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Abstract

Gravity-driven flows of liquid films are frequent in nature and industry, such as

in landslides, lava flow, cooling of nuclear reactors, and coating processes. In

many of these cases, the liquid is non-Newtonian and has particular character-

istics. In this paper, we analyze numerically the temporal stability of films of

non-Newtonian liquids falling by gravity, on the onset of instability. The liq-

uid flows over an incline, where surface waves appear under certain conditions,

and we do not fix a priori its rheological behavior. For that, we made used of

the Carreau-Yasuda model without assigning specific values to its constants, and

we compute general stability solutions. The numerical strategy is based on ex-

pansions of Chebyshev polynomials for discretizing the Orr-Sommerfeld equa-

tion and boundary conditions, and a Galerkin method for solving the generalized

eigenvalue problem. In addition, an Inverse Iteration method was implemented

to increase accuracy and improve computational time. The result is a robust and

⋆©2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

⋆⋆Accepted Manuscript for the Journal of Non-Newtonian Fluid Mechanics, v.322, 105153,
2023, DOI: 10.1016/j.jnnfm.2023.105153

∗Corresponding author. phone: +55 19 35213375
Email address: erick.franklin@unicamp.br (Erick M. Franklin)

Preprint submitted to Journal of Non-Newtonian Fluid Mechanics November 20, 2023



light numerical tool capable of finding the critical conditions for different types

of fluids, which we use to analyze some key fluids. We show that the outputs

of the general code match previous solutions obtained for specific computations.

Besides increasing our knowledge on surface-wave instabilities in non-Newtonian

liquids, our findings provide a new tool for obtaining comprehensive solutions on

the onset of instability.

Keywords: Gravity-driven flow, generalized Newtonian fluid, Carreau-Yasuda

model, temporal stability, Galerkin method

1. Introduction

Liquid films flowing under the action of gravity are common in nature and

industry, happening, for example, in lava and mud flows, in the cooling of nu-

clear rectors, in coating processes, and when water runs down the windshield of

a car. Depending on the flow conditions, surface waves known as Kapitza waves

can appear and propagate downstream, their dynamics being well understood in

the case of Newtonian liquids [1, 2]. In many instances, however, the liquid is

non-Newtonian and its rheology may depend on the shear rate, exhibit some plas-

ticity, or have memory effect. In these cases, the complexity of Kapitza waves is

increased by the intricate behavior of non-Newtonian fluids.

The growth of surface waves on films of Newtonian liquids has been exhaus-

tively studied for almost a century, with experimental [1, 2], analytical [3, 4] and

numerical [5, 6] studies, and the results converged for the well known dispersion

relation (and thus wavelengths and celerities on the onset of instability) of Kapitza

waves. The case is not the same for non-Newtonian liquids: given the different

rheological behaviors, a general analysis of surface waves is complex and very
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few works inquired into it, most of works investigating analytically the instabili-

ties appearing in specific types of liquids. For that, these works carried out linear

stability analyses (LSA) using the power law [7], Bingham [8], Carreau [9], or

Carreau-Yasuda [10] models for the fluid, where the constants were fixed from

the beginning of the analysis (in order to model a specific fluid).

For example, Weinstein [11] investigated a multilayered flow of shear-thinning

liquids down an incline by carrying out an analytical LSA with the Carreau [9]

model. He found that in those systems the surface (Kapitza) waves behave as in

Newtonian liquids, with an equivalent (effective) layer-averaged viscosity, while

the interfacial waves are highly affected by the local viscosities. For the latter, a

layer-averaged viscosity is not valid, the propagation of interfacial waves being

thus more complex. He also showed that the growth rate of interfacial waves in

shear-thinning liquids can be larger or smaller than in Newtonian liquids, and that

asymptotic solutions for the velocity profile are only valid for fluids with weak

shear-thinning behavior. Ng and Mei [12] and Hwang et al. [13] investigated the

surface waves appearing on a liquid film of a power-law fluid [7] flowing over

an incline. The LSA of Ng and Mei [12], based on Karman’s momentum inte-

gral method, showed no preferential wavenumber for instabilities; however, they

showed that nonlinear waves (roll waves) can exist only above a given thresh-

old that corresponds to a minimum discharge. Interestingly, they showed that

roll waves of long wavelength are suppressed for slightly non-Newtonian fluids,

but they persist for highly non-Newtonian fluids. Similarly, Hwang et al. [13]

performed LSA using Karman’s momentum integral method, and fixed different

values of power-law exponent n. They showed that instability is enhanced by

increasing the Reynolds number and decreasing the Weber number, and also by
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decreasing values of n (in the latter case, it is accompanied by higher celerities).

Rousset et al. [14] studied analytically (using a long-wave approximation)

and numerically the initial instabilities of a shear-thinning fluid flowing over an

incline. For that, they performed LSA by considering a Carreau fluid with fixed

constants. Among other results, they showed that the critical Reynolds number is

smaller for shear-thinning than for Newtonian fluids, with a larger phase veloci-

ties, but remains proportional to the slope angle. They also found that the thresh-

old for instability decreases with increasing the shear-thinning effects. Later, Mil-

let et al. [15] investigated the stability of flows of shear-thinning two-layer liquids

over an incline. For that, they solved numerically a LSA similar to that of Rousset

et al. [14] (Carreau model), and considered cases where the upper layer is either

less or more viscous than the lower layer, both with the denser fluid on the bottom.

They found that three types of instabilities can grow, leading to long-waves on the

surface and long- and short-waves in the interface, and that the rheology of the

lower layer greatly affects stability. In particular, they showed that the base flow

and stability are only weakly affected by variations in the shear-thinning prop-

erties of the upper layer when this layer is more viscous than the lower layer.

Mogilevskiy [16] considered the effects of external excitation on shear-thinning

and shear-thickening fluids flowing over an incline. He carried out a LSA for a

Carreau fluid submitted to finite-amplitude perturbations (forced periodically on

the incline), and obtained analytical solutions in the long-wave approximation. He

showed that the forced oscillations affect the stability of a falling film, the oscilla-

tions either stabilizing or destabilizing the film flow depending on their frequency.

In particular, low-frequency oscillations destabilize and stabilize the flows shear-

thinning and shear-thickening fluids, respectively, while high frequency oscilla-
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tions stabilize and destabilize flows of shear-thinning and shear-thickening fluids,

respectively.

