Propriedades de Misturas

Parte 2
<table>
<thead>
<tr>
<th>Substance</th>
<th>Chemical Formula</th>
<th>M (kg/kmol)</th>
<th>T_c (K)</th>
<th>p_c (bar)</th>
<th>$Z_c = \frac{p_c V_c}{RT_c}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>C$_2$H$_2$</td>
<td>26.04</td>
<td>309</td>
<td>62.8</td>
<td>0.274</td>
</tr>
<tr>
<td>Air (equivalent)</td>
<td>—</td>
<td>28.97</td>
<td>133</td>
<td>37.7</td>
<td>0.284</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH$_3$</td>
<td>17.03</td>
<td>406</td>
<td>112.8</td>
<td>0.242</td>
</tr>
<tr>
<td>Argon</td>
<td>Ar</td>
<td>39.94</td>
<td>151</td>
<td>48.6</td>
<td>0.290</td>
</tr>
<tr>
<td>Benzene</td>
<td>C$_6$H$_6$</td>
<td>78.11</td>
<td>563</td>
<td>49.3</td>
<td>0.274</td>
</tr>
<tr>
<td>Butane</td>
<td>C4H${10}$</td>
<td>58.12</td>
<td>425</td>
<td>38.0</td>
<td>0.274</td>
</tr>
<tr>
<td>Carbon</td>
<td>C</td>
<td>12.01</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>CO$_2$</td>
<td>44.01</td>
<td>304</td>
<td>73.9</td>
<td>0.276</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>CO</td>
<td>28.01</td>
<td>133</td>
<td>35.0</td>
<td>0.294</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
<td>63.54</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ethane</td>
<td>C$_2$H$_6$</td>
<td>30.07</td>
<td>305</td>
<td>48.8</td>
<td>0.285</td>
</tr>
<tr>
<td>Ethyl alcohol</td>
<td>C$_2$H$_5$OH</td>
<td>46.07</td>
<td>516</td>
<td>63.8</td>
<td>0.249</td>
</tr>
<tr>
<td>Ethylene</td>
<td>C$_2$H$_4$</td>
<td>28.05</td>
<td>283</td>
<td>51.2</td>
<td>0.270</td>
</tr>
<tr>
<td>Helium</td>
<td>He</td>
<td>4.003</td>
<td>5.2</td>
<td>2.3</td>
<td>0.300</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>H$_2$</td>
<td>2.016</td>
<td>33.2</td>
<td>13.0</td>
<td>0.304</td>
</tr>
<tr>
<td>Methane</td>
<td>CH$_4$</td>
<td>16.04</td>
<td>191</td>
<td>46.4</td>
<td>0.290</td>
</tr>
<tr>
<td>Methyl alcohol</td>
<td>CH$_3$OH</td>
<td>32.04</td>
<td>513</td>
<td>79.5</td>
<td>0.220</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N$_2$</td>
<td>28.01</td>
<td>126</td>
<td>33.9</td>
<td>0.291</td>
</tr>
<tr>
<td>Octane</td>
<td>C8H${18}$</td>
<td>114.22</td>
<td>569</td>
<td>24.9</td>
<td>0.258</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O$_2$</td>
<td>32.00</td>
<td>154</td>
<td>50.5</td>
<td>0.290</td>
</tr>
<tr>
<td>Propane</td>
<td>C$_3$H$_8$</td>
<td>44.09</td>
<td>370</td>
<td>42.7</td>
<td>0.276</td>
</tr>
<tr>
<td>Propylene</td>
<td>C$_3$H$_6$</td>
<td>42.08</td>
<td>365</td>
<td>46.2</td>
<td>0.276</td>
</tr>
<tr>
<td>Refrigerant 12</td>
<td>CCl$_2$F$_2$</td>
<td>120.92</td>
<td>385</td>
<td>41.2</td>
<td>0.278</td>
</tr>
<tr>
<td>Refrigerant 22</td>
<td>CHClF$_2$</td>
<td>86.48</td>
<td>369</td>
<td>49.8</td>
<td>0.267</td>
</tr>
<tr>
<td>Refrigerant 134a</td>
<td>CF$_3$CH$_2$F</td>
<td>102.03</td>
<td>374</td>
<td>40.7</td>
<td>0.260</td>
</tr>
<tr>
<td>Sulfur dioxide</td>
<td>SO$_2$</td>
<td>64.06</td>
<td>431</td>
<td>78.7</td>
<td>0.268</td>
</tr>
<tr>
<td>Water</td>
<td>H$_2$O</td>
<td>18.02</td>
<td>647.3</td>
<td>220.9</td>
<td>0.233</td>
</tr>
</tbody>
</table>
Exemplo: cálculo de M do ar seco

