# Escoamentos compressíveis

Resumo

## Grupos adimensionais

$$\bullet \ \ M = \frac{V}{a}$$

$$\bullet \quad \gamma = \frac{C_p}{C_p}$$

• 
$$M = \frac{V}{a}$$
  
•  $\gamma = \frac{C_p}{C_v}$   
•  $Re = \frac{\rho UL}{\mu}$ 

### Escoamento compressível

- Esc. Incomp. Subsônico  $\Rightarrow M = \frac{V}{a} \le 0.3$
- Esc. Comp. Subsônico  $\Rightarrow$  0.3  $< M = \frac{V}{a} < 1$
- Esc. Sônico  $\Rightarrow M = 1$
- Esc. Comp. Supersônico =>  $M = \frac{v}{a} > 1$

#### Velocidade do som e número de Mach

$$\vec{V} = 0$$

$$p$$

$$h$$

$$\rho$$

$$\rho$$

$$\rho + \Delta p$$

$$\rho + \Delta \rho$$

$$\rho + \Delta \rho$$

$$a = \text{velocidade do som}$$

Conservação da massa:  $\rho Aa = (\rho + \Delta \rho)A(a - \Delta V)$ 

Conservação da QDM:  $PA-(P+\Delta P)A=(\rho Aa)(a-\Delta V-a)$ 

Segunda lei, processo isentrópico:

Combinando as três equações:  $a^2 = \lim_{\Delta \to 0} \left( \frac{\Delta p}{\Delta \rho} \right)_s$  ou:  $a = \sqrt{\left( \frac{\partial p}{\partial \rho} \right)_s}$ 

### Velocidade do som em gases ideais

$$\frac{p}{\rho} = RT$$

Processo isentrópico:  $p = \frac{p_1}{\rho_1^k} \rho^k$ 

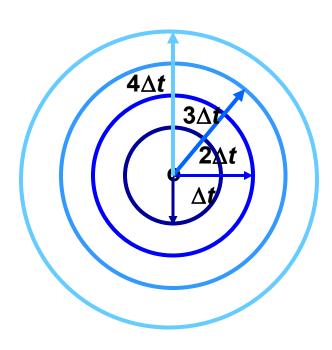
$$p = \frac{p_1}{\rho_1^k} \rho^k$$

Efetuando a derivada indicada:

$$\left(\frac{\partial \mathbf{p}}{\partial \rho}\right)_{s} = \left(\frac{\mathbf{p}_{1}}{\rho_{1}^{k}}\right) \mathbf{k} \rho^{(k-1)} \frac{\rho}{\rho} = \mathbf{k} \frac{\mathbf{p}}{\rho}$$

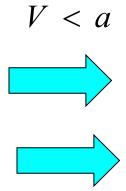
### Obtém-se uma expressão para o cálculo da velocidade do som num gás ideal

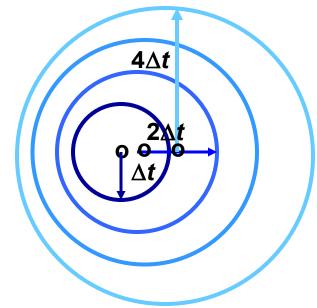
$$a = \sqrt{k \frac{p}{\rho}} = \sqrt{kRT}$$


