
1.  Introduction
Barchans are crescent-shaped dunes that grow in gaseous or liquid environments under one-directional flows 
and limited amount of available grains, being frequently found on Earth, Mars and other celestial bodies 
(Bagnold,  1941; Claudin & Andreotti,  2006; Courrech du Pont,  2015; Elbelrhiti et  al.,  2005; Herrmann & 
Sauermann, 2000; Hersen, 2004; Parteli & Herrmann, 2007). In common, barchans found in different environ-
ments share roughly the same morphodynamics, though variations associated with hilly terrains (Bourke, 2010; 
Finkel, 1959; Parteli et al., 2014), wind changes (Bourke, 2010; Finkel, 1959; Parteli et al., 2014), barchan-barchan 
collisions (Assis & Franklin,  2020; Bourke,  2010; Hersen & Douady,  2005; Long & Sharp,  1964; Parteli 
et al., 2014; Vermeesch, 2011), and polidispersity (Alvarez et al., 2021; Assis et al., 2022) have been observed. 
Length and time scales of barchans, however, are very different, going from centimeters and minutes under water 
to kilometers and millenniums in the Martian atmosphere (Claudin & Andreotti, 2006; Hersen et al., 2002).

Although barchans are often organized in long fields, they can in some cases approach an obstacle of compa-
rable size, such as houses and buildings in the aeolian case, and bridge pillars and submarine structures in the 
aquatic case. In addition to affecting human activities, this situation represents a threat to biodiversity (such as in 
Lençóis Maranhenses, Brazil, where barchans and barchanoids reach grasslands and mangroves, and are close to 
villages, Amaral et al., 2019), and a challenge for predicting the outcomes of long-time migrating dunes (such as 
barchans and barchanoids interacting with large obstacles on Mars, Breed et al., 1979; Urso et al., 2018; Roback 
et al., 2020). Besides, it can be an additional source of variations in the morphology of barchans. However, very 
few works investigated the effect of large obstacles on the behavior of sand dunes, and none of them specifically 
for barchans.

To the authors' knowledge, the only experimental investigation of dunes interacting with large obstacles is the one 
reported in Bacik et al. (2021) for two-dimensional (2D) dunes. In that work, the authors carried out experiments 
in a narrow Couette-type circular channel, where different 2D obstacles were placed on the bottom and obstructed 
the dune path. They found that dunes either cross over the obstacle or remain trapped, and propose that the size 
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and shape of the obstacle control the dune behavior via the flow structure near the obstacle. Their results are 
important for understanding when a 2D (or near 2D) dune can cross over a given obstacle, but the question for 
their three-dimensional (3D) counterparts remains open. For instance, is it possible for a bedform to circumvent 
a large obstacle, such as free-surface water flows do when flowing in subcritical regime? And, in the affirmative 
case, does a supercritical regime exist, where the bedform would pass over the obstacle?

In this letter, we investigate experimentally the behavior of subaqueous barchans that interact with dune-size obsta-
cles. For that, we carried out experiments in a water channel where a large 3D obstacle was fixed initially downstream 
of a barchan dune, which was filmed as it reached the obstacle and interacted with it. In our experiments, we varied 
the obstacle shape and size, the flow velocity, and the grains' properties. We show that subaqueous barchans can 
be blocked, bypass, or pass over dune-size obstacles, with some intermediate/transient situations depending on the 
varied parameters. In the bypass cases, the original barchan can split into two or more bedforms, resulting in a signif-
icant redistribution of sand in space. Finally, we propose a classification map in which the barchan behavior depends 
basically on two dimensionless parameters. Our results represent a step toward understanding how barchans behave in 
the presence of large obstacles, helping us to predict the outcomes of dunes interacting with objects in other environ-
ments, and design structures such as retaining walls and bridge pillars that are safer and do not disturb sandy terrains.

2.  Materials and Methods
The experimental device consisted basically of a water reservoir, two centrifugal pumps, a flow straightener, a 5-m-long 
closed-conduit channel, a settling tank, and a return line. The channel had a rectangular cross section (width = 160 mm 
and height 2δ = 50 mm) and was made of transparent material, and its last 2 m consisted of the 1-m-long test section 
followed by a 1-m-long section discharging in the settling tank. This assured that a fully-developed water flow arrived 
at the test section, which was approximately 40 hydraulic diameters (40 × 3.05δ) from the channel entrance. With a 
given obstacle fixed on the bottom wall of the test section (centered in the spanwise direction) and the channel previ-
ously filled with water, controlled grains were poured inside, forming conical pile upstream the obstacle. By turning 
on the centrifugal pumps, a pressure-driven turbulent flow was imposed in the channel, deforming the conical pile 
into a barchan dune that afterward interacted with the obstacle. A camera placed above the channel acquired images 
of the bedforms as they interacted with the obstacles, and their morphodynamics was obtained later by processing the 
images. A layout of the experimental setup, photographs of its parts, a photograph of the test section, and microscopy 
images of the used grains are shown in Figures S1 to S6 in Supporting Information S1.