<table>
<thead>
<tr>
<th>Component</th>
<th>Mole Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>78.08</td>
</tr>
<tr>
<td>Oxygen</td>
<td>20.95</td>
</tr>
<tr>
<td>Argon</td>
<td>0.93</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>0.03</td>
</tr>
<tr>
<td>Neon, helium, methane, and others</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\[
M = \sum y_i M_i \approx 0.78M_{N_2} + 0.21M_{O_2} + 0.0093M_{Ar} + 0.0003M_{CO_2} \approx 0.78 \times 28 + 0.21 \times 32 + 0.0093 \times 40 + 0.0003 \times 44 = 28.97 \text{kg/kmol}
\]
Exemplo

• A análise molar de um certo produto gasoso é 8% CO\(_2\), 11% de H\(_2\)O, 7% de O\(_2\) e 74% de N\(_2\). Determine: (a) a massa molecular da mistura; (b) a composição em termos de frações mássicas.

• (a) \(M = \sum y_i M_i \approx 0,08 M_{CO2} + 0,11 M_{H2O} + 0,07 M_{O2} + 0,74 M_{N2} = 28,46 \text{kg/kmol}\)

• (b) \(n_i = \frac{m_i}{M_i}\) => \(m_i = n_i M_i\)

\(m_{fi} = \frac{m_i}{m}\) => \(m_{fi} = \frac{n_i M_i}{nM} = y_i \frac{M_i}{M}\)
Assim:

• $mf_{CO_2} = 12,37\%$
• $mf_{H_2O} = 6,96\%$
• $mf_{O_2} = 7,87\%$
• $mf_{N_2} = 72,80\%$
Exemplo

• Uma mistura de gases tem a seguinte composição galvimétrica: 10% H\(_2\), 60% N\(_2\) e 30% CO\(_2\). Determine: (a) as frações molares de cada componente; (b) a massa molecular da mistura.

• (a) \(m_{fi} = \frac{m_i}{m} \) => \(m_i = m_{fi} \cdot m \)

\[
\frac{m_i}{M_i} = \frac{mf_i \cdot m}{M_i}
\]

\[
y_i = \frac{n_i}{n} = \frac{mf_i \cdot m/M_i}{\sum (mf_i \cdot m/M_i)} = \frac{mf_i \cdot m/M_i}{m \sum (mf_i/M_i)} = \frac{mf_i/M_i}{\sum (mf_i/M_i)}
\]
Exemplo (continuação)

Assim

• \(y_{H2} = 63,9\% \)
• \(y_{N2} = 27,4\% \)
• \(y_{CO2} = 8,7\% \)

• (b) \(M = \sum y_i M_i = 0,639 M_{H2} + 0,274 M_{N2} + 0,087 M_{CO2} = 12,79 \text{ kg/kmol} \)
Avaliação de propriedades em processos

- Para poder avaliar processos termodinâmicos envolvendo misturas:
 - Transporte de massa, energia e aplicação 2ª Lei
 - Para processos não reativos, mesmos princípios
 - Diferença: é preciso avaliar propriedades da mistura com base em seus componentes
Processos com misturas a composição CTE

State 1

\[(n_1, n_2, \ldots, n_j)\]

at

\[T_1, p_1\]

State 2

\[(n_1, n_2, \ldots, n_j)\]

at

\[T_2, p_2\]

\[U_1 = \sum_{i=1}^{j} n_i \bar{u}_i(T_1)\]

\[H_1 = \sum_{i=1}^{j} n_i \bar{h}_i(T_1)\]

\[S_1 = \sum_{i=1}^{j} n_i \bar{s}_i(T_1, p_{i1})\]

\[U_2 = \sum_{i=1}^{j} n_i \bar{u}_i(T_2)\]

\[H_2 = \sum_{i=1}^{j} n_i \bar{h}_i(T_2)\]

\[S_2 = \sum_{i=1}^{j} n_i \bar{s}_i(T_2, p_{i2})\]
Processos com misturas a composição CTE

