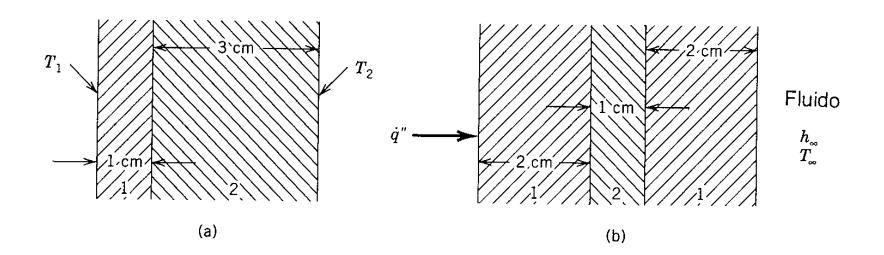
Cap. 8 Resistências Térmicas Exercícios

$$\dot{\mathbf{Q}} = \mathbf{k}\mathbf{A}\frac{\Delta T}{L} \quad \text{ou} \quad \dot{\mathbf{Q}} = \mathbf{h}\mathbf{A}\Delta T$$

$$\dot{\mathbf{Q}} = \frac{\Delta \mathbf{T}}{\mathbf{R}}$$
 onde $\mathbf{R}_{k} = \frac{\mathbf{L}}{\mathbf{k}\mathbf{A}}$ ou $\mathbf{R}_{h} = \frac{1}{\mathbf{k}\mathbf{A}}$

8-7 Desenhe os perfis de temperatura nas seções (a) e (b). Calcule a taxa de transferência de Calor em (a)

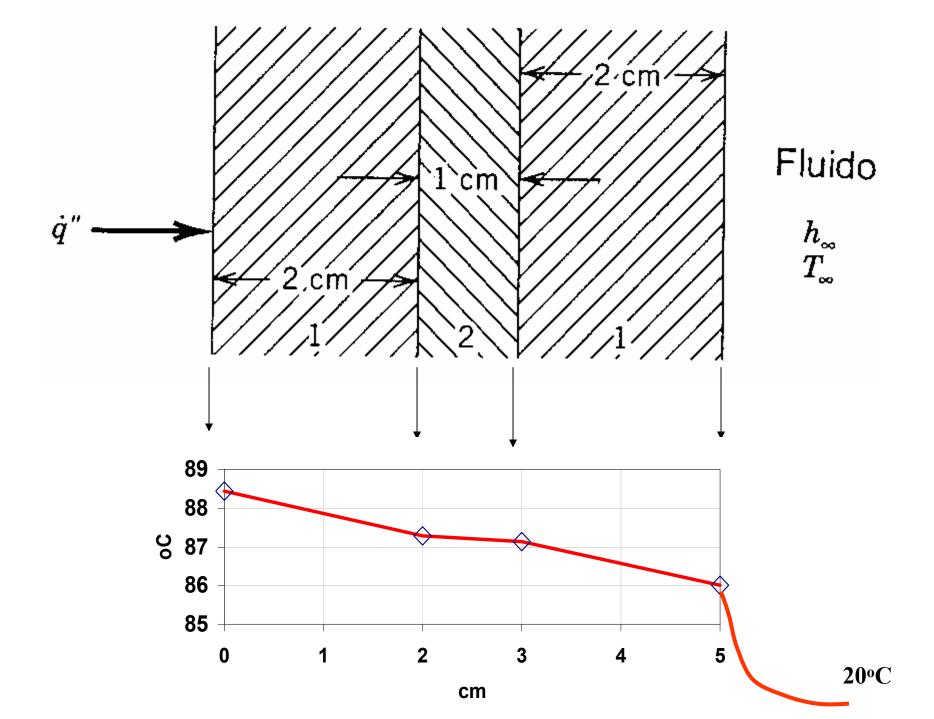


$$k_1=14 \text{ W/m}^{\circ}\text{C}$$

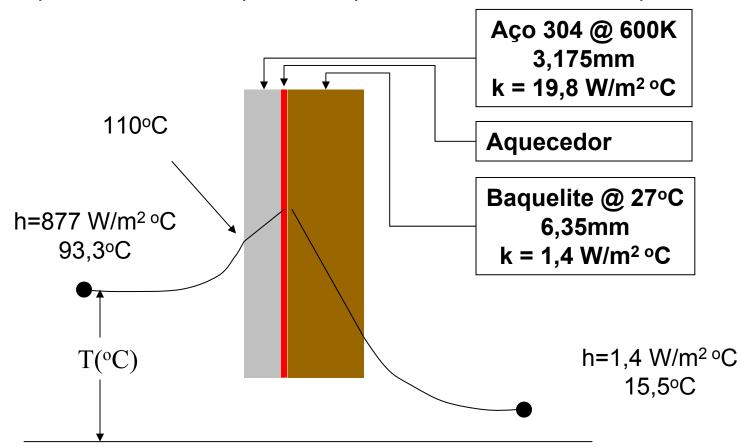
 $k_2=0.5\text{W/m}^{\circ}\text{C}$
 $T_1=100^{\circ}\text{C}$
 $T_2=30^{\circ}\text{C}$

