coefficient;
γ = ratio of specific heats;
λ = wavelength of the plugs (m);
µa = dynamic viscosity of air (Pa.s);
µs = friction coefficient between grains;
ρs = specific mass of each grain (kg/m3);
ωr = angular frequency (rad/s);
ωi = growth rate (s−1);
σzr = stress between the tube wall and the grains(N/m2);
σzz = vertical stress operating on the grains (N/m2).

Subscripts
a = relative to air;
s = relative to grains;
0 = relative to the basic state.

Superscripts
˜= relative to the perturbation;
ˆ= relative to the amplitude of perturbations.

2 Introduction

Granular matter is abundant on Earth, e.g., 20% of the Earth surface consists of sand and
other solid fragments [1]. As a result, gravitational flow ofthese materials is frequently
observed in nature and in industry. Nonetheless, the behavior of granular flows is not well
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understood and the rheology of granular media is a matter of debate. Given the importance
of granular flow in nature and industry, considerable work has been done to understand the
dynamics and instabilities of granular media [2–6].

In industry, granular gravitational flows generally occur in pipes or closed conduits, e.g.,
the transport of grains to silos in the food industry, the transport of sand in civil construc-
tions, and the transport of powders in the chemical industry. When the grains and the tube
diameter are size-constrained, granular flow may give rise to instabilities. These commonly
undesired instabilities consist of alternate regions of high and low compactness (grain con-
centration), and are characterized by intermittency, oscillating patterns and blockages [7–9].

This kind of instability may appear in vacuum, or when the effect of air is negligible
[10,11]. However, in the case of fine grains, these patterns are recognized as products of
the interaction between falling grains and trapped air. Raafat et al. (1996) [9] studied the
formation of density waves in pipes experimentally. The experiments were performed in
a 1.3m long tube with an internal diameterD of 2.9mm using glass splinters and glass
beads with mean grain diameterd of 0.09mm to 0.2mm and0.2mm, respectively. They
observed density waves for moderate grain flow rate and when the ratio between the pipe
and the grain diameter is6 ≤ D/d ≤ 30. Furthermore, they proposed that the friction
between the grains and the forces between the trapped air andthe grains are responsible for
the density waves.

Aider et al. (1999) [7] presented an experimental study of the granular flow patterns
in vertical pipes. The experiments were performed in a tube similar with that of Raafat
et al. (1996) [9] using glass beads with mean diameter of0.125mm. The density vari-
ations were measured by using a linear CCD (charge coupled device) camera and a fre-
quency of up to2 kHz. Aider et al. (1999) [7] observed that the density waves consisted
of high-compactness plugs (c ≈ 60%, wherec is the compactness) separated by low-
density regions; furthermore, the density waves appeared when the grain flow rateW was
1.5 g/s − 2.5 g/s (oscillating waves) or2.5 g/s − 5 g/s (propagative waves). These au-
thors also noted that humidityH must be within35% and75%, otherwise the grains clogged
the tube owing to capillary forces (H > 75%) or due to electrostatic forces (H < 35%).

Bertho et al.(2002) [8] presented experiments on density waves performed using an
experimental setup similar to that of Raafat et al. (1996) [9] and Aider et al. (1999) [7]. The
vertical tube (D = 3mm, 1.25m long) and the glass beads (d = 0.125mm glass beads)
were roughly the same as that of Aider et al. (1999) [7], and a linear CCD camera was used.
In addition, capacitance sensors were used to measure the compactness of grains at two
different locations, and the pressure distribution was also measured. The experimental data
showed that the characteristic length of the high-compactness regions of the density wave
regime is in the order of10mm.

Ellingsen et al. (2010) [12] studied the gravitational flow of grains in a narrow pipe un-
der vacuum conditions. They performed numerical simulations based on a one-dimensional
model for the granular flow where the collisions were modeledby two coefficients of resti-
tution, one among grains and the other between the grains andthe pipe walls. A narrow
pipe was assumed and periodic boundary conditions were employed. The numerical results
showed that granular waves could form in the absence of air ifthe dissipation caused by the
collisions among the grains were smaller than those betweenthe grains and the walls. How-
ever, the proposed model cannot predict the wavelength of the density waves in the presence
of interstitial gas.