Different from previous works, we [17] investigated analytically the base flow

and the stability of a liquid film flowing over an incline plane without fixing a

priori the exact fluid rheology. For that, we made use of long-wave approxima-

tions and considered the Carreau-Yasuda model [10], which is a more general

model and encompasses, for instance, the power-law and Carreau models. The

solutions thus obtained are comprehensive, allowing for analyzing continuously

the stability for different types of fluids. Chimetta and Franklin [17] compared

the comprehensive solution with particular solutions found in the literature, and

found and excellent agreement.

Even though the analytical solutions proposed by Chimetta and Franklin [17]

are valid for a large range of Newtonian and non-Newtonian fluids, they are lim-

ited, in principle, to long-wave instabilities. In this paper, we solve numerically

the system studied by Chimetta and Franklin [17], but without the constrain of

long waves, and propose a numerical strategy for the computations. For that, we

carry out temporal LSA of films of general non-Newtonian liquids falling by grav-

ity over an incline. We use the Carreau-Yasuda model without assigning specific

values to its constants, and we compute general stability solutions. The numer-

ical strategy is based on expansions of Chebyshev polynomials for discretizing

the Orr-Sommerfeld equation and boundary conditions, and a Galerkin method

for solving the generalized eigenvalue problem. In addition, an Inverse Iteration

method was implemented to increase accuracy and improve computational time.

The result is a robust and light numerical tool capable of finding the critical con-

ditions for different types of fluids, which we use afterwards to analyze some key
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fluids. We show that the outputs of the general code match previous solutions

obtained for specific computations. Besides increasing our knowledge on surface-

wave instabilities in non-Newtonian liquids, our findings provide a new tool for

obtaining comprehensive solutions on the onset of instability.

In the following, Sec. 2 presents the model equations, Sec. 3 the numerical

strategy, and Sec. 4 the results for Newtonian fluids, shear-thinning and shear-

thickening fluids. Finally, Sec. 5 presents the conclusions.

2. Mathematical formulation

We consider a liquid film of thickness h driven by gravity over a plane inclined

with an angle θ with respect to the horizontal. The free surface is initially flat

(corresponding to the base state), with h a priori unknown, the interface between

liquid and gas has a surface tension γ , and the gas pressure is uniform and equal

to P0. Fig. 1 presents a layout of the considered problem.

Figure 1: Layout of the falling film.
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In this paper, we do not restrict the formulation to a specific type of rheology.

We thus consider a generalized Newtonian fluid [18, 19], for which the viscosity

η is a function of the shear rate γ̇ ,

τ = η(γ̇)γ̇ , (1)

where η(γ̇) is a scalar function and γ̇ = |γ̇|. For the viscosity, we make use of

the Carreau-Yasuda model [10], which is more general than the other models (en-

compassing, for instance, the power-law and Carreau models),

η(γ̇) = η∞ +(η0 −η∞)[1+(γ̇λ )a]
n−1

a , (2)

and which has five adjusting constants: (i) a controls the shape of the transition

region between the zero-shear-rate plateau and the power-law region; (ii) λ deter-

mines the values of γ̇ at transitions from the zero-shear-rate plateau to power-law

region and from the power-law region to that where η = η∞; (iii) the exponent n

governs the power-law region; (iv) η∞ sets the limit for large values of γ̇; and (v)

η0 sets the limit for small values of γ̇ . Therefore, η → η∞ as γ̇ becomes large and

η → η0 as γ̇ becomes small.

As proposed by Weinstein [11], we consider the length scale hs as the charac-

teristic length (in the absence of an initially known value of h),

hs =

[
η0Q

ρgsin(θ)

] 1
3

, (3)

where Q is the volumetric flow rate by unit of width, ρ is the fluid density, and g is

the modulus the gravity acceleration. Those quantities are then used to normalize

the longitudinal x and transverse y coordinates, the longitudinal u and transverse

v velocity components, the time t and the pressure p,
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(x,y,u,v, t, p) =
(

x
hs
,

y
hs
,
uhs

Q
,
vhs

Q
,
tQ
h2

s
,

ph2
s

ρQ2

)
. (4)

The dimensionless viscosity and shear rate are thus,

η(γ̇) = I +(1− I)[1+(Lγ̇)a]
n−1

a , (5)

γ̇ =

{
2
(

∂u
∂x

)2

+

[(
∂u
∂y

)2

+2
∂u
∂y

∂v
∂x

+

(
∂v
∂x

)2]
+2
(

∂v
∂y

)2} 1
2

, (6)

where I = η∞/η0 is the ratio between the limits of viscosity (large over small) and

L = λQ/h2
s is a relaxation time. The dimensionless viscosity is η = η/η0.

2.1. Base state

For a two-dimensional (2D) flow, the dimensionless conservation of mass and

momentum are described by Eqs. 7, 8 and 9,

∂u
∂x

+
∂v
∂y

= 0 , (7)

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

=−∂ p
∂x

+
1

Re

(
∂τxx

∂x
+

∂τxy

∂y

)
+

1
Fr2

x
, (8)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

=−∂ p
∂y

+
1

Re

(
∂τxy

∂x
+

∂τyy

∂y

)
+

1
Fr2

y
, (9)

where the dimensionless stress tensor components are given by Eqs. 10, 11 and

12,

τxx = 2η(γ̇)
∂u
∂x

, (10)
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τyy = 2η(γ̇)
∂v
∂y

, (11)

τxy = η(γ̇)

[
∂u
∂y

+
∂v
∂x

]
, (12)

and the Reynolds and Froude numbers in Eqs. 7 to 9 are given by

(Frx,Fry,Re) =
(√

Q2

gh3
s sin(θ)

,

√
Q2

gh3
s cos(θ)

,
ρQ
η0

)
. (13)

For the base state, the flow is parallel and steady, with a velocity profile equals

to U . Velocity in the normal direction is equal to zero and the base flow is a func-

tion of y only. For the pressure gradient, only the normal component is different

from zero. The boundary conditions are zero shear at the free surface and no-

slip at the wall, both corresponding to y = 0 and y = h respectively. Under these

assumptions, it is possible to write,

U(h) = 0 , (14)

{
I +(1− I)

[
1+
(

L
∣∣∣∣dU

dy

∣∣∣∣)a] n−1
a
}

dU
dy

=−y f or y ∈ [0;h] , (15)

where h = h/hs. Equation 15 is obtained by considering the dimensionless flow

rate equal to unity,

∫ h

0
Udy = 1 . (16)
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Equations 14, 15 and 16 establish a nonlinear problem for the film thickness

and the velocity profile, with no general analytical solution. However, an ap-

proximate solution was obtained through an asymptotic analysis by Chimetta and

Franklin [17].