We used tap water at temperatures within 21 and 25  oC and three populations of solid particles: glass spheres (density 
ρs = 2,500 kg/m 3) with diameters within 0.40 mm ≤ d ≤ 0.60 mm, glass spheres with 0.15 mm ≤ d ≤ 0.25 mm, 
and zirconium spheres (density ρs = 4,100 kg/m 3) with diameters within 0.40 mm ≤ d ≤ 0.60 mm (the latter only 
for tests with cylindrical obstacles). The cross-sectional mean velocities of water U were within 0.226 m/s and 
0.312 m/s, corresponding to Reynolds numbers based on the channel height (Panton, 2010), Re = ρU2δ/μ, within 
1.13 × 10 4 and 1.55 × 10 4, respectively, and to Stokes numbers (Andreotti et al., 2013) Stt = Udρs/(18μ) within 
6.3 and 35.5, where ρ is the density and μ the dynamic viscosity of the fluid. The shear velocities on the channel 
walls u* (base flow) were computed from velocity profiles measured in previous works with a two-dimensional 
particle image velocimetry device (Alvarez & Franklin, 2018; Cúñez et al., 2018; Franklin et al., 2014), and were 
found to follow the Blasius correlation (Schlichting, 2000), from which we found 0.0133 m/s ≤ u* ≤ 0.0168 m/s. 
This corresponds to Reynolds numbers at the grain scale, Re* = ρu*d/μ, within 3 and 8 and to Shields numbers, 
θ = 𝐴𝐴

(

𝜌𝜌𝜌𝜌2∗
)

∕((𝜌𝜌𝑠𝑠 − 𝜌𝜌)𝑔𝑔𝑔𝑔) , within 0.060 and 0.086.

The initial mass m of dunes varied within 0.5 and 40.0 g, corresponding to conical piles with basal diameter 
within 17 and 75 mm. We call in the following W the width of a barchan dune, defined as its spanwise dimension. 
For the obstacles, we used different geometries (cylinders, rings, blocks and spheres) and sizes. Whenever we 
mention their height Hobs and width Wobs, we refer to dimensions measured considering a frontal view (taken in the 
direc tion of the fluid flow). Photographs of the used objects and a complete list of their sizes, as well as a list of the 
tested conditions, are available in Figure S7, Table S1, and Figure S16, respectively, in Supporting Information S1.

3.  Results
We basically observed four behaviors when a subaqueous barchan reaches a dune-size obstacle. It either: (a) 
bypasses the obstacle, without touching its surface; (b) passes over the obstacle; (c) behaves in an intermediate 
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situation between passing over and bypassing the obstacle; or (d) is greatly deformed, with a large portion of 
grains remaining trapped in the upstream part of the obstacle. We call these behaviors bypass, pass over, transient 
and trapping, respectively, and they do not appear necessarily to all obstacle shapes. Besides the obstacle shape, 
we observed that the behaviors depend also on the relative size between the dune and the obstacle, the water 
flow conditions, and the transport conditions (how easily particles follow the fluid). We inquire into the relations 
between these parameters next.

We begin with the cylinders, which we investigated first. For this form, we observed only the pass over, transient 
and bypass behaviors, shown in Figure 1, which indicates a dependence on both the relative height and diameter 
of cylinders with respect to the barchan dimensions (snapshots for other cases are available in Supporting Infor-
mation S1). In general, cylinders with height and diameter comparable to those of barchans produce the bypass 
behavior, in which the dune circumvents the obstacle with its grains avoiding the obstacle surface. As a result, 
the barchan is divided into smaller barchans by the end of the dune-obstacle interaction (four in Figure 1c). This 
grain-wall shunning indicates that grains are closely following the water flow, so that local Stokes numbers (how 
close the behaviors of solid and fluid particles are) shall be relatively low. On the other hand, when the cylin-
der is very thin (small diameter, Figure 1d) or low (Figure 1a), the dune passes over the obstacle without much 
disturbance other than leaving part of its grains in the recirculation region just downstream the obstacle. For 
intermediate sizes, the barchan dune behaves in a transient manner (Figure 1b).