This paper discusses the length scale of density waves that appear when fine grains fall
through a vertical pipe in the presence of air. It presents a one-dimensional flow model based
on the work of Bertho et al. (2003) [13] and a linear stabilityanalysis of the flow. The model
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results are then compared to experimental data. To the best of our knowledge, this is the first
time that a simple stability analysis allows the predictionof the correct length scale in such
a problem.

The next section describes the physics and the main equations of the one-dimensional
model. The following sections present the initial stability analysis of the granular flow, the
performed experiments, and the main results, respectively. The conclusion section follows.

3 One-dimensional two-phase model

3.1 Granular flow in a vertical pipe

The problem analyzed here consists of cohesionless grains falling from a hopper in a tube.
The ratio between the mean grain diameter and the tube diameter is within6 ≤ D/d ≤ 30
and the humidity is between35 < H < 75%. The grain size and specific mass are such
that the air effects are not negligible, a typical case is thed = 0.125mm glass beads, as in
Aider et al. (1999) [7] and Bertho et al. (2002) [8]. In this case, density waves are expected
for moderate grain flow rates.

The density waves consist of alternate regions of high grainconcentration, which are
essentially plugs of granular material, and low grain concentration, which are air bubbles
with dispersed free-falling grains. In the high-concentration regions, the compactness is
assumed close to its maximum value,c ≈ 60%; therefore, grains in the plug periphery
are in contact with the tube wall. Under these conditions, the redirection of forces is present
within the plug and the Janssen effect [1] is expected if the plugs are long enough. In the
low-concentration regions, the air pressure increases owing to the stresses caused by the
neighboring plugs as well as the volume decrease (compression) caused by the free-falling
grains. Figure 1 shows the layout of the gravitational granular flow.

3.2 One-dimensional model

To analyze the problem, a one-dimensional model based on thework of Bertho et al. (2003)
[13] was used. The modifications proposed in this study concern the closure equations for
the stresses within the grains and the inclusion of a parameter that considers the capillary
forces that were not considered in Bertho et al. (2003) [13].

The main objective of the analysis in Section 4 is to find the characteristic length of
the plugs. Therefore, we apply the one-dimensional model tothe plug region. The model
consists of an equation for the pressure of air, which flows through the plug from one neigh-
boring bubble to the next, and of a motion equation for the grains within the plug.

3.2.1 Air pressure

Bertho et al. (2003) [13] combined the mass conservation equations for the air and the grains,
the isentropic relation for the air, and Darcy’s equation relating the air flow through packed
grains to the pressure gradient to obtain Eq. 1

∂P

∂t
+ vs

∂P

∂z
+

γP

(1− c)

∂vs
∂z

−B
∂2P

∂z2
= 0 (1)
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Fig. 1 Layout of the gravitational granular flow in a tube. The high and low grain concentration regions are
shown.z is the vertical coordinate andλ is the wavelength of the granular plugs.

whereP is the pressure,vs is the velocity of the individual grains,c is the granular com-
pactness,z is the vertical coordinate,γ is the ratio of specific heats (1.4 for air), andB is a
coefficient given by

B =
γP (1− c)2 d2

µa180c2
(2)

whereµa is the dynamic viscosity of air.

3.2.2 Grain motion

The equation of motion for the grains is given by

ρsc

(

∂vs
∂t

+ vs
∂vs
∂z

)

= ρscg −
∂P

∂z
−

∂σzz

∂z
−

2

R
σzr (3)

whereρs is the specific mass of each grain,g is the gravitational acceleration,R is the tube
radius andσmn is the stress at the surfacen in them direction. In this manner,σzz is the
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vertical stress operating on the grains andσzr is the stress between the tube wall and the
grains.

Two modifications are proposed for the closure ofσzz andσzr in the present model.
The first is to modelσzr as a function of the square of the grain velocity

σzr ∼ ρsµsv
2
s (4)

whereµs ≈ tan(32o) is the friction coefficient between grains. The redirectionof forces
needs also to be considered. Typically, [1], this is done through a constant coefficientκ:
σzr = µsκσzz. Saturation in stresses is attributed to the Janssen effect[1] and taken into
account in this study via an exponential function of the pluglength. Similarly, capillary
forces operate as bonding forces that are proportional to the plug length and are modeled as
an exponential function of the plug length as well. This is the second modification. Finally,
we obtain Eqs. 5 and 6 for the closure.