2.2. Perturbations

For parallel flows of Newtonian fluids, the Squire’s theorem [20] states that

the most unstable modes are 2D, a result that was proved valid for liquids with

free-surface [21] and in stratified flows [22]. Later, Nouar et al. [23] showed that

two-dimensional instabilities emerge in parallel flows of non-Newtonian fluids

(modelled by the Carreau model), indicating that the Squire’s Theorem would be

also valid for non-Newtonian liquids. Therefore, as in Chimetta and Franklin [17],

we assume that the Squire’s Theorem is valid and two-dimensional perturbations

are dominant.

We consider small perturbations for the longitudinal û and transverse v̂ com-

ponents of velocity, for the pressure p̂, and and for the interface ξ̂ . The velocity

and pressure fields become then u = U + û, v = 0+ v̂, and p = P+ p̂, and the

interface position ξ = 0+ ξ̂ . Also, all products between perturbations must be

neglected in a linear stability analysis. In two dimensions, it is possible to use

stream functions for the velocity field,

(û, v̂) =
(

∂ Ψ̂

∂y
,−∂ Ψ̂

∂x

)
, (17)

where Ψ̂ is the perturbation of the streamline function (Ψ = Ψ+ Ψ̂). By inserting

the perturbations in Eqs. 7 to 9 and linearizing, the expected solutions for the

perturbations are are plane waves, given by Eqs. 18 and 19,
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Ψ̂(x,y, t) = Ψ̃(y)eiα(x−ct) (18)

ξ̂ (x, t) = ξ̃ eiα(x−ct) (19)

where α = khs ∈ R, k being the wave number, and c = ωhsk−1Q−1 ∈ C, ω

corresponding to the complex frequency (which defines the temporal stability ap-

proach). We consider c = cr + ici, where σ = αci corresponds to the growth rate

and cr is the phase velocity. The system is stable when ci < 0 and linearly unstable

if ci > 0, ci = 0 representing neutral stability. By inserting Eqs. 17, 18 and 19 into

Eqs. 7, 8 and 9, we obtain the equivalent of the Orr-Sommerfeld equation for a

Carreau-Yasuda fluid,

(D2 +α
2)[D2

ε t +2Dε tD+ ε t(D2 +α
2)]Ψ̃−4α

2D(ηDΨ̃) =

= iαRe[(U − c)(D2 −α
2)−D2U ]Ψ̃ , (20)

where D j = ∂ j

∂y j . The term ε t is obtained as described in Appendix B and can be

written as,

ε t = I +(1− I)
[

1+n
(

L
∣∣∣∣∂U

∂y

∣∣∣∣)a][
1+
(

L
∣∣∣∣∂U

∂y

∣∣∣∣)a] n−a−1
a

. (21)

With that, the no-slip conditions at the wall for the longitudinal and transverse

components of velocity are given, respectively, by Eqs.22 and 23,

Ψ̃(h) = 0 , (22)
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DΨ̃(h) = 0 , (23)

The boundary conditions at the free surface (y = 0) are the kinematic condi-

tion, which represents the impermeability of the interface, and the continuity of

the tangential and normal stresses through the interface, which are related to the

viscous effect and the Laplace-Young equation. These conditions are given by

Eqs. 24-26, respectively,

∂ξ

∂ t
+u

∂ξ

∂x
− v = 0 , (24)

τxy −ξ = 0 , (25)

−2τxy
∂ξ (x, t)

∂x
+ τyy − pRe+

1
We

∂ 2ξ

∂x2 = 0 . (26)

Inserting Eqs. 17-19 into Eqs. 24-26 results in

Ψ̃− (c−U)ξ̃ = 0 , (27)

ε t(D2 +α
2)Ψ̃− ξ̃ = 0 , (28)

iαRe

[
(c−U)

∂ Ψ̃

∂y
+

∂U
∂y

Ψ̃

]
−4α

2
η

∂ Ψ̃

∂y
+

∂ε t

∂y

(
∂ 2Ψ̃

∂y2 +α
2
Ψ̃

)

+ε t

(
∂ 3Ψ̃

∂y3 +α
2 ∂ Ψ̃

∂y

)
+iα

(
cotθ +

α2

We

)
ξ̃ = 0 . (29)
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By inserting Eq. 28 into Eqs. 27 and 29, we obtain the boundary conditions at

the free-surface, given by Eqs. 30 (kinematic) and 31 (dynamic),

[1+(U − c)(D2 +α
2)]Ψ̃(0) = 0 , (30)

iαRe[(c−U)D+DU ]Ψ̃(0)−4α
2
ηDΨ̃(0)+(D2 +α

2) ,[
Dε t + ε tD+ iαε t

(
cotθ +

α2

Wem

)]
Ψ̃(0) = 0 , (31)

where Wem = η0Q(hsγ)
−1 is a modified Weber number. Equations 20, 22, 23, 30

and 31 establish a generalized eigenvalue problem for the complex frequency c.

3. Numerical strategy

We implemented a spectral method [24, 25] to solve Eqs. 21 to 31, by making

use of weighted residuals methods, which we describe briefly in Appendix A.

3.1. Numerical formulation for the base state

In order to use Chebyshev polynomials, we introduce the transformation

z =
2y
h
−1 , (32)

which transfers the domain y ∈ [0;h] to z ∈ [−1;1]. With that, Eqs. 14–16 become

U(1) = 0 , (33)

{
I +(1− I)

[
1+

(
2L
h

dU
dz

)a] n−1
a }2

h
dU
dz
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=
−h(z+1)

2
for z ∈ [−1;1] , (34)

∫ 1

−1
U

h
2

dz = 1 . (35)

We solve this system in MatLab with the built-in function bvp4c, which is

a finite-difference discretization of a three-stage Lobatto formula [26, 27]. Since

Eqs. 33–35 correspond to a non-linear problem with an undetermined parameter h

and an integral boundary condition, it is necessary to write three distinct functions

within the code: one that represents a system of first-order equations, one for

the boundary conditions, and one for the initial guess. By considering dg
dz = U ;

d2g
dz2 = dU

dz , rewriting Eq. 35 as g(1)− g(−1) = 2
h
, and using the notation y1 = g

and y2 =
dg
dz , we obtain Eqs. 36–39

y2(1) = 0 , (36)

dy2

dz
=

−h2
(z+1)
4{

I +(1− I)

[
1+

(
2L
h

dy2
dz

)a] n−1
a } , (37)

y1(1)− y1(−1) =
2
h
, (38)

y1(−1) = 0 . (39)

Equations 36–39 are solved to obtain the velocity profile U and the liquid

film thickness h, in addition to obtaining η , ε t and all the derivatives. For that,
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their Chebyshev coefficients are computed with the open-source package Chebfun

[28, 29], which is used together with the bvp4c function.