\[U_2 - U_1 = \sum_{i=1}^{j} n_i [\bar{u}_i(T_2) - \bar{u}_i(T_1)] \]

\[H_2 - H_1 = \sum_{i=1}^{j} n_i [\bar{h}_i(T_2) - \bar{h}_i(T_1)] \]

\[S_2 - S_1 = \sum_{i=1}^{j} n_i [\bar{s}_i(T_2, p_{i2}) - \bar{s}_i(T_1, p_{i1})] \]

\[\Delta \bar{u} = \sum_{i=1}^{j} y_i [\bar{u}_i(T_2) - \bar{u}_i(T_1)] \]

\[\Delta \bar{h} = \sum_{i=1}^{j} y_i [\bar{h}_i(T_2) - \bar{h}_i(T_1)] \]

\[\Delta \bar{s} = \sum_{i=1}^{j} y_i [\bar{s}_i(T_2, p_{i2}) - \bar{s}_i(T_1, p_{i1})] \]
Processos com misturas a composição CTE

• Estas eqs. fornecem variações da mistura entre 1 e 2 com base na variação de cada componente

• As propriedades em 1 e 2 de cada componente podem ser obtidas de tabelas de propriedades
 • \tilde{u}_i e \tilde{h}_i são funções apenas de T
 • Há tabelas onde são diretamente lidas
 • \tilde{s}_i é função de T e de P_i
 • Para gás perfeito:

\[
\Delta \tilde{s}_i = \tilde{s}_i^\circ(T_2) - \tilde{s}_i^\circ(T_1) - \bar{R} \ln \frac{p_{i2}}{p_{i1}}
\]

• E como, para composição cte entre 1 e 2

\[
\Delta \tilde{s}_i = \tilde{s}_i^\circ(T_2) - \tilde{s}_i^\circ(T_1) - \bar{R} \ln \frac{p_2}{p_1}
\]
Processos com misturas a composição CTE

- E agora pode ser calculado a partir de dados tabelados
- Finalmente, assumindo calores específicos ctes