σzr ∼
1

2
ρsµsv

2
sb exp(−ak) (5)

∂σzz

∂z
∼

ρs
κ
vs

∂vs
∂z

b exp(−ak) (6)

wherea andb are constants,k = 2πλ−1 is the wavenumber, andλ is the wavelength of
the plugs. Constantb is directly proportional to the air water surface tension and models the
capillary force.

4 Stability analysis

The stability analysis was performed based on Eqs. 1 and 3 with the closure Eqs. 5 and 6.
The main objective was to find the wavelength for the high-density plugs of the granular
flow in the pipe. As the plugs have a constant compactnessc of ≈ 60%, c is considered
constant. Equations 1 and 3 are then solved forP andvs.

The analysis considers a basic state in which the pressure isequal to the atmospheric
pressure,P0 = Patm, and the grain velocity is equal to the mean velocity obtained from
the mass flow rate,v0 = 4W (cρsπD

2)−1. The pressure and grain velocity are then the
sum of the basic state and the perturbation, the latter is assumed much smaller than the
corresponding basic state,

P = P0 + P̃ , vs = v0 + ṽ (7)

where P̃ and ṽ are respectively the pressure and velocity perturbations.P0/Patm and
v0/(4w(cρsπD

2)−1) areO(1) while P̃ /Patm andṽ/(4W (cρsπD
2)−1) areO(ǫ), ǫ ≪ 1.

The linear analysis was performed by inserting the pressureand the velocity from Eq. 7
in Eqs. 1 and 3, and keeping only the terms ofO(ǫ). The equations forO(ǫ) are then

∂P̃

∂t
+ v0

∂P̃

∂z
+

γP0

(1− c)

∂ṽ

∂z
−B1

∂2P̃

∂z2
= 0 (8)

ρsc

(

∂ṽ

∂t
+ v0

∂ṽ

∂z

)

= −
∂P̃

∂z
−B3v0

∂ṽ

∂z
−B5v0ṽ (9)

In Eq. 8,B1 is a constant given by



Length scale of density waves in the gravitational flow of finegrains in pipes 7

B1 =
γP0 (1− c)2 d2

µa180c2
(10)

In Eq. 9,B3 andB5 are exponentially decaying functions ofk given by

B3 =
ρs
κ
b exp(−ak) (11)

B5 =
2ρsµs

D
b exp(−ak) (12)

and are approximated as constants in the first part of the solution, which means that we are
considering long waves. This is justifieda posteriori.

Equations 8 and 9 form a linear system with solutions consisting of plane waves. The
solutions can be found by considering the normal modes

P̃ = P̂ ei(kz−ωt) + c.c.

ṽ = v̂ei(kz−ωt) + c.c.

(13)

wherek ∈ R is the wavenumber in thez direction,P̂ ∈ C andv̂ ∈ C are the amplitudes,
andc.c. stands for the complex conjugate. Letω ∈ C, ω = ωr + iωi, whereωr ∈ R is
the angular frequency andωi ∈ R is the growth rate. By inserting the normal modes in Eqs.
8 and 9, the following expression is obtained

[

−ω + v0ik +B1k
2 γP

(1−c) ik

ik ρsc (−iω + v0ik) +B3v0ik +B5v0

] [

P̂
v̂

]

=

=

[

0
0

]

(14)

The existence of non-trivial solutions for this system requires its determinant to be zero.
This results in







−ω2
r + ω2

i +A7kωr +
(

(B5v0)/(ρsc) +B1k
2
)

ωi +A8k
2 = 0

ωr

(

A2k
2 +A3 +A4ωi

)