3.2. Numerical formulation for the perturbations

Inserting the transformation given by Eq. 32 into Eq. 20 leads to

(
4

h
2 D2 +α

2

)[
4

h
2 D2

ε t +
8

h
2 Dε tD+ ε t

(
4

h
2 D2 +α

2

)]
Ψ̃

−16

h
2 α

2D(ηDΨ̃) = iαRe

[
(U − c)

(
4

h
2 D2 −α

2

)
− 4

h
2 D2U

]
Ψ̃ , (40)

which is the Orr-Sommerfeld equation within z ∈ [−1;1]. Then, inserting Eq. 32

into Eqs. 5 and 21 gives

η(z) = I +(1− I)

[
1+

(
2L
h

DU

)a] n−1
a

, (41)

ε t(z) = I +(1− I)
[

1+n
(

2L
h

DU
)a][

1+
(

2L
h

DU
)a] n−1

a −1

. (42)

By applying the same procedure for the no-slip conditions at the wall (Eqs. 22

and 23), we obtain

Ψ̃(z) = 0 , (43)

DΨ̃(z) = 0 , (44)

at z = 1. For the boundary conditions at the free-surface (Eqs. 30 and 31), we find

[
1+ ε t(U − c)

(
4

h
2 D2 +α

2

)]
Ψ̃ = 0 , (45)
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iαRe

[
2
h
(c−U)D+

2
h

DU

]
Ψ̃− 8

h
α

2
ηDΨ̃

+

(
4

h
2 D2 +α

2

)[
2
h

ε tD+
2
h

Dε t + iαε t

(
cotθ +

α2

We

)]
Ψ̃ = 0 , (46)

at z =−1. To solve the Eqs. 40 to 46, we expand the perturbed streamfunction as

a sum of products between Chebyshev coefficients Φk and polynomials Tk,

Ψ̃(z) =
N

∑
k=0

ΦkTk(z) , (47)

where Tk(z) = cos(k arccosz) and k ∈ {Z|k ⩾ 0}. Proceeding as described in

Appendix A, we insert Eq. 47 into Eq. 40, with a product using the Chebyshev

polynomial Tj(z) and a weight function ŵ = (1− z2)−
1
2 . This procedure leads to

N

∑
j=0

N

∑
k=0

[
16

h
4

〈
Tj(z),ε tD4Tk(z)

〉
+

8

h
2 α

2 〈Tj(z),ε tD2Tk(z)
〉

+α
4 〈Tj(z),ε tTk(z)

〉
+

32

h
4

〈
Tj(z),Dε tD3Tk(z)

〉
+

8

h
2 α

2 〈Tj(z),Dε tDTk(z)
〉
+

16

h
4

〈
Tj(z),D2

ε tD2Tk(z)
〉

+
4

h
2 α

2 〈Tj(z),D2
ε tTk(z)

〉
− 16

h
2 α

2 〈Tj(z),DηDTk(z)
〉

−16

h
2 α

2 〈Tj(z),ηD2Tk(z)
〉
− 4

h
2 iαRe

〈
Tj(z),UD2Tk(z)

〉
+iα3Re

〈
Tj(z),UTk(z)

〉
+

4

h
2 iαRe

〈
Tj(z),D2UTk(z)

〉]
Φk

= c
N

∑
j=0

N

∑
k=0

[
− 4

h
2 iαRe

〈
Tj(z),D2Tk(z)

〉
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+iα3Re
〈
Tj(z),Tk(z)

〉]
Φk , (48)

where ⟨ f ,g⟩ is the scalar product between f and g (Appendix A). For the no-slip

conditions at the solid wall, we obtain

N

∑
k=0

ΦkTk(1) = 0 , (49)

N

∑
k=0

ΦkDTk(1) = 0 , (50)

and for the free surface,

N

∑
k=0

[
Tk(−1)+

4

h
2 ε tUD2Tk(−1)+α

2
ε tUTk(−1)

]
Φk

= c
N

∑
k=0

[
4

h
2 ε tD2Tk(−1)+α

2
ε tTk(−1)

]
Φk , (51)

N

∑
k=0

{
−8

h
α

2
ηDTk(−1)+

8

h
3 Dε tD2Tk(−1)+

2
h

α
2Dε tTk(−1)

+
8

h
3 ε tD3Tk(−1)+

2
h

α
2
ε tDTk(−1)+ i

[
−2

h
αReUDTk(−1)

+
2
h

αReDUTk(−1)+
4

h
2 αε t cotθD2Tk(−1)+α

3 cotθε tTk(−1)

+
4α3

h
2
We

ε tD2Tk(−1)+
α5

We
ε tTk(−1)

]}
Φk

= c
N

∑
k=0

{
−2

h
iαReDTk(−1)

}
Φk , (52)
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Equation 48, as well as the functions U , η , ε t and their derivatives, form a

matrix with order N x N whose discretization leads to

[A]N×N a⃗ = c[B]N×N a⃗ , (53)

where N represents the number of Chebyshev polynomials used in the discretiza-

tion process, A,B ∈ MC
mxn with products of Chebychev polynomials, and a⃗ is the

eigenvector (matrices, together with the numerical scripts, are available on an

open repository [30]). The discretized boundary conditions (Eqs. 49–52 can be

written as

[A]1×N a⃗ = c[B]1×N a⃗ , (54)

We insert Eq. 54 as Eq. 53 (as the last four rows of A and B), ending with

a generalized eigenvalue problem. To solve the eigenvalue problem, we use the

MatLab’s built-in function eig, which makes use of a QZ algorithm by default.