\[
\Delta \bar{u} = \bar{c}_v(T_2 - T_1), \quad \Delta \bar{u}_i = \bar{c}_{v,i}(T_2 - T_1)
\]
\[
\Delta \bar{h} = \bar{c}_p(T_2 - T_1), \quad \Delta \bar{h}_i = \bar{c}_{p,i}(T_2 - T_1)
\]
\[
\Delta \bar{s} = \bar{c}_p \ln \frac{T_2}{T_1} - \bar{R} \ln \frac{p_2}{p_1}, \quad \Delta \bar{s}_i = \bar{c}_{p,i} \ln \frac{T_2}{T_1} - \bar{R} \ln \frac{p_2}{p_1}
\]
<table>
<thead>
<tr>
<th>T (K)</th>
<th>h (kJ/kg)</th>
<th>u (kJ/kg)</th>
<th>s° (kJ/kg · K)</th>
<th>(p_r)</th>
<th>(v_r)</th>
<th>T (K)</th>
<th>h (kJ/kg)</th>
<th>u (kJ/kg)</th>
<th>s° (kJ/kg · K)</th>
<th>(p_r)</th>
<th>(v_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>199.97</td>
<td>142.56</td>
<td>1.29559</td>
<td>0.3363</td>
<td>1707.</td>
<td>450</td>
<td>451.80</td>
<td>322.62</td>
<td>2.11161</td>
<td>5.775</td>
<td>223.6</td>
</tr>
<tr>
<td>210</td>
<td>209.97</td>
<td>149.69</td>
<td>1.34444</td>
<td>0.3987</td>
<td>1512.</td>
<td>460</td>
<td>462.02</td>
<td>329.97</td>
<td>2.13407</td>
<td>6.245</td>
<td>211.4</td>
</tr>
<tr>
<td>220</td>
<td>219.97</td>
<td>156.82</td>
<td>1.39105</td>
<td>0.4690</td>
<td>1346.</td>
<td>470</td>
<td>472.24</td>
<td>337.32</td>
<td>2.15604</td>
<td>6.742</td>
<td>200.1</td>
</tr>
<tr>
<td>230</td>
<td>230.02</td>
<td>164.00</td>
<td>1.43557</td>
<td>0.5477</td>
<td>1205.</td>
<td>480</td>
<td>482.49</td>
<td>344.70</td>
<td>2.17760</td>
<td>7.268</td>
<td>189.5</td>
</tr>
<tr>
<td>240</td>
<td>240.02</td>
<td>171.13</td>
<td>1.47824</td>
<td>0.6355</td>
<td>1084.</td>
<td>490</td>
<td>492.74</td>
<td>352.08</td>
<td>2.19876</td>
<td>7.824</td>
<td>179.7</td>
</tr>
<tr>
<td>250</td>
<td>250.05</td>
<td>178.28</td>
<td>1.51917</td>
<td>0.7329</td>
<td>979.</td>
<td>500</td>
<td>503.02</td>
<td>359.49</td>
<td>2.21952</td>
<td>8.411</td>
<td>170.6</td>
</tr>
<tr>
<td>260</td>
<td>260.09</td>
<td>185.45</td>
<td>1.55848</td>
<td>0.8405</td>
<td>887.8</td>
<td>510</td>
<td>513.32</td>
<td>366.92</td>
<td>2.23993</td>
<td>9.031</td>
<td>162.1</td>
</tr>
<tr>
<td>270</td>
<td>270.11</td>
<td>192.60</td>
<td>1.59634</td>
<td>0.9590</td>
<td>808.0</td>
<td>520</td>
<td>523.63</td>
<td>374.36</td>
<td>2.25997</td>
<td>9.684</td>
<td>154.1</td>
</tr>
<tr>
<td>280</td>
<td>280.13</td>
<td>199.75</td>
<td>1.63279</td>
<td>1.0889</td>
<td>738.0</td>
<td>530</td>
<td>533.98</td>
<td>381.84</td>
<td>2.27967</td>
<td>10.37</td>
<td>146.7</td>
</tr>
<tr>
<td>285</td>
<td>285.14</td>
<td>203.33</td>
<td>1.65055</td>
<td>1.1584</td>
<td>706.1</td>
<td>540</td>
<td>544.35</td>
<td>389.34</td>
<td>2.29906</td>
<td>11.10</td>
<td>139.7</td>
</tr>
<tr>
<td>290</td>
<td>290.16</td>
<td>206.91</td>
<td>1.66802</td>
<td>1.2311</td>
<td>676.1</td>
<td>550</td>
<td>554.74</td>
<td>396.86</td>
<td>2.31809</td>
<td>11.86</td>
<td>133.1</td>
</tr>
<tr>
<td>295</td>
<td>295.17</td>
<td>210.49</td>
<td>1.68515</td>
<td>1.3068</td>
<td>647.9</td>
<td>560</td>
<td>565.17</td>
<td>404.42</td>
<td>2.33685</td>
<td>12.66</td>
<td>127.0</td>
</tr>
<tr>
<td>300</td>
<td>300.19</td>
<td>214.07</td>
<td>1.70203</td>
<td>1.3860</td>
<td>621.2</td>
<td>570</td>
<td>575.59</td>
<td>411.97</td>
<td>2.35531</td>
<td>13.50</td>
<td>121.2</td>
</tr>
<tr>
<td>305</td>
<td>305.22</td>
<td>217.67</td>
<td>1.71865</td>
<td>1.4686</td>
<td>596.0</td>
<td>580</td>
<td>586.04</td>
<td>419.55</td>
<td>2.37348</td>
<td>14.38</td>
<td>115.7</td>
</tr>
<tr>
<td>310</td>
<td>310.24</td>
<td>221.25</td>
<td>1.73498</td>
<td>1.5546</td>
<td>572.3</td>
<td>590</td>
<td>596.52</td>
<td>427.15</td>
<td>2.39140</td>
<td>15.31</td>
<td>110.6</td>
</tr>
<tr>
<td>T (K)</td>
<td>\bar{h} (kJ/kmol)</td>
<td>\bar{u} (kJ/kmol)</td>
<td>\bar{s}^0 (kJ/kmol·K)</td>
<td>\bar{h} (kJ/kmol)</td>
<td>\bar{u} (kJ/kmol)</td>
<td>\bar{s}^0 (kJ/kmol·K)</td>
<td>\bar{h} (kJ/kmol)</td>
<td>\bar{u} (kJ/kmol)</td>
<td>\bar{s}^0 (kJ/kmol·K)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>6,601</td>
<td>4,772</td>
<td>202.966</td>
<td>6,391</td>
<td>4,562</td>
<td>188.683</td>
<td>7,295</td>
<td>5,466</td>
<td>178.576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>6,938</td>
<td>5,026</td>
<td>204.464</td>
<td>6,683</td>
<td>4,771</td>
<td>189.980</td>
<td>7,628</td>
<td>5,715</td>
<td>180.054</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>7,280</td>
<td>5,285</td>
<td>205.920</td>
<td>6,975</td>