$$q$$
"=0,86kW/m²
 k_1 =15 W/m⁰C
 k_2 =60W/m⁰C
 h_{∞} =10W/m²⁰C
 T_{∞} = 20°C

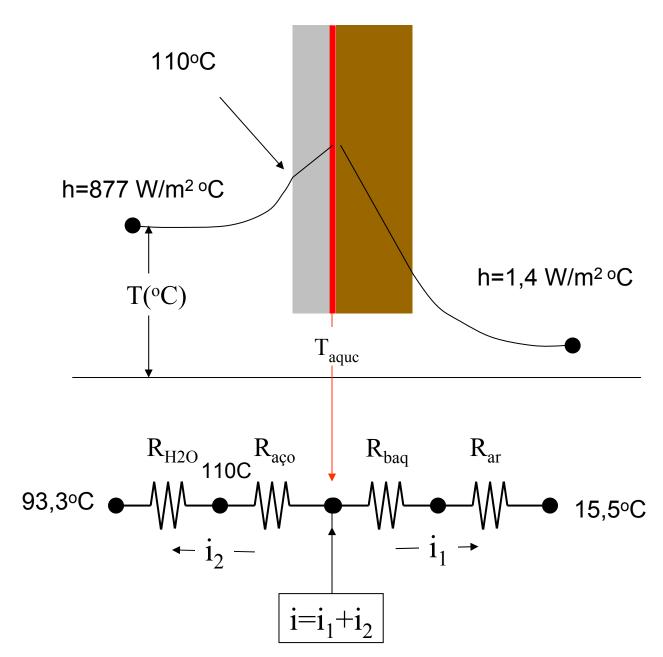




8-9 Um elemento de aquecimento 'fino' é colocado entre uma placa plana de aço inoxidável AISI 304 de 1/8" (3,175 mm) de espessura e uma placa plana de baquelite de ½" (6,35 mm) de espessura. A superfície de baquelite está em contato com ar a 15,5 °C enquanto a superfície de aço está em contato com água a 93.3 °C. Os coeficientes de transf. de calor por convecção são 1,4 W/m² °C do lado do ar e 877 W/m² °C do lado da água. Determine o fluxo de energia que precisa ser fornecido ao elemento de aquecimento para manter a temperatura <u>da superfície de aço inox em contato com a água a 110°C</u>. Que fração da energia passa através da placa de inox? Despreze a espessura do elemento de aquecimento.