3.3. The inverse iteration method

When the eigenvalue problem is solved, a spectrum of eigenvalues and eigen-

vectors is generated. To check the convergence of the physical solution, a few

tests are required while the number of Chebyshev polynomials increases on each

test. From this process, some difficulties arise. The first is the computational cost

to produce the results, especially the stability diagram. The second problem in-

volves how MatLab processes and stores the results in the arrays. Every time that

a parameter or the number of Chebyshev polynomials are adjusted, the position of

the converged eigenvalue and the eigenvector spectrum change. To overcome this
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problem, an inverse iteration method can be used. This method boosts the preci-

sion of the eigenvalue solution while decreasing deeply the computational time,

once solving the eigenvalue problem using eig is not required in each iteration.

Therefore, the first solution, obtained with the function eig, works as an initial

guess for the inverse iteration, which tracks the next physical solution, eliminat-

ing the necessity of processing the complete spectrum [31]. Following that, a

version of the inverse iteration algorithm used in this work is presented.

4. Results

Our numerical computations do not suppose a priori the specific fluid rhe-

ology, being valid for any fluid obeying the Carreau-Yasuda model. Therefore,

different from previous works, we can gradually vary the type of fluid and inves-

tigate how stability changes. We inquire next into the base state and perturbations

of shear-thinning, Newtonian and shear-thickening fluids. For that, we vary grad-

ually the parameters a and n and plot the solutions.

4.1. Base state

Base state solutions, in terms of film thickness h and the surface velocity U(0),

are shown next for shear-thinning (n < 1) and shear-thickening (n > 1) fluids. The

solutions are given in the physical domain y ∈ [0;h]. Figures 2 and 3 show h

and U(0), respectively, for shear-thinning fluids of different intensities, in which

we varied 0.2 ≤ n ≤ 0.6 and 1 ≤ a ≤ 4 (as a or n tends to zero, shear-thinning

effects are stronger) for fixed I and L. The numerical results show a monotonic

behavior with both a and n, with, as expected, a decrease in the film thickness and

an increase in the surface velocity U0 (equivalent to a comparison between a high-

viscosity shear-thinning fluid and a low-viscosity Newtonian fluid flowing over the
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1: A,B : Left and right matrices from the generalized eigenvalue problem

2: σ0 : Initial approximation for the eigenvalue

3: zk : Approximation for the eigenvector in each iteration (for k = 0, z0 is the

initial approximation)

4: zk+1 : Normalization of the approximate eigenvector

5: wk+1 : Computed eigenvector in each iteration based on σ0 and zk

6: ∥wk+1∥2 : L2-norm of the eigenvector wk+1

7: pk+1 : Inverse of the inner product between the computed eigenvector wk+1

and the approximation zk (for k = 0, p0 = 0 as initial parameter)

8: κ : Test parameter for reaching the desired convergence threshold

(considered 10−10 in our computations)

9: while k = 0,1,2,3, ... do

10: Solve (A−σ0B)wk+1 = Bzk

11: Compute pk+1 = ⟨wk+1,zk⟩−1

12: if |pk+1 − pk|> κ then

13: Compute the normalized eigenvector zk+1 = wk+1/∥wk+1∥2

14: RETURN TO STEP 10

15: else

16: Compute the eigenvalue σ = σ0 + pk+1

17: Compute the normalized eigenvector zk+1 = wk+1/∥wk+1∥2

18: STOP

19: end if

20: end while
Algorithm 1: Inverse iteration algorithm.
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same incline). These results are roughly in agreement with the analytical solution

of Chimetta and Franklin [17], the exception being a non-monotonic behavior

with a in the analytical solution, which can be accounted for by its long-wave

approximation (not present in the numerical solution). By fixing a = 2 and the

values of n, our results are in good agreement with those of Rousset et al. [14]

(see Ref. [17] for more details). Figure 4 presents the numerical results for the

velocity profile considering two shear-thinning fluids, one with a = 1 and the other

with a = 1.88, both having n = 0.5, I = 0 and L = 0.4. We notice that γ̇ is lower

for the shear-thinning fluids, and closer to the wall (y/h → 1) the shear-thinning

behavior intensifies.

Figure 2: Numerical result of h for shear-thinning fluids with 0.2 ≤ n ≤ 0.6, 1 ≤ a ≤ 4, I = 0 and

L = 0.4.

Figures 5 and 6 show h and U(0), respectively, for shear-thickening fluids of

different intensities, in which we varied 1 ≤ n ≤ 2 and 1 ≤ a ≤ 4 for fixed I and

L. As expected, shear-thickening effects are stronger for a → 0 or n → 2, so that

the results are the inverse of those in Figs. 2 and 3: greater thicknesses and lower

surface velocities as a → 0 or n → 2. Figure 7 presents the numerical results
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Figure 3: Numerical result of U0 (surface velocity) for shear-thinning fluids with 0.2 ≤ n ≤ 1, 1 ≤

a ≤ 4, I = 0 and L = 0.4.
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a = 1.0 (Shear-thinning)

a = 1.88 (Shear-thinning)

n = 1 (Newtonian)

Figure 4: Normalized velocity U/U0 as a function of normalized depth y/h for two shear-thinning

fluids, one with a = 1 and the other with a = 1.88, both having n = 0.5, I = 0 and L = 0.4.

for two shear-thickening fluids, one with a = 1 and the other with a = 1.88, both

having n = 2, I = 0 and L = 0.4. For these cases, we notice that γ̇ is higher for

the shear-thickening fluids. Similarly to Figure 4, as y/h → 1 the shear-thickening

effects become stronger.

Finally, we compare the viscosity of different types of fluids. Figure 8 shows

the viscosity profiles of shear-thinning (n = 0.5), Newtonian (n = 1) and shear-
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Figure 5: Numerical result of h for shear-thickening fluids (range 1 ≤ n ≤ 2) with L = 0.4.

Figure 6: Numerical result of U0 (surface velocity) for shear-thickening fluids (range 1 ≤ n ≤ 2)

with L = 0.4.

thickening (n = 2) fluids, with a = 1.88, I = 0 and L = 0.4. The profiles corroborate

the behaviors found in Figs. 4 and 7: closer to the solid surface (h → 1) non-

Newtonian behavior is stronger, while approaching the free surface (h → 0) all

fluids tend to the same behavior.
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Figure 7: Normalized velocity U/U0 as a function of normalized depth y/h for two shear-

thickening fluids, one with a = 1.0 and the other with a = 1.88, both having n = 2, I = 0 and

L = 0.4.
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Figure 8: Viscosity η as a function of the normalized depth y/h for shear-thinning (n = 0.5),

shear-thickening (n = 2) and Newtonian (n = 1) fluids. In this graphic, a = 1.88, I = 0 and L = 0.4.