<td>4,979</td>
<td>191.221</td>
<td>7,961</td>
<td>5,965</td>
<td>181.471</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>7,627</td>
<td>5,548</td>
<td>207.337</td>
<td>7,266</td>
<td>5,188</td>
<td>192.411</td>
<td>8,294</td>
<td>6,215</td>
<td>182.831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>7,979</td>
<td>5,817</td>
<td>208.717</td>
<td>7,558</td>
<td>5,396</td>
<td>193.554</td>
<td>8,627</td>
<td>6,466</td>
<td>184.139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>8,335</td>
<td>6,091</td>
<td>210.062</td>
<td>7,849</td>
<td>5,604</td>
<td>194.654</td>
<td>8,961</td>
<td>6,716</td>
<td>185.399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>8,697</td>
<td>6,369</td>
<td>211.376</td>
<td>8,140</td>
<td>5,812</td>
<td>195.173</td>
<td>9,296</td>
<td>6,968</td>
<td>186.616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>9,063</td>
<td>6,651</td>
<td>212.660</td>
<td>8,432</td>
<td>6,020</td>
<td>196.735</td>
<td>9,631</td>
<td>7,219</td>
<td>187.791</td>
<td></td>
<td></td>
</tr>
<tr>
<td>298</td>
<td>9,364</td>
<td>6,885</td>
<td>213.685</td>
<td>8,669</td>
<td>6,190</td>
<td>197.543</td>
<td>9,904</td>
<td>7,425</td>
<td>188.720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>9,431</td>
<td>6,939</td>
<td>213.915</td>
<td>8,723</td>
<td>6,229</td>
<td>197.723</td>
<td>9,966</td>
<td>7,472</td>
<td>188.928</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>9,807</td>
<td>7,230</td>
<td>215.146</td>
<td>9,014</td>
<td>6,437</td>
<td>198.678</td>
<td>10,302</td>
<td>7,725</td>
<td>190.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>10,186</td>
<td>7,526</td>
<td>216.351</td>
<td>9,306</td>
<td>6,645</td>
<td>199.603</td>
<td>10,639</td>
<td>7,978</td>
<td>191.098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>10,570</td>
<td>7,826</td>
<td>217.534</td>
<td>9,597</td>
<td>6,854</td>
<td>200.500</td>
<td>10,976</td>
<td>8,232</td>
<td>192.136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>10,959</td>
<td>8,131</td>
<td>218.694</td>
<td>9,889</td>
<td>7,062</td>
<td>201.371</td>
<td>11,314</td>
<td>8,487</td>
<td>193.144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>11,748</td>
<td>8,752</td>
<td>220.948</td>
<td>10,473</td>
<td>7,480</td>
<td>203.040</td>
<td>11,992</td>
<td>8,998</td>
<td>195.081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>12,148</td>
<td>9,068</td>
<td>222.044</td>
<td>10,765</td>
<td>7,689</td>
<td>203.842</td>
<td>12,331</td>
<td>9,255</td>
<td>196.012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>12,552</td>
<td>9,392</td>
<td>223.122</td>
<td>11,058</td>
<td>7,899</td>
<td>204.622</td>
<td>12,672</td>
<td>9,513</td>
<td>196.920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>12,960</td>
<td>9,718</td>
<td>224.182</td>
<td>11,351</td>
<td>8,108</td>
<td>205.383</td>
<td>13,014</td>
<td>9,771</td>
<td>197.807</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>13,372</td>
<td>10,046</td>
<td>225.225</td>
<td>11,644</td>
<td>8,319</td>
<td>206.125</td>
<td>13,356</td>
<td>10,030</td>
<td>198.673</td>
<td></td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>13,787</td>
<td>10,378</td>
<td>226.250</td>
<td>11,938</td>
<td>8,529</td>
<td>206.850</td>
<td>13,699</td>
<td>10,290</td>
<td>199.521</td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>14,206</td>
<td>10,714</td>
<td>227.258</td>
<td>12,232</td>
<td>8,740</td>
<td>207.549</td>
<td>14,093</td>
<td>10,551</td>
<td>200.350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>430</td>
<td>14,628</td>
<td>11,053</td>
<td>228.252</td>
<td>12,526</td>
<td>8,951</td>
<td>208.252</td>
<td>14,388</td>
<td>10,813</td>
<td>201.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>15,054</td>
<td>11,393</td>
<td>229.230</td>
<td>12,821</td>
<td>9,163</td>
<td>208.929</td>
<td>14,734</td>
<td>11,075</td>
<td>201.955</td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>15,483</td>
<td>11,742</td>
<td>230.194</td>
<td>13,116</td>
<td>9,375</td>
<td>209.593</td>
<td>15,080</td>
<td>11,339</td>
<td>202.734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>460</td>
<td>15,916</td>
<td>12,091</td>
<td>231.144</td>
<td>13,412</td>
<td>9,587</td>
<td>210.243</td>
<td>15,428</td>
<td>11,603</td>
<td>203.497</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exemplo