−A1kωi −A6k
3
−A5k = 0

(15)

where
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A1 = B3v0 + 2ρscv0

A2 = ρscB1

A3 = B5v0

A4 = 2ρsc

A5 = B5v
2
0

A6 = ρscv0B1 +B3B1v0

A7 = (B3v0)/(ρsc) + 2v0

A8 = −v20 − (B3v
2
0)/(ρsc) + v0(B5B1)/(ρsc) + (γP0)/((1− c)ρsc)

(16)

The system given by Eq. 15 can be solved forωi. The result is

C1ω
4
i + C2ω

3
i + C3ω

2
i + C4ωi + C5 = 0 (17)

where, forA9 = (B5v0)/(ρsc),


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
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
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





C1 = A2
4

C2 = (2A2A4 +A2
4B1)k

2 + 2A3A4 +A2
4A9

C3 = (A2
2 + 2A2A4B1)k

4 + (−A2
1 +A7A1A4 + 2A3A4B1+

+2A2A4A9 +A2
4A8)k

2 + 2A2A3 +A2
3 + 2A3A4A9

C4 = A2
2B1k

6 + (−2A1A6 +A7A6A4 + 2A2A3B1 +A2
2A9+

+2A8A2A4)k
4 +A7A1A2k

3 + (−2A1A5 +A7A1A3 +A7A5A4+
+A2

3B1 + 2A2A3A9 + 2A8A3A4)k
2 +A2

3A9

C5 = (−A2
6 +A7A6A2 +A2

2A8)k
6 + (−2A5A6 +A7A5A2+

+A7A6A3 + 2A2A3A8)k
4 + (−A2

5 +A7A5A3 +A2
3A8)k

2

(18)

5 Experiments

An experimental device was conceived and built to measure the length scale of density
waves. The experimental device consisted of a storage reservoir, a hopper, a1m long glass
tube of3mm internal diameter, and an exit valve. The tube was vertically aligned (within
± 5o) and both the reservoir entrance and the exit valve were at atmosphere pressure. The
grains consisted of glass beads of specific massρs = 2500 kg/m3 divided in two different
populations: grains with diameter within212µm ≤ d ≤ 300µm and within106µm ≤

d ≤ 212µm. The temperature and the relative humidity were measured within ± 0.5oC
and± 2.5%, respectively. The mass flow rate was measured by employing achronometer
and a± 0.01g accuracy balance. Figure 2 presents a scheme of the experimental setup.
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Fig. 2 Experimental setup.

With the reservoir filled with grains, the exit valve was partially opened and the grains
flowed in the tube. The migration of density waves was filmed with a1280 px × 1024 px
high-speed camera (maximum frequency of1000Hz). In order to provide the necessary
light for low exposure times while avoiding beating betweenthe light source and the camera
frequency, a grid of LED (Low Emission Diode) lamps was branched to a continuous current
source. For the present experiments, the camera frequency was set to between250Hz and
300Hz. The number of acquired images for each test was1500 and the number of tests was
10, giving a total of15000 images to be analyzed.

As soon as granular flow began, density waves were observed. The density waves had
positive or zero mean celerity (the latter corresponding topurelly oscillating plugs), but
the reasons for these different behaviors could not be identified in the present experiments.
Aider et al. (1999) [7] proposed that different celerity behaviors are due to different granular
flow rates and humidity.

Figure 3 presents an example of density waves experimentally observed. The images,
acquired at250Hz, show the presence of waves with positive celerity. In this figure, the
time between frames is0.06 s, and the wavelength is≈ 10D.

6 Results

Equation 17 was numerically solved and only the results for whichωi ∈ R were considered
pertinent. Constantb in Eqs. 11 and 12 was considered∼ Γ/D, whereΓ is the surface
tension of water. The rest of the model constants were fixed tothe values used in Raafat
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Fig. 3 Density waves with positive celerity. The images were acquired at250Hz, but the time between
frames in this figure is0.06 s

et al. (1996) [9], Aider et al. (1999) [7], and Bertho et al.(2002) [8], i.e.,d = 0.125mm,
D = 10mm, W = 5g/s, ρs = 2500kg/m3, c = 0.6, κ = 0.5, Patm = 105Pa, and the
gas properties were that of air.