### Número de Mach

$$M = \frac{V}{a}$$

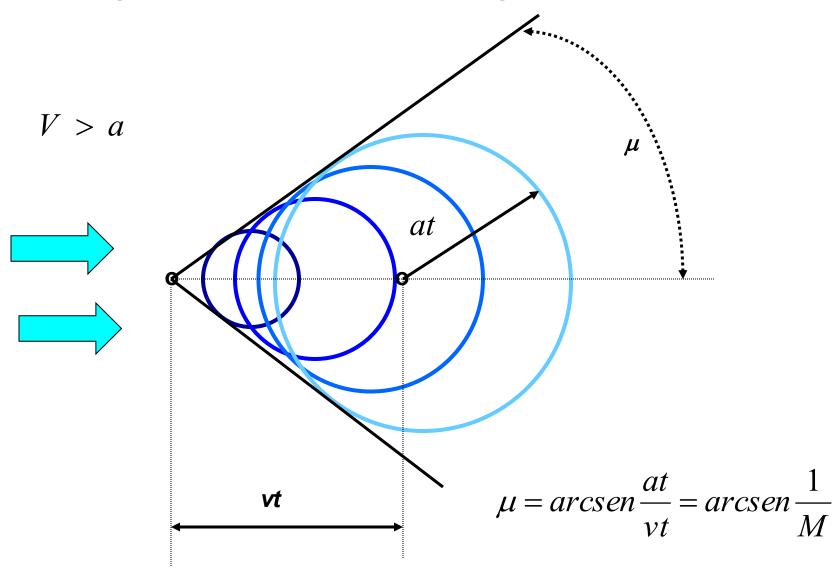
*M* > 1 escoamento supersônico


M = 1 sônico


M < 1 escoamento subsônico



### Propagação de uma onde elástica num gás


em repouso





em movimento

### Propagação de uma onde elástica num gás : cone de Mach



# Eqs. p/ s=cte, RP e gás perf.

Continuidade

$$\rho_2 V_2 A_2 = \rho_1 V_1 A_1$$

• Eq. s=cte

$$\frac{P_2}{\rho_2^{\gamma}} = \frac{P_1}{\rho_1^{\gamma}}$$

• Eq. Energia

$$\frac{\gamma}{\gamma - 1} \frac{P_2}{\rho_2} + \frac{V_2^2}{2} = \frac{\gamma}{\gamma - 1} \frac{P_1}{\rho_1} + \frac{V_1^2}{2}$$

$$\frac{a_2^2}{\gamma - 1} + \frac{V_2^2}{2} = \frac{a_1^2}{\gamma - 1} + \frac{V_1^2}{2}$$

• Eq. Estado

$$P = \rho RT$$

### Estado de Estagnação

- -> Fluido trazido adiabaticamente até o repouso (V=0)
- -> Índice "t" ou "0"
- -> Estado de referência

Entalpia de estagnação: 
$$h_{_{
m 0}}$$

Entalpia de estagnação: 
$$h_0 = c_p T_0 = c_p T + \frac{V^2}{2}$$

$$T_0 = T + \frac{V^2}{2c_n}$$

$$c_p = \frac{\gamma R}{(\gamma - 1)}$$

$$a = \sqrt{\gamma RT}$$

$$\frac{T_0}{T} = 1 + \frac{(\gamma - 1)}{2} M^2$$

### Estado de Estagnação

Temperatura de estagnação: 
$$\frac{T_0}{T} = 1 + \frac{(\gamma - 1)}{2}M^2$$

Velocidade do som na estagnação:

$$a \sim T^{1/2} \longrightarrow \frac{a_0}{a} = \left[1 + \frac{(\gamma - 1)}{2}M^2\right]^{1/2}$$

-> E, se além disso o processo for isentrópico:

Pressão de estagnação: 
$$\frac{p_0}{p} = \left(\frac{T_0}{T}\right)^{\gamma/(\gamma-1)} \longrightarrow \frac{p_0}{p} = \left[1 + \frac{(\gamma-1)}{2}M^2\right]^{\gamma/(\gamma-1)}$$

Variação da densidade na estagnação: 
$$\frac{\rho_0}{\rho} = \left(\frac{T_0}{T}\right)^{\frac{1}{(\gamma-1)}} \longrightarrow \frac{\rho_0}{\rho} = \left[1 + \frac{(\gamma-1)}{2}M^2\right]^{\frac{1}{(\gamma-1)}}$$

### Propriedades na estagnação

Entalpia: h = u + pv

Entalpia de estagnação: 
$$h_0 = h + \frac{V^2}{2}$$

Escoamento num duto adiabático : conservação da energia

$$h_1$$
 $V_1$ 
 $h_{01}$ 
 $V_2$ 
 $h_{02}$ 
 $h_1 + \frac{{V_1}^2}{2} = h_2 + \frac{{V_2}^2}{2}$ 
 $h_{01} = h_{02}$ 
 $T_{01} = T_{02}$ 

Escoamento isentrópico: relações isentrópicas

$$P_{01} = P_{02}$$

### **Estado Crítico**

- -> Condições de escoamento sônico (M=1)
- -> Índice \*
- -> Estado de referência