- Uma mistura de 0,3 kg de CO₂ e 0,2 kg de N₂ é comprimida de 1 bar e 300 K a 3 bars seguindo um processo politrópico para o qual n=1,25. Determine: (a) a temperatura final; (b) o trabalho; (c) a transferência de calor; (d) a variação de entropia da mistura.
Exemplo (continuação)

Processo politrópico:

• (a)

\[T_2 = T_1 \left(\frac{p_2}{p_1} \right)^{(n-1)/n} = 300 \left(\frac{3}{1} \right)^{0.2} = 374 \text{ K} \]

• (b)

\[W = \int_{1}^{2} p \, dV = \frac{p_2 V_2 - p_1 V_1}{1 - n} = \frac{m (\bar{R}/M)(T_2 - T_1)}{1 - n} \]

onde: \(M = \frac{m}{n} \)

\[m = 0.3 + 0.2 = 0.5 \text{ kg} \]

\[n_{\text{CO}_2} = \frac{0.3}{44} = 0.0068 \text{ kmol} \]

\[n_{\text{N}_2} = \frac{0.2}{28} = 0.0071 \text{ kmol} \]

\[\Rightarrow M = 35.97 \]
Finalmente:

\[
W = (0.5 \text{ kg}) \left(\frac{8.314 \text{ kJ}}{35.97 \text{ kg} \cdot ^\circ \text{K}} \right) \left(374 \text{ K} - 300 \text{ K} \right) \frac{1}{1 - 1.25} = -34.21 \text{ kJ}
\]

- (c) \[Q = \Delta U + W\]

onde

\[
\Delta U = n_{\text{CO}_2} \left[\bar{u}_{\text{CO}_2}(T_2) - \bar{u}_{\text{CO}_2}(T_1) \right] + n_{\text{N}_2} \left[\bar{u}_{\text{N}_2}(T_2) - \bar{u}_{\text{N}_2}(T_1) \right]
\]

Table A-23 \[\Rightarrow \Delta U = 26.3 \text{ kJ}\]

\[Q = +26.3 - 34.21 = -7.91 \text{ kJ}\]
Exemplo (continuação)

- (d) \[\Delta S = n_{\text{CO}_2} \Delta s_{\text{CO}_2} + n_{\text{N}_2} \Delta s_{\text{N}_2} \]

onde \[\Delta s_i = s_i^0(T_2) - s_i^0(T_1) - R \ln \frac{p_2}{p_1} \]

Table A-23 => \[\Delta S = 0.0068 \left(222.475 - 213.915 - 8.314 \frac{3}{1} \right) \]

\[+ 0.0071 \left(198.105 - 191.682 - 8.314 \frac{3}{1} \right) \]

\[= -0.0231 \text{ kJ/K} \]
Exemplo

• Uma mistura de CO$_2$ e de O$_2$ com frações molares 0,8 e 0,2, respectivamente, se expande isentropicamente e em regime permanente em um bocal, de 700K, 5bars e 3m/s, a uma pressão de saída de 1 bar. Determine: (a) a temperatura na saída; (b) as variações de entropia do CO$_2$ e do O$_2$; (c) a velocidade na saída.
Exemplo (continuação)