We also carried out experiments with other geometries, namely blocks with different aspect ratios, rings, and 
spheres (images of all used obstacles are available in Figure S7 in Supporting Information S1). Figure 2 shows 
snapshots of the barchan dune interacting with blocks and a sphere, from which we observe that trapping occurs 
for the wide block (Figure 2d). The reason for blocking considerable quantities of grains just upstream the obsta-
cle is the large flow disturbance in the spanwise direction. In its turn, the flow disturbance is caused by the 
comparable heights of object and dune, and large aspect ratio (largest dimension in the spanwise direction) of the 
obstacle. This large disturbance spreads the grains laterally in the upstream region, with many of them remaining 
trapped, while others circumvent the obstacle and are either entrained further downstream or kept in the recir-
culation region just downstream the obstacle (two small spots linked by a thin stripe in Figure 2d). For the other 
obstacles shown in Figure 2, the general behavior is similar to those found for cylinders, and we have not observed 
changes of the type of interaction by varying the streamwise elongation of obstacles.

While the size ratio between obstacle and dune is an important parameter affecting the type of interaction, the 
grain-wall shunning taking place in bypass cases strongly indicates that the transport of grains by the fluid must 
be taken into account. This is in agreement with the findings reported by Bacik et al.  (2021) in the 2D case 
(although in their case the bypass does not exist and the passing over results only from grains' displacements in 
the vertical direction). Therefore, in order to rationalize the problem, we inquired into dimensionless parameters 
regrouping the observed behaviors. We ended up with two dimensionless numbers: the ratio between the obstacle 

Figure 1.  Snapshots of a barchan dune interacting with a cylindrical object, for different size ratios. In the snapshots, the 
water flow is from left to right, and the corresponding times are shown in each frame. (a) Hobst  /W = 0.05, for which the 
dune passes over the obstacle and continues as a single barchan (test 8); (b) Hobst  /W = 0.08, for which the dune behaves in 
an intermediate situation between passing over and bypassing the obstacle (test 9); (c) Hobst  /W = 0.19, for which the dune 
bypasses the obstacle (test 23); (d) Hobst  /W = 0.21 (thin cylinder), for which the dune passes over the obstacle and continues 
as a single barchan (test 47). The obstacle appears as a bright metallic object in each frame. On the right of each sequence, 
there is a photograph showing a top view of the used obstacle. Movies of each of these sequences and a table listing the test 
conditions are available in Movies S1 to S4 and Figure S16 in Supporting Information S1.
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height and the barchan width, Hobst  /W, and the Stokes number multiplied the obstacle height and divided by its 
width, StHobst  /Wobst. While the first is clearly a ratio between heights (the barchan height being around 10% of its 
width, Franklin & Charru, 2011), the second is a measure of how close the grains follow the water flow (closer 
for smaller values of St) and how much the flow is disturbed in the spanwise direction (greater for smaller values 
of Hobst  /Wobst).

Figure 3a presents a map of the outputs of our experiments plotted in the Hobst  /W versus StHobst  /Wobst space, 
where the squares, pentagrams, circles and asterisks correspond to the bypass, transient, pass over and trapping 
behaviors, respectively. The behaviors seem reasonably well organized in the map, where we can observe that:

•	 �bypass cases occur for high Hobst  /W (above 0.1) and moderate StHobst  /Wobst (within 1 and 20) values;
•	 �pass over cases occur for low to moderate Hobst  /W and moderate to high StHobst  /Wobst values (Hobst  /W < 0.2 for 

1 < StHobst  /Wobst < 10, and 0.2 ≤ Hobst  /W ≤ 0.5 for StHobst  /Wobst > 10);
•	 �transient cases occur for moderate values of both Hobst  /W and StHobst  /Wobst, that is, in the vicinity of the bypass 

and pass over cases (Hobst  /W within 0.05 and 0.2, and StHobst  /Wobst within 1 and 5);
•	 �and trapping cases occur for high Hobst  /W (above 0.2) and very low StHobst  /Wobst (below 1) values;

Given the organization of patterns in the Hobst  /W versus StHobst  /Wobst space, we inquired into the lines separat-
ing the different regions of Figure 3a. For that, we applied a machine learning algorithm (the Support Vector 
Machine method, Mammone et al., 2009) to Figure 3a, from which we obtained the separation lines shown in 
Figure 3b (see in Supporting Information S1 for a brief description of the machine learning method Support 
Vector Machine). Figure 3b consists, therefore, in a tentative map for classifying the behavior of subaqueous 
barchans interacting with dune-scale obstacles. We also investigated the number of dunes resulting from the 
interaction between the barchan and the obstacle. From the snapshots of Figures 1 and 2, we observe that some-
times interactions give rise to four dunes (Figure 1c, e.g.,) or zero (Figure 2d, e.g.,). We identified the number of 
dunes by the end of each test, and plotted that number directly in the Hobst  /W versus StHobst  /Wobst space, shown in 
Figure 3c (which also shows the separation lines). Here again, data is well organized, with roughly four or two 
dunes for the bypass case, two for the transient case, one for the pass over case, and zero for the trapped case. 
Maps similar to those of Figure 3a–3c can be obtained by using a modified Shields number θHobst  /Wobst instead 
of StHobst  /Wobst. However, because the flow is the main responsible for the bypass pattern, we believe that the 
StHobst  /Wobst is the proper dimensionless number. Maps using θHobst  /Wobst are available in Figures S11–S12 and 
S14–S15 in Supporting Information S1.