Circuito Equivalente

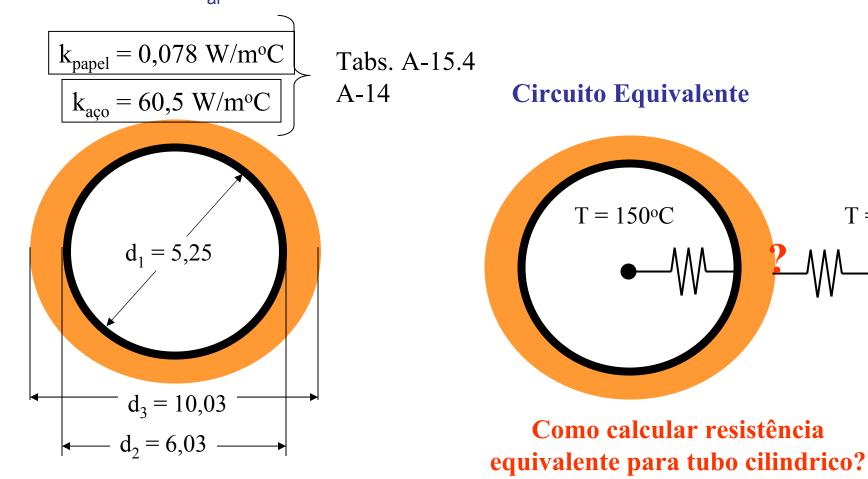


Resposta

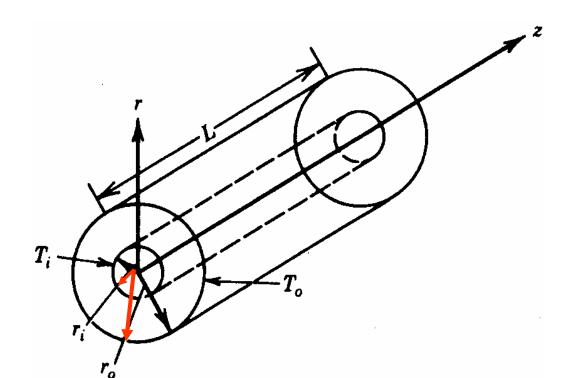
$$R_{H2O} = 0.00114 \text{ W/m}^{20}\text{C}$$
 $R_{aço} = 0.00016 \text{ W/m}^{20}\text{C}$
 $R_{baq} = 0.0045 \text{ W/m}^{20}\text{C}$
 $R_{ar} = 0.7142 \text{ W/m}^{20}\text{C}$

8-11 Um tubo liso de aço carbono com diâmetro interno de 5,25 cm e espessura de 0,78 cm, é recoberto com seis camadas de papel corrugado de asbestos com 2 cm de espessura. A temperatura do vapor de água no lado interno do tubo é de 150°C e o ar no lado externo é de 25°C. Estime: i) a temperatura da superfície do lado externo do isolamento e ii) a taxa de transferência de calor por metro de comprimento do tubo. Dados: h_{vapor} = 1500 W/m²°C & h_{ar} = 5 W/m²°C

T = 25°C



Condução Radial no Cilindro: Temperatura

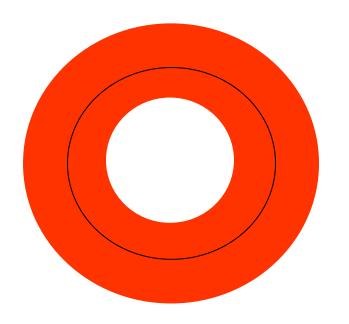


$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0$$

$$\begin{cases} \mathbf{r} = \mathbf{r}_{i} \rightarrow \mathbf{T} = \mathbf{T}_{i} \\ \mathbf{r} = \mathbf{r}_{o} \rightarrow \mathbf{T} = \mathbf{T}_{o} \end{cases}$$

Perfil de temperatura

$$T(r) = T_{i} - \frac{\left(T_{i} - T_{o}\right)}{Ln\left(r_{o}/r_{i}\right)} \cdot Ln\left(r/r_{i}\right)$$



Condução Radial no Cilindro: Calor & Resistência Térmica

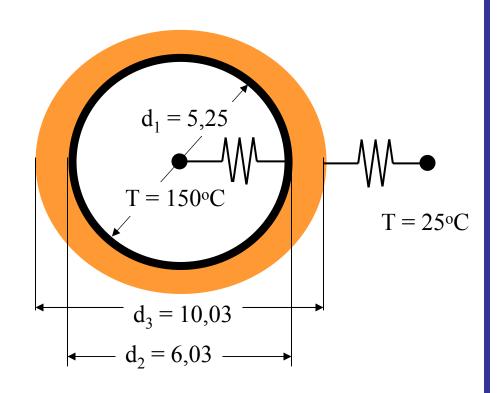
• O fluxo de calor, q", varia pq a área varia radialmente.

$$\dot{\mathbf{q}}'' = -\mathbf{k} \frac{\mathbf{dT}}{\mathbf{dr}} = \frac{\mathbf{k}}{\mathbf{r}} \cdot \frac{\Delta \mathbf{T}}{\mathbf{Ln} \left(\mathbf{r}_{o} / \mathbf{r}_{i} \right)}$$

A taxa de calor, Q, que cruza de r_o a r_i é sempre a mesma!

$$\dot{Q} \equiv 2\pi r L \dot{q}'' = \frac{\Delta T}{\left[\frac{Ln\left(r_o/r_i\right)}{2\pi kL}\right]} \rightarrow R_{eq} = \left[\frac{Ln\left(r_o/r_i\right)}{2\pi kL}\right]$$