• (a) : isentrópico => \(\bar{s}_2 - \bar{s}_1 = y_{O_2} \Delta \bar{s}_{O_2} + y_{CO_2} \Delta \bar{s}_{CO_2} = 0 \)

\[
y_{O_2} \left[\bar{s}_{O_2}(T_2) - \bar{s}_{O_2}(T_1) - \frac{p_2}{p_1} \ln \frac{p_2}{p_1} \right] + y_{CO_2} \left[\bar{s}_{CO_2}(T_2) - \bar{s}_{CO_2}(T_1) - \frac{p_2}{p_1} \ln \frac{p_2}{p_1} \right] = 0
\]

\[
y_{O_2} \bar{s}_{O_2}^o(T_2) + y_{CO_2} \bar{s}_{CO_2}^o(T_2) = y_{O_2} \bar{s}_{O_2}^o(T_1) + y_{CO_2} \bar{s}_{CO_2}^o(T_1) + (y_{O_2} + y_{CO_2}) \frac{R}{p_1} \ln \frac{p_2}{p_1}
\]

Table A-23

Nos fornece os \(s^o \) no estado 1, de forma que ficamos com:

\[
0.2\bar{s}_{O_2}^o(T_2) + 0.8\bar{s}_{CO_2}^o(T_2) = 233.42 \text{ kJ/kmol} \cdot \text{K}
\]

E \(T_2 \) pode ser encontrado de forma iterativa, comparando LHS e RHS com Tab. A23

at \(T = 510 \text{ K} \): \(0.2(221.206) + 0.8(235.700) = 232.80 \)

at \(T = 520 \text{ K} \): \(0.2(221.812) + 0.8(236.575) = 233.62 \)

Interpolando: \(T_2 = 517.6 \text{ K} \).
Exemplo (continuação)

• (b)

\[
\Delta s_{O_2} = s_{O_2}^o(T_2) - s_{O_2}^o(T_1) - R \ln \frac{p_2}{p_1}
\]

\[
\Delta s_{CO_2} = s_{CO_2}^o(T_2) - s_{CO_2}^o(T_1) - R \ln \frac{p_2}{p_1}
\]

Utilizando Tab. A23:

\[
\Delta s_{O_2} = 3.69 \text{ kJ/kmol} \cdot \text{K}
\]

\[
\Delta s_{CO_2} = -0.92 \text{ kJ/kmol} \cdot \text{K}
\]

• (c) aplicando a eq. da energia:

\[
0 = h_1 - h_2 + \frac{V_1^2 - V_2^2}{2}
\]

\[\Rightarrow V_2 = \sqrt{V_1^2 + 2(h_1 - h_2)}\]

Onde:

\[
h_1 - h_2 = \frac{\bar{h}_1 - \bar{h}_2}{M} = \frac{1}{M} [y_{O_2}(\bar{h}_1 - \bar{h}_2)_{O_2} + y_{CO_2}(\bar{h}_1 - \bar{h}_2)_{CO_2}]
\]
Exemplo (continuação)

Para M:

\[M = 0.8(44) + 0.2(32) = 41.6 \text{ kg/kmol} \]

E utilizando a Tab. A23

\[h_1 - h_2 = \frac{1}{41.6} \left[0.2(21.184 - 15.320) + 0.8(27.125 - 18.468) \right] = 194.7 \text{ kJ/kg} \]

Finalmente:

\[V_2 = \sqrt{\left(3 \frac{\text{m}}{\text{s}}\right)^2 + 2 \left(194.7 \frac{\text{kJ}}{\text{kg}}\right) \frac{1 \text{ kg \cdot m/s}^2}{1 \text{ N}} \frac{10^3 \text{ N \cdot m}}{1 \text{ kJ}}} = 624 \text{ m/s} \]
Misturando gases ideais

- Gases com composição variando, porém sem reação química
- Os gases estão inicialmente separados, e são misturados
 - Esta mistura é um processo irreversível
- 3 fatores contribuem para produção de entropia:
 - Temperaturas dos gases inicialmente diferentes
 - Pressões dos gases inicialmente diferentes
 - Gases com composições iniciais distintas
Exemplo