Finally, we investigated the spreading of grains in the transverse direction (upstream the obstacle) and the entrap-
ment of part of them in the recirculation region downstream the obstacle that occur in the trapping case. For that, 
we computed the surface area of bedforms and clusters of grains projected in the horizontal plane, and normalized 

Figure 2.  Snapshots of a barchan dune interacting with objects of other shapes. In the snapshots, the water flow is from 
left to right, and the corresponding times are shown in each frame. (a) Block with Hobst  /W = 0.12 and Hobst  /Wobst = 1, for 
which the dune passes over the obstacle and continues as a single barchan (test 41); (b) block with Hobst  /W = 0.12 and Hobst  /
Wobst = 0.28, for which the dune behaves in an intermediate situation between passing over and bypassing the obstacle (test 
45); (c) sphere with Hobst  /W = 0.23, for which the dune bypasses the obstacle (test 33); (d) block with Hobst  /W = 0.40 and 
Hobst  /Wobst = 0.10, for which the dune is trapped and spreads in the spanwise direction (test 55). The obstacle appears as a 
bright metallic object in each frame. On the right of each sequence, there is a photograph showing a top view of the used 
obstacle. Movies of each of these sequences and a table listing the test conditions are available in Movies S5 to S8 and Figure 
S16 in Supporting Information S1.
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them by the projected area of the initial pile. One example is shown in Figure 3d, plotting the time evolution of 
areas of both the upstream bedform (triangles) and downstream clusters (crosses). We observe that the area of 
the upstream bedform increases during its lateral elongation, reaching approximately the double of the value 
of  the initial area, and afterward it decreases slowly as some grains are entrained downstream (circumventing the 
obstacle). As the area of the upstream bedform decreases, those of the two spots linked by the transverse stripe 
increase (downstream the obstacle), but not in the same proportion since some of the grains are entrained further 
downstream.

We note that our results are only valid above the threshold for granular motion (otherwise there will be no inter-
action between dunes and obstacles) and concern only subaqueous bedforms, even though the map of Figure 3b 
uses the modified Stokes number. For the subaqueous case, the density ratio between sand and fluid is of the order 
of unity, so that sand particles are entrained directly by the water flow by rolling, sliding or effectuating small 
jumps (of the order of few grain diameters). The situation is different when the fluid is a gas. In the aeolian case, 
for example, the density ratio is of the order of 10 3, and sand particles effectuate large jumps (much larger that the 
grain diameter) due to their larger inertia. The grains forming aeolian barchans are, thus, expected to collide with 
the obstacle even when large flow disturbances are present. Although this is in agreement with the trend shown 
on the right part of the map, which indicates that high-inertia particles would collide and pass over obstacles, care 
must be taken when applying the maps of Figures 3b and 3c to aeolian or Martian dunes.

4.  Conclusions
In summary, we found that subaqueous barchans can be blocked, bypass or pass over dune-size obstacles (with 
some intermediate situations), that blocked dunes spread in the spanwise direction and remain trapped just 
upstream the obstacle, and that bypassing barchans split in two or more bedforms, implying a significant redistri-
bution of sand in space. Based on the experiments, we propose a classification map in which the barchan behavior 
depends on two dimensionless parameters: an obstacle-dune size ratio and a modified Stokes number. Our results 
shed light on how barchans behave in the presence of large obstacles, helping us to: (a) better understand the flow 
effects on barchan-barchan interactions (Assis & Franklin, 2020); (b) predict the outcomes of dunes interacting 

Figure 3.  (a) Different behaviors observed in the diagram of size ratio versus Stokes effect, that is, Hobst  /W versus StHobst  /
Wobst. Squares, pentagrams, circles and asterisks correspond to bypass, transient, pass over and trapping patterns. (b) Map 
showing regions where the different behaviors are expected (based on machine learning applied to the map of panel (a)). (c) 
Number of resulting bedforms observed in the Hobst  /W versus StHobst  /Wobst diagram (the continuous lines are those of Figure 
(c)). (d) Projected area of the resulting bedforms normalized by that of the initial pile, for the trapped case of Figure 2d (test 
55). Triangles correspond to the upstream bedform and crosses to the downstream ones (the two spots plus the transverse 
stripe).
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with objects in other environments; and (c) design structures such as retaining walls and bridge pillars that are 
safer and do not disturb sandy terrains.

Data Availability Statement
Data (digital images) supporting this work were generated by ourselves and are available in Mendeley Data (Assis 
et al., 2023) under the CC-BY-4.0 license. The numerical scripts used to process the images are also available in 
Mendeley Data (Assis et al., 2023) under the CC-BY-4.0 license.
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