Retornando Problema 8-11



Respostas

$$Rc_{H2O} = \frac{1}{\pi d_1 L \cdot h_{vap}} = \frac{0.0020}{L} (0.2\%)$$

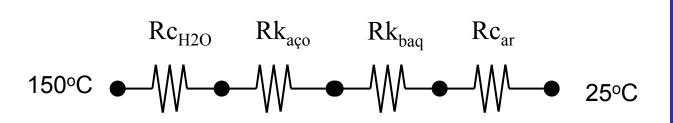
$$Rk_{aço} = \frac{Ln(d_2/d_1)}{2\pi kL} = \frac{0.0004}{L}$$
 (<0.1%)

$$Rk_{papel} = \frac{Ln(d_3/d_2)}{2\pi kL} = \frac{1.038}{L}$$
 (61.9%)

$$Rc_{ar} = \frac{1}{\pi d_3 L \cdot h_{ar}} = \frac{0.6347}{L}$$
 (37.8%)

$$\mathbf{R_{eq}} = 1.6774/\mathbf{L}$$

Circuito Equivalente

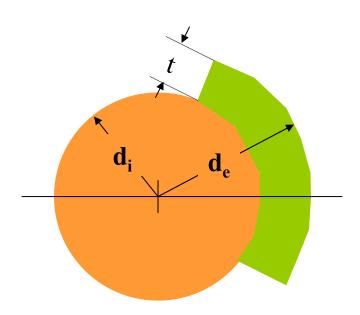


$$\dot{\mathbf{Q}} = \frac{\Delta \mathbf{T}}{\mathbf{R}_{eq}} = 74.5 \text{ W/m}$$

$$T_{\text{ext}} = 72^{\circ} C$$

Espessura Crítica de Isolamento

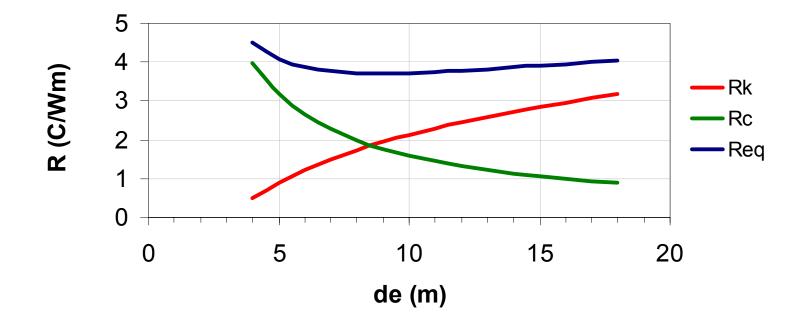
8-17 Um fio elétrico tem um diâmetro de 3 mm. O fio precisa ser isolado eletricamente com um plástico cujo k = 0,09 W/m°C. O coeficiente de transferência de calor por convecção, h_{ar} = 20 W/m²°C. A corrente elétrica que o fio pode transportar é limitada pela temperatura que não pode exceder 150°C. Determine: (a) a influência da espessura do isolante, t, na taxa de calor (b) encontre a taxa de calor dissipada por metro linear de fio.



A taxa de calor depende das resistências de condução e convecção.

$$\dot{Q} = \frac{T_i - T_{\infty}}{\left\{ \frac{Ln\left(de/di\right)}{2\pi \cdot k_i L} + \frac{1}{\pi \cdot d_e Lh_e} \right\}}$$

Fixando o diâmetro do fio, d_i , vamos notar que o aumento da espessura do isolante faz **AUMENTAR** R_k e **DIMINUIR** R_c !



A Resistência equivalente passa por um mínimo e Q passa por um máximo!

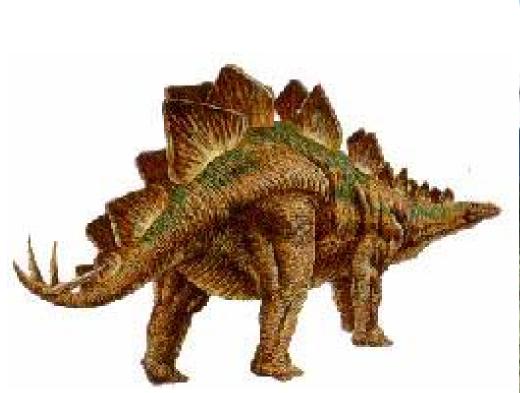
O diâmetro crítico é aquele onde R_{eq} é mín & Q é max.