4.2. Perturbations

We show next the solutions of the Orr-Sommerfeld equation and boundary

conditions using the Carreau-Yasuda model (Eqs. 40–46). Basically, we find

c = cr + ci, where cr is the wave speed and ci is closely related to the growth rate

by σ = αci, and the final solutions are given in terms of marginal stability, which
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Table 1: Numerical results for the converged eigenvalue by varying the number of Chebyshev

polynomials. All values were obtained with the inverse iteration method implemented with the

MATLAB software. Results for a shear-thinning case with a = 1.88, n = 0.5, I = 0, L = 0.4,

θ = 1◦, We = 0.001, α = 0.001 and Re = 1.

N cr ci

5 2.156452697627679 - 0.062418609481402

10 2.212084543945295 - 0.064097964113610

20 2.203579709640495 - 0.064212432580177

30 2.199915786936618 - 0.064234600029750

40 2.197967881184352 - 0.064246138921293

50 2.196755762209099 - 0.064253301018718

60 2.195932367451192 - 0.064256190418429

70 2.195355140628263 - 0.064229766157356

define the critical conditions where the film flow is no longer stable (and evolve to

a state which eventually present surface waves). Therefore, we solve numerically

an eigenvalue problem, in which ci = 0 corresponds to a neutral disturbance, ci < 0

to damped disturbances (stable flow), and ci > 0 to amplified disturbances (unsta-

ble flow). We note that for the ci > 0 cases, nonlinear interactions are expected

which are not solved in this work (our analysis is linear).

Tables 1 and 2 show the values of cr and ci for different values of N (number

of polynomials) obtained using the function eig as a initial guess for the inverse

iteration method (IIM). The parameters used were a = 1.88, I = 0, L = 0.4, θ =

1◦, We = 0.001, α = 0.001, Re = 1 with n = 0.5 (shear-thinning system) and n

= 2 (for shear-thickening system). Convergence of order 10−3 for ci is achieved
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Table 2: Numerical results for the converged eigenvalue by varying the number of Chebyshev

polynomials. All values were obtained with the inverse iteration method implemented with the

MATLAB software. Results for a shear-thickening case with a = 1.88, n = 2, I = 0, L = 0.4,

θ = 1◦, We = 0.001, α = 0.001 and Re = 1.

N cr ci

5 1.967619702520939 - 0.050309073774378

10 1.870876808619691 - 0.044446802423632

20 1.879047555324375 - 0.044435069936304

30 1.882413043782644 - 0.044442893740225

40 1.884214313643472 - 0.044448022427814

50 1.885281824012552 - 0.044448385334794

60 1.886095937358268 - 0.044452669083566

70 1.886627291092958 - 0.044452804832637
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Table 3: Numerical results for the critical Reynolds number Rec for different systems. The other

parameters were extracted from Fig. 4 of Ref. [14].

a n I L θ Rec

2 0.5 0.00005 0 10◦ 4.70

2 0.5 0.00005 0.2 4◦ 11.35

2 0.5 0.00005 0.4 2◦ 20.03

2 0.5 0.00005 0.6 1◦ 35.30

2 0.5 0.00005 0.8 1◦ 34.47

with N = 20 for shear-thinning case, while convergence of order 10−4 is achieved

with N = 10 for shear-thickening case. To ensure sufficient accuracy for the next

results, all computations were carried out with N = 70.

Before extending further our analysis, we compare the results from our numer-

ical method with those existing in the literature. In particular, the system presented

in Rousset et al. [14] can be reproduced in our model. Therefore, we inserted in

our code the parameters used by Rousset et al. [14], and present the resulting Rec

in Tabs. 3 and 4. These tables do not list the values of Rec found by Rousset et al.

[14] since the data is presented in graphical form in that paper. Instead, we make

reference to Figs. 4 and 6 of that paper. The values of Rec from our computations

show a good agreement with those of Rousset et al. [14].

Figures 9, 10 and 11 present the growth rate σ as a function of the wave

number α parameterized by the Reynolds number Re for shear-thinning, Newto-

nian and shear-thickening fluids, respectively. In these figures, θ = 20◦ and We

= 0.001. By considering that the threshold σ = 0 corresponds to the critical con-

ditions for the onset of instabilities, we observe that the critical Reynolds number
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Table 4: Numerical results for the critical Reynolds number Rec for different systems. The other

parameters were extracted from Fig. 6 of Ref. [14].

a n I L θ Rec

2 0 0.00005 0 1◦ 47.80

2 0.6 0.00005 0.2 1◦ 45.80

2 0.8 0.00005 0.4 1◦ 44.55

2 0.95 0.00005 0.6 1◦ 46.32

2 1 0.00005 0.8 1◦ 47.80
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Figure 9: Dispersion relation σ(α) for a shear-thinning fluid, with a = 1.88, n = 0.5, L = 0.4,

θ = 20◦ and We = 0.001.

Rec is approximately 4, 6 and 8 for the shear-thinning, Newtonian and shear-

thickening fluids, respectively. Besides, the intervals for Rec show that the shear-

thinning fluid presents the lowest value among all cases, with shear-thickening

being the highest, and the Newtonian fluid possessing an intermediate behavior

value. Therefore, shear-thinning flows are more susceptible to the emergence

of disturbances, since they have higher surface velocities due to low viscosity.
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Figure 10: Dispersion relation σ(α) for a Newtonian fluid with θ = 20◦ and We = 0.001.
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Figure 11: Dispersion relation σ(α) for a shear-thickening fluid, with a = 1.88, n = 2, L = 0.4,

θ = 20◦ and We = 0.001.

Shear-thickening fluids, on the other hand, are more stable because of their higher

viscosity values, with lower surface velocities. The Newtonian fluids appears as

an intermediate case. These results agree with the expected physical behavior of

these flows, since perturbations are attenuated due to the combined effects of vis-

cosity and surface tension. In addition, we compare next our numerical solutions

for the Newtonian case with the asymptotic solution of Chimetta and Franklin

[17]. Figure 12 shows the neutral curves for both solutions, showing an excel-
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lent agreement. For shear-thinning and shear-thickening fluids direct comparison

of both methods are only possible under the assumption of small non-Newtonian

effects (L → 0), given the limitations of the asymptotic method.