Figure 4 shows the growth rateωi normalized by the characteristic timetd as a function
of the wavenumberk normalized by the tube diameterD. The employed characteristic time
is td = 18µa/(gdρs) and corresponds to the time that a single grain takes to fall the distance
equal to its diameter in air. Figure 4a, for the broad range ofwavenumbers, shows that small
wavelengths are stable. This corroborates the long wave assumption in section 4.

Figure 4b shows the0 . kD . 0.15 region. The figure shows the existence of a most
unstable mode and a cut-off wave-number. Only waves within the0 . kD . 0.15 range
are unstable and can give rise to plugs. This corresponds to wavelengths in the0 . λ/D .

40 range. Given the model uncertainties, the unstable range isconsidered for the possible
appearance of wavelengths instead of only the most unstablemode.

The experimental images were post-processed and the plugs wavelengths were deter-
mined. Table 1 summarizes the experimental results. It presents, for each test run, the em-
ployed diameter ranged, the room relative humidityRH, the room temperatureT , the
granular mass flow rateW , the camera frequencyf , the mean wavelengthλ of the granular
plugs, the normalized mean wavelengthλ/D and the normalized standard deviationσλ/D.

The experimental data shows that the plug wavelength is in the range3 < λ/D < 11,
which is in perfect agreement with the proposed model. However, as only one tube diam-
eter and one grain type were employed, we compare next the present results with previous
published experimental results.

In a series of papers, Raafat et al. (1996) [9], Aider et al. (1999) [7], and Bertho et
al.(2002) [8] presented experiments of granular flows in a tube. In particular, concerning the
characteristics of density waves, Raafat et al. (1996) [9] reported that the size of plugs was
λ/D ≈ 10 and that it was roughly independent of the flow rate. Bertho etal. (2002) [8] also
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Fig. 4 Growth rateωi normalized by the characteristic timetd as a function of the wavenumberk normalized
by the tube diameterD. ωi,1 to ωi,4 correspond to the real roots of Eq. 17

run d RH T W f λ λ/D σλ/D
· · · µm % oC g/s Hz mm · · · · · ·

1 212− 300 42 29 0.52 250 21.4 7.1 1.7
2 212− 300 43 26 0.52 250 26.6 8.9 1.3
3 212− 300 44 26 0.55 250 13.6 4.5 0.8
4 212− 300 41 29 0.67 250 9.2 3.1 0.8
5 212− 300 34 26 0.39 300 24.9 8.3 5.2
6 106− 212 41 25 0.60 250 14.6 4.9 1.5
7 106− 212 41 25 0.60 250 11.9 4.0 1.2
8 106− 212 41 25 0.80 250 32.7 10.9 1.5
9 106− 212 43 25 0.80 250 25.6 8.5 1.5
10 106− 212 41 24 0.74 250 19.5 6.5 2.0

Table 1 Grains diameterd, room relative humidityRH, room temperatureT , granular mass flow rateW ,
camera frequencyf , mean wavelengthλ of the granular plugs, normalized mean wavelengthλ/D and nor-
malized standard deviationσλ/D for each test run.
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reported that the size of plugs wasλ/D ≈ 10. In addition, they showed that the wavelength
of bubbles isλbubble/D ≈ 10. These measurements are in agreement with the wavelengths
predicted by the proposed model.

The final observation concerns the lowest plug. Bertho et al.(2002) [8] reported that
at the lower portion of the tube (tube exit) a different plug forms. The length of this plug
varies with the flow rate. ForW from 1, 75 g/s to 3, 9 g/s, they found that the length of the
bottom plug varies fromλ/D ≈ 200 to λ/D ≈ 30. This plug is subject to exit boundary
conditions, therefore, its wavelength is not correctly predicted by the present analysis.

7 Conclusions

This paper discussed the density waves that appear when fine grains fall through a tube.
The main objective of the paper was the prediction of the wavelength of the high-density
regions (plugs) of granular flow. The paper presented a linear stability analysis based on the
one-dimensional model proposed by Bertho et al. (2003) [13]. The Bertho et al. model was
modified by including capillary effects and the closure equations for granular stresses. The
fourth-order polynomial equation for the growth rate was numerically solved and the results
showed the growth of long waves. The model length scale and the experimental data were
in good agreement.
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