Temperatura crítica:

$$\frac{T_*}{T_0} = \frac{2}{\gamma + 1}$$

Velocidade do som Nas cond. críticas:

$$\frac{a_*}{a_0} = \left\lceil \frac{2}{(\gamma + 1)} \right\rceil^{1/2}$$

-> E, se além disso o processo for isentrópico:

Pressão crítica:

$$\frac{p_*}{p_0} = \left[\frac{2}{\gamma + 1}\right]^{\gamma/(\gamma - 1)}$$

Variação da densidade crítica:

$$\frac{\rho_*}{\rho_0} = \left[\frac{2}{\gamma + 1}\right]^{\frac{1}{(\gamma - 1)}}$$

### Escoamento isentrópico unidimensional

Variação da velocidade do fluído com a seção da tubulação

Conservação da massa, num escoamento em regime permanente:

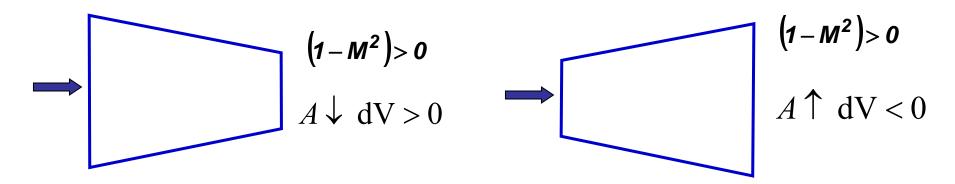
$$\rho AV = vaz\tilde{a}o$$

Diferenciando em relação à x e dividindo pela vazão:

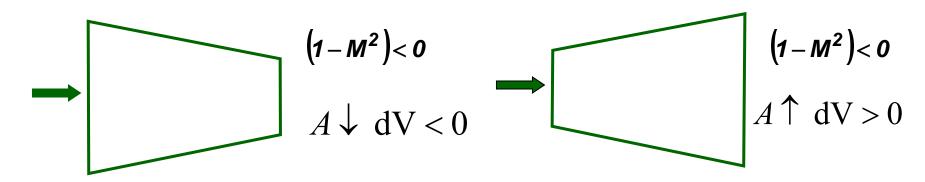
$$\frac{1}{\rho} \frac{\partial \rho}{\partial x} + \frac{1}{A} \frac{\partial A}{\partial x} + \frac{1}{V} \frac{\partial V}{\partial x} = 0$$

$$Vel. som \quad a^2 = \frac{\partial P}{\partial \rho}$$

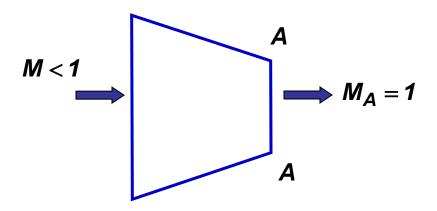
**QDM1-D** isentrópico: 
$$\frac{1}{\rho} \frac{\partial P}{\partial x} + V \frac{\partial V}{\partial x} = 0$$


Substituindo na equação diferencial de conservação da massa:

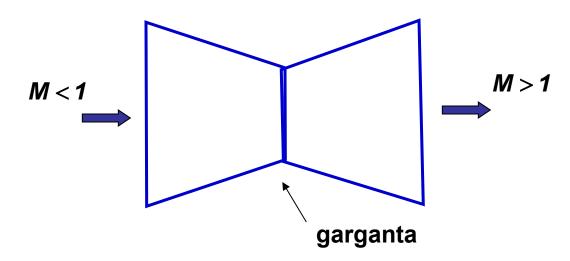
$$\frac{1}{A}\frac{dA}{dx} = \frac{P}{\rho}\frac{dP}{dx}\left(\frac{1}{V^2} - \frac{d\rho}{dp}\right) \qquad \text{Ou:} \qquad \frac{1}{A}\frac{dA}{dx} = -\frac{1}{V}\frac{dV}{dx}\left(1 - M^2\right)$$