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Figure 12: Neutral stability diagram for the analytical [17] and numerical solutions for a New-

tonian system with I = 0, We = 0.001 and θ = 20◦. The continuous curve corresponds to the

numerical solution and the dotted one to the asymptotic solution.

In order to evaluate how the system stability varies with Re, we computed

neutral stability diagrams in which isocurves of σ are plotted as functions of Re

and α . Figure 13 presents the diagram of neutral stability for a shear-thinning

fluid with a = 1.88, n = 0.5, I = 0, L = 0.4, We = 0.001 and θ = 20◦. In this

diagram, the curve σ = 0 represents neutral stability, separating the stable (σ < 0)

and unstable (σ > 0) bands, and the intersection between the σ = 0 and α = 0

corresponds to the critical Reynolds number Rec. For this specific shear-thinning

case, Rec = 1.92 and the unstable band increases with Re. Figures 14 and 15

present the Newtonian (n = 1) and shear-thickening (n = 2) cases, with Rec = 2.30

and Rec = 3.30, respectively.

For direct comparison between different types of fluid, we plot in Fig. 16 the
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Figure 13: Neutral stability diagram as a function of Reynolds number with a = 1.88, n = 0.5, L =

0.4, We = 0.001 and θ = 20◦. Curves with positive and negative σ values represent unstable and

stable regions, respectively.
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Figure 14: Neutral stability diagram as a function of Reynolds number for a Newtonian fluid with

We = 0.001 and θ = 20◦.

the marginal stability curves (σ = 0) for the shear-thinning, Newtonian and shear-

thickening cases. For the three cases the unstable band (to the right of curves)

increase with Re, and the three critial Reynolds numbers Rec are 1.92, 2.30 and

3.30 for the shear-thinning, Newtonian and shear-thickening flows, respectively.

In other words, the shear-thinning fluid gives the most unstable curve (with the

31



-0.07
-0.05

-0.03

-0.03
-0.015

-0.015

-0.015

-0.007

-0.007

-0.007

-0.007

-0.003

-0.003

-0.003

-0.003

0

0

0

0

0.0015

0
.0

0
1
5

0.003

0 2 4 6 8 10

Re

0.02

0.04

0.06

0.08

0.1

Figure 15: Neutral stability diagram as a function of Reynolds number with a = 1.88, n = 2, L =

0.4, We = 0.001 and θ = 20◦.

lowest critical Reynolds number), while the shear-thickening case has the highest

critical Reynolds number and the smallest unstable band. The Newtonian case

appears as an intermediate system between the others. By varying the other pa-

rameters, curves σ = 0 change. For example, for varying θ , values of Rec change

and curves are shifted, but the order of the of cases (more to less stable from shear-

thinning to shear-thickening fluids) is preserved. For increasing values of a, the

curves for the shear-thinning and shear-thickening cases approach the Newtonian

intermediate curve, whereas they become farther for decreasing values of a (since

non-Newtonian effects are amplified). Finally, a tendency to the Newtonian case

occurs for n → 1 or L → 0. In summary, the loss of stability implies the growth of

surface waves, which are initially two dimensional (but can afterward degenerate

into three-dimensional waves, although not investigated in this paper). Shear-

thickening fluids are the most stable, that is, the less propense to the appearance

of surface waves, while shear-thinning fluids are the most unstable. As the slope

is increased, the unstable ranges increase (Rec values become smaller), meaning
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that surface waves tend to grow for more types of fluids, even shear-thickening

fluids.
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Figure 16: Diagram of Neutral stability for the shear-thinning (n = 0.5), Newtonian and shear-

thickening (n = 2) cases, for a = 1.88, L = 0.4, θ = 20◦ and We = 0.001. Continuous, dashed and

dotted curves correspond to Newtonian, shear-thinning and shear-thickening fluids, respectively.

5. Conclusions

In this paper, we solved numerically the system studied by Chimetta and

Franklin [17], namely the temporal stability of films of non-Newtonian liquids

falling by gravity, but without the constrain of long waves. For that, we made

use of the Carreau-Yasuda model without assigning specific values to its con-

stants, and proposed a numerical strategy for computing general stability solu-

tions. The numerical strategy is based on expansions of Chebyshev polynomials

for discretizing the Orr-Sommerfeld equation and boundary conditions, a Galerkin

method for solving the generalized eigenvalue problem, and an Inverse Iteration

method to increase accuracy and improve computational time. We ended with a

robust and light numerical tool capable of finding the critical conditions for dif-

ferent types of fluids, which we used to analyze Newtonian, shear-thinning and
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shear-thickening fluids. The numerical outputs can be briefly summarized as: (i)

the outputs of the general code match previous solutions obtained for specific

computations; (ii) the base state of shear-thinning fluids has higher average veloc-

ity and lower thickness, while that of shear-thickening fluids has lower velocity

and higher thickness than Newtonian fluids; (iii) for fixed a, shear-thinning flu-

ids are the more susceptible to surface instabilities, followed by Newtonian and

shear-thickening fluids, the latter being the most stable; (iv) for varying θ , values

of the critical Reynolds number Rec change and curves are shifted, but the order

of the cases (more to less stable from shear-thinning to shear-thickening fluids) is

maintained; (v) for increasing values of a, the curves for the shear-thinning and

shear-thickening cases approach the Newtonian intermediate curve, whereas they

become farther for decreasing values of a (since non-Newtonian effects are ampli-

fied); (vi) a tendency to the Newtonian case occurs for n → 1 or L → 0; and (vii)

the behavior of the neutral stability curve is the same in all cases studied since it

is determined by the term α2/We. Our results shed new light on the stability of

gravitational flows of non-Newtonian fluids and provide a new tool for obtaining

comprehensive solutions on the onset of instability.
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Appendix A. Weighted residuals method