- 2 tanques rígidos e isolados estão conectados por uma válvula. Inicialmente, tem-se 0,79 kmol de N\textsubscript{2} a 2 bars e 250K em um dos tanques. O outro tanque contém 0,21 kmol de O\textsubscript{2} a 1 bar e 300K. A válvula é aberta e um processo de mistura sem troca de calor ou trabalho com o ambiente externo ao tanque acontece, até que um estado de equilíbrio é atingido. Determine: (a) a temperatura final de mistura; (b) a pressão final da mistura; (c) a produção de entropia neste processo.
Exemplo (continuação)

• (a) Da primeira lei:

Onde

\[U_2 - U_1 = 0 \]

\[U_1 = n_{N_2} \overline{u}_{N_2}(T_{N_2}) + n_{O_2} \overline{u}_{O_2}(T_{O_2}) \]

\[U_2 = n_{N_2} \overline{u}_{N_2}(T_2) + n_{O_2} \overline{u}_{O_2}(T_2) \]

Logo

\[n_{N_2} \overline{u}_{N_2}(T_2) - \overline{u}_{N_2}(T_{N_2}) \right\} + n_{O_2} \overline{u}_{O_2}(T_2) - \overline{u}_{O_2}(T_{O_2}) = 0 \]

E \(T_2 \) pode ser encontrado de forma iterativa. Alternativamente, podemos considerar que \(c_v \) pouco varia, Neste caso:

\[n_{N_2} \overline{c}_{v,N_2}(T_2 - T_{N_2}) + n_{O_2} \overline{c}_{v,O_2}(T_2 - T_{O_2}) = 0 \]

\[T_2 = \frac{n_{N_2} \overline{c}_{v,N_2} T_{N_2} + n_{O_2} \overline{c}_{v,O_2} T_{O_2}}{n_{N_2} \overline{c}_{v,N_2} + n_{O_2} \overline{c}_{v,O_2}} \]

Avaliando \(c_v \) da Tab. A20:

\[T_2 = 261^\circ K \]
Exemplo (continuação)

• (b) observando que o volume total é o volume dos 2 tanques:

\[V = \frac{n_{N_2} RT_{N_2}}{p_{N_2}} + \frac{n_{O_2} RT_{O_2}}{p_{O_2}} \]

Onde, no estado inicial temos:

\[p_{O_2} = 1 \text{ atm} \quad p_{N_2} = 2 \text{ atm} \]

e o estado final pode ser calculado de \(P_2 = \frac{nRT}{V} \), onde V se conserva:

\[P_2 = \frac{(n_{N_2} + n_{O_2}) T_2}{\left(\frac{n_{N_2} T_{N_2}}{p_{N_2}} + \frac{n_{O_2} T_{O_2}}{p_{O_2}} \right)} = 1.62 \text{ bars} \]

• (c) para processo adiabático:

\[S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T} \right)_b + \sigma \]
Exemplo (continuação)

Onde

\[S_1 = n_{N_2} \bar{s}_{N_2}(T_{N_2}, p_{N_2}) + n_{O_2} \bar{s}_{O_2}(T_{O_2}, p_{O_2}) \]
\[S_2 = n_{N_2} \bar{s}_{N_2}(T_2, y_{N_2}p_2) + n_{O_2} \bar{s}_{O_2}(T_2, y_{O_2}p_2) \]

Logo:

\[
\sigma = n_{N_2}[\bar{s}_{N_2}(T_2, y_{N_2}p_2) - \bar{s}_{N_2}(T_{N_2}, p_{N_2})] \\
+ n_{O_2}[\bar{s}_{O_2}(T_2, y_{O_2}p_2) - \bar{s}_{O_2}(T_{O_2}, p_{O_2})]
\]

\[
\sigma = n_{N_2}\left(\bar{c}_{p,N_2} \ln \frac{T_2}{T_{N_2}} - \bar{R} \ln \frac{y_{N_2}p_2}{p_{N_2}}\right) + n_{O_2}\left(\bar{c}_{p,O_2} \ln \frac{T_2}{T_{O_2}} - \bar{R} \ln \frac{y_{O_2}p_2}{p_{O_2}}\right)
\]

E podemos achar \(c_p \):

\[c_p = c_v + R \]

\[c_{p,N_2} = 29.13 \frac{kJ}{kmol \cdot K} \]
\[c_{p,O_2} = 29.30 \frac{kJ}{kmol \cdot °K} \]

Finalmente:

\[\sigma = 5.0 \text{ kJ/°K} \]