#### Variação da velocidade do fluído com a seção da tubulação

$$\frac{1}{A}\frac{dA}{dx} = -\frac{1}{V}\frac{dV}{dx}\left(1 - M^2\right)$$


### Para escoamento subsônico M < 1




### Para escoamento supersônico M > 1

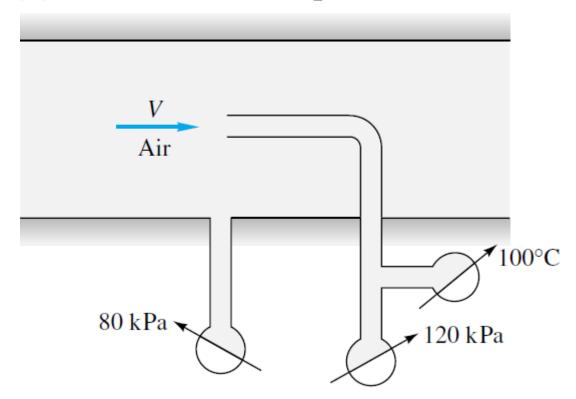


### Caso em que M=1 é atingido no final do duto:



A solução para continuar acelerando o fluído é fazer um duto convergente - divergente:




| Ma     | p/p <sub>0</sub> | $\rho/\rho_0$ | T/T <sub>0</sub> | A/A*    |
|--------|------------------|---------------|------------------|---------|
| 0,0    | 1,0              | 1,0           | 1,0              |         |
| 0,02   | 0,9997           | 0,9998        | 0,9999           | 28,9421 |
| 0,04   | 0,9989           | 0,9992        | 0,9997           | 14,4815 |
| 0,06   | 0,9975           | 0,9982        | 0,9993           | 9,6659  |
| 0,08   | 0,9955           | 0,9968        | 0,9987           | 7,2616  |
| 0,1    | 0,9930           | 0,9950        | 0.9980           | 5,8218  |
| 0,12   | 0,9900           | 0,9928        | 0,9971           | 4,8643  |
| . 0,14 | 0,9864           | 0,9903        | 0,9961           | 4,1824  |
| 0.16   | 0,9823           | 0,9873        | 0,9949           | 3,6727  |
| 0.18   | 0,9776           | 0,9840        | 0,9936           | 3,2779  |
| 0,2    | 0.9725           | 0,9803        | 0.9921           | 2,9635  |
| 0,22   | 0.9668           | 0,9762        | 0.9904           | 2,7076  |
| 0,24   | 0,9607           | 0,9718        | 0,9886           | 2,4956  |
| 0,26   | 0.9541           | 0,9670        | 0,9867           | 2,3173  |
| 0,28   | 0,9470           | 0,9619        | 0.9846           | 2,1656  |
| 0,3    | 0,9395           | 0,9564        | 0,9823           | 2,0351  |
| 0,32   | 0,9315           | 0,9506        | 0,9799           | 1,9219  |
| 0,34   | 0,9231           | 0,9445        | 0,9774           | 1,8229  |
| 0,36   | 0,9143           | 0,9380        | 0,9747           | 1,7358  |
| 0,38   | 0,9052           | 0,9313        | 0.9719           | 1,6587  |
| 0,4    | 0,8956           | 0,9243        | 0,9690           | 1,5901  |
| 0,42   | 0,8857           | 0,9170        | 0,9659           | 1,5289  |
| 0,44   | 0.8755           | 0.9094        | 0,9627           | 1,4740  |
| 0,46   | 0,8650           | 0,9016        | 0,9594           | 1,4246  |
| 0,48   | 0.8541           | 0,8935        | 0,9559           | 1,3801  |
| 0,5    | 0,8430           | 0,8852        | 0,9524           | 1,3398  |
| 0,52   | 0,8317           | 0,8766        | 0,9487           | 1,3034  |
| 0,54   | 0,8201           | 0,8679        | 0,9419           | 1,2703  |
| 0,56   | 0,8082           | 0,8589        | 0.9410           | 1,2403  |
| 0,58   | 0,7962           | 0,8498        | 0,9370           | 1,2130  |
| 0,6    | 0,7840           | 0,8405        | 0,9328           | 1,1882  |

# Questão

Um reservatório contém ar a 10<sup>6</sup> Pa e o descarrega isentropicamente em um ambiente a 10<sup>5</sup> Pa. Qual é o número de Mach na saída?