Weighted residuals methods are defined as approximations in which the resid-

ual tends to zero. Consider the scalar product,

⟨ f ,g⟩w =
∫ b

a
f g wdx , (A.1)

where f (x) and g(x) are functions defined on [a,b] and w(x) is a given weight

function. It is possible to expand f (x) in a truncated series,

fN(x) =
N

∑
k=0

f̂kϕk(x) for x ∈ [a;b] , (A.2)

where f̂k are coefficients to be determined and ϕk(x) are trial functions. In their

turn, the trial functions associated with a given weight w(x) must be orthogonal to

be useful in a spectral method,

⟨ϕk,ϕl⟩w = ck δk,l , (A.3)

where ck is constant and δk,l is the Kronecker delta. Now, for a differential equa-

tion given by,

L f (x)−u = 0 , (A.4)

it is possible to write the residual as

RN(x) = f (x)− fN(x) , (A.5)

where fN(x) is the approximate solution and RN(x) is the residual. Combining

Eqs. A.5 and A.4,
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RN(x) = L fN(x)−u , (A.6)

and, by inserting Eqs. A.2 and A.4 in Eq. A.6, applying a product by the test

function ψi(x) and a weight wκ, and integrating over the domain [a;b], one finds

∫ b

a
RN(x)ψi(x)wκd⃗x =

∫ b

a

{
N

∑
k=0

f̂kLϕk(x)−L f (x)

}
ψi(x)wκd⃗x =

∫ b

a

{
N

∑
k=0

f̂kLϕk(x)ψi(x)wκ

}
d⃗x−

∫ b

a
L f (x)ψi(x)wκd⃗x =

N

∑
k=0

f̂k

{∫ b

a
Lϕk(x)ψi(x)wκd⃗x

}
−
∫ b

a
L f (x)ψi(x)wκd⃗x ⇔

⟨RN(x),ψi(x)⟩=

N

∑
k=0

f̂k ⟨Lϕk(x),ψi(x)⟩−⟨L f (x),ψi(x)⟩ . (A.7)

We note that the weight wκ is associated with the trial function and i ∈ IN .

Since the method is based on nullifying RN by setting to zero the scalar product

⟨RN(x),ψi(x)⟩, the last identity in Eq. A.7 becomes

N

∑
k=0

f̂k ⟨Lϕk(x),ψi(x)⟩ = ⟨L f (x),ψi(x)⟩ . (A.8)

The Galerkin method is a particular case obtained when the test functions ψi

are chosen from the same family of trial functions ϕk (therefore, ψi = ϕi), and

the weight w is based on the orthogonality of the trial functions [32]. Inserting f̂k

(obtained by solving Eq. A.8) into Eq. A.2 gives the approximate solution fN .
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Appendix B. Tangent viscosity

As mentioned in Subsection 2.2, inserting u =U + û and v = 0+ v̂ into Eq. 6

results in

ˆ̇γ =
∂U
∂y

+
∂ û
∂y

+
∂ v̂
∂x

, (B.1)

and afterwards, inserting Eq. B.1 into Eq. 5 gives

η̂( ˆ̇γ) = I +(1− I)

{
1+

[
L

(
∂U
∂y

+
∂ û
∂y

+
∂ v̂
∂x

)]a} n−1
a

. (B.2)

By inserting the perturbations and Eq. B.2 in Eq. 10 we find

τ̂xx = 2

{
I +(1− I)

{
1+

[
La

(
∂U
∂y

+
∂ û
∂y

+
∂ v̂
∂x

)a]} n−1
a
}

∂ û
∂x

(B.3)

where, by using the binomial theorem for (∂U
∂y + ∂ û

∂y +
∂ v̂
∂x)

a in Eq. B.3, we find

(
∂U
∂y

+
∂ û
∂y

+
∂ v̂
∂x

)a

=

(
∂U
∂y

)a

+a

(
∂U
∂y

)a−1(
∂ û
∂y

+
∂ v̂
∂x

)
. (B.4)

Then, inserting Eq. B.4 in Eq. B.3 results in

τ̂xx = 2

{
I +(1− I)

[
1+

(
L

∂U
∂y

)a

+aLa

(
∂U
∂y

)a−1(
∂ û
∂y

+
∂ v̂
∂x

)] n−1
a
}

∂ û
∂x

,

(B.5)

and, applying the binomial theorem for [1+(L∂U
∂y )

a + aLa(∂U
∂y )

a−1(∂ û
∂y +

∂ v̂
∂x)]

n−1
a

in Eq.B.5, gives

37



[
1+

(
L

∂U
∂y

)a

+aLa

(
∂U
∂y

)a−1(
∂ û
∂y

+
∂ v̂
∂x

)] n−1
a

=

[
1+

(
L

∂U
∂y

)a] n−1
a
{

1+(n−1)

[
1+

(
L

∂U
∂y

)a]−1(
L

∂U
∂y

)a(
∂U
∂y

)−1(
∂ û
∂y

+
∂ v̂
∂x

)}
.

(B.6)

Afterwards, inserting Eq. B.6 into Eq. B.5 results in

τ̂xx = 2

{
I +(1− I)

[
1+

(
L

∂U
∂y

)a] n−1
a
}

∂ û
∂x

⇔

τ̂xx = 2η
∂ û
∂x

, (B.7)

where η is given by,

η = I +(1− I)

[
1+

(
L

∂U
∂y

)a] n−1
a

. (B.8)

Following the same procedure for Eq. 11 results in

τ̂yy = 2η
∂ v̂
∂y

, (B.9)

where η is given by Eq. B.8. Applying the above procedure to Eq. 12 gives

τxy =

{
I +(1− I)

{
1+

[
L

(
∂U
∂y

+
∂ û
∂y

+
∂ v̂
∂x

)]a} n−1
a
}(

∂U
∂y

+
∂ û
∂y

+
∂ v̂
∂x

)
,

(B.10)

which results in
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τxy =

{
I +(1− I)

[
1+

(
L

∂U
∂y

)a] n−1
a
}

∂U
∂y

+

{
I +(1− I)

[
1+n

(
L

∂U
∂y

)a][
1+

(
L

∂U
∂y

)a] n−1
a −1}(

∂ û
∂y

+
∂ v̂
∂x

)
=

τxy + τ̂xy , (B.11)

where τxy = η
∂U
∂y , τ̂xy = ε t(

∂ û
∂y +

∂ v̂
∂x), and ε t is given by

ε t = I +(1− I)
[

1+n
(

L
∂U
∂y

)a][
1+
(

L
∂U
∂y

)a] n−1
a −1

. (B.12)
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