# Questão

Dadas as medições de pressão e temperatura de estagnação e de pressão estática da figura, calcule a velocidade do ar V admitindo: (a) escoamento incompressível; (b) escoamento compressível



| Ma   | $p/p_0$ | $ ho/ ho_0$ | $T/T_0$ | A/A*   | M  | [a | $p/p_0$ | $ ho/ ho_0$ | $T/T_0$ | A/A*    |
|------|---------|-------------|---------|--------|----|----|---------|-------------|---------|---------|
| 0.00 | 1.0000  | 1.0000      | 1.0000  | ∞      | 2. | 10 | 0.1094  | 0.2058      | 0.5313  | 1.8369  |
| 0.10 | 0.9930  | 0.9950      | 0.9980  | 5.8218 | 2. | 20 | 0.0935  | 0.1841      | 0.5081  | 2.0050  |
| 0.20 | 0.9725  | 0.9803      | 0.9921  | 2.9635 | 2. | 30 | 0.0800  | 0.1646      | 0.4859  | 2.1931  |
| 0.30 | 0.9395  | 0.9564      | 0.9823  | 2.0351 | 2. | 40 | 0.0684  | 0.1472      | 0.4647  | 2.4031  |
| 0.40 | 0.8956  | 0.9243      | 0.9690  | 1.5901 | 2. | 50 | 0.0585  | 0.1317      | 0.4444  | 2.6367  |
| 0.50 | 0.8430  | 0.8852      | 0.9524  | 1.3398 | 2. | 60 | 0.0501  | 0.1179      | 0.4252  | 2.8960  |
| 0.60 | 0.7840  | 0.8405      | 0.9328  | 1.1882 | 2. | 70 | 0.0430  | 0.1056      | 0.4068  | 3.1830  |
| 0.70 | 0.7209  | 0.7916      | 0.9107  | 1.0944 | 2. | 80 | 0.0368  | 0.0946      | 0.3894  | 3.5001  |
| 0.80 | 0.6560  | 0.7400      | 0.8865  | 1.0382 | 2. | 90 | 0.0317  | 0.0849      | 0.3729  | 3.8498  |
| 0.90 | 0.5913  | 0.6870      | 0.8606  | 1.0089 | 3. | 00 | 0.0272  | 0.0762      | 0.3571  | 4.2346  |
| 1.00 | 0.5283  | 0.6339      | 0.8333  | 1.0000 | 3. | 10 | 0.0234  | 0.0685      | 0.3422  | 4.6573  |
| 1.10 | 0.4684  | 0.5817      | 0.8052  | 1.0079 | 3. | 20 | 0.0202  | 0.0617      | 0.3281  | 5.1210  |
| 1.20 | 0.4124  | 0.5311      | 0.7764  | 1.0304 | 3. | 30 | 0.0175  | 0.0555      | 0.3147  | 5.6286  |
| 1.30 | 0.3609  | 0.4829      | 0.7474  | 1.0663 | 3. | 40 | 0.0151  | 0.0501      | 0.3019  | 6.1837  |
| 1.40 | 0.3142  | 0.4374      | 0.7184  | 1.1149 | 3. | 50 | 0.0131  | 0.0452      | 0.2899  | 6.7896  |
| 1.50 | 0.2724  | 0.3950      | 0.6897  | 1.1762 | 3. | 60 | 0.0114  | 0.0409      | 0.2784  | 7.4501  |
| 1.60 | 0.2353  | 0.3557      | 0.6614  | 1.2502 | 3. | 70 | 0.0099  | 0.0370      | 0.2675  | 8.1691  |
| 1.70 | 0.2026  | 0.3197      | 0.6337  | 1.3376 | 3. | 80 | 0.0086  | 0.0335      | 0.2572  | 8.9506  |
| 1.80 | 0.1740  | 0.2868      | 0.6068  | 1.4390 | 3. | 90 | 0.0075  | 0.0304      | 0.2474  | 9.7990  |
| 1.90 | 0.1492  | 0.2570      | 0.5807  | 1.5553 | 4. | 00 | 0.0066  | 0.0277      | 0.2381  | 10.7188 |
| 2.00 | 0.1278  | 0.2300      | 0.5556  | 1.6875 |    |    |         |             |         |         |
|      |         |             |         |        |    |    |         |             |         |         |