$$\frac{dR_{eq}}{d\ d_e} = 0 \rightarrow \frac{d}{d\ d_e} \left[\frac{Ln\left(de/di\right)}{2\pi \cdot k_i L} + \frac{1}{\pi \cdot d_e Lh_e} \right] = 0$$

$$d_{crit} = \frac{2k}{h}$$

Neste problema, $d_{crit} = 9 \text{ mm}$

Superfícies Estendidas

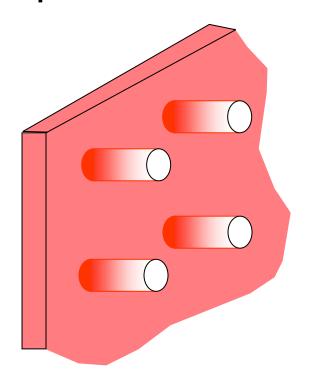


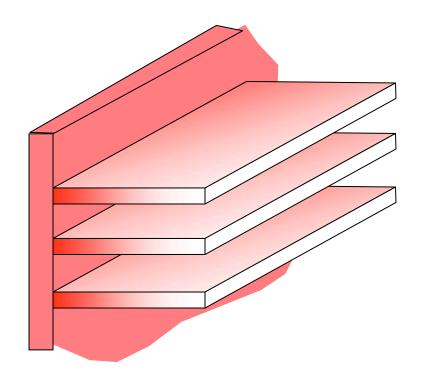
Estegossauro

Elefante Africano

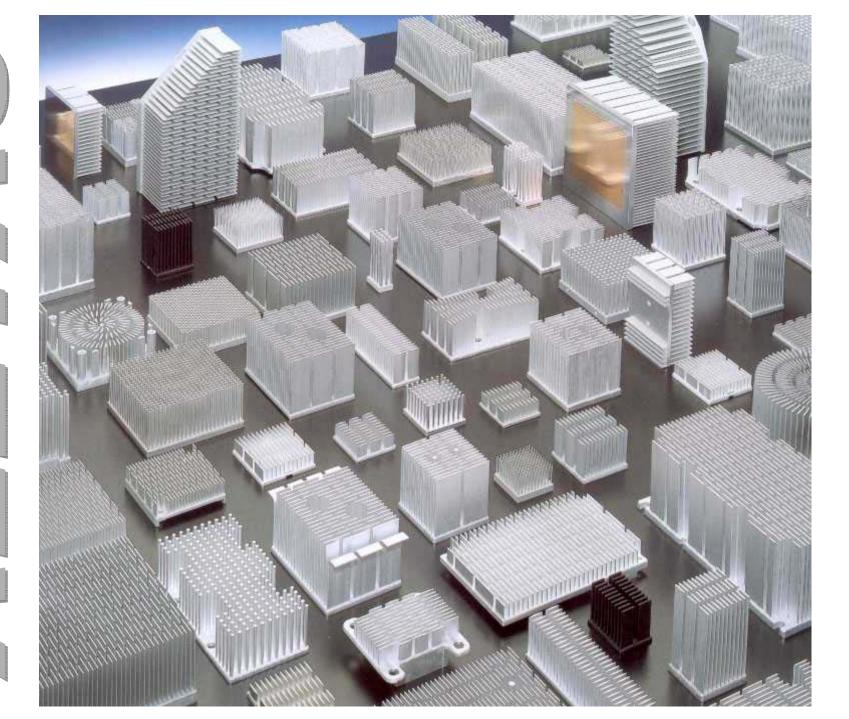
ALETAS

 Aumento da taxa de transferência de calor pelo aumento da área de troca de calor

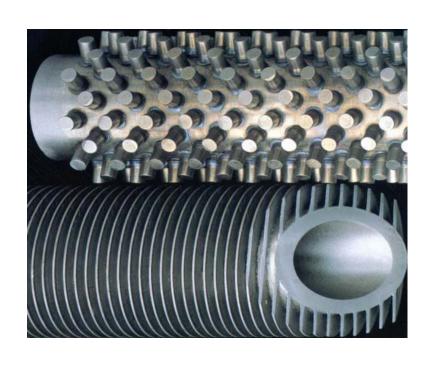


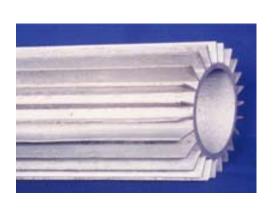


Aleta tipo



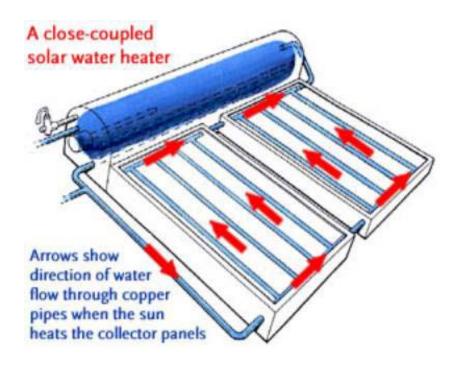
Tubos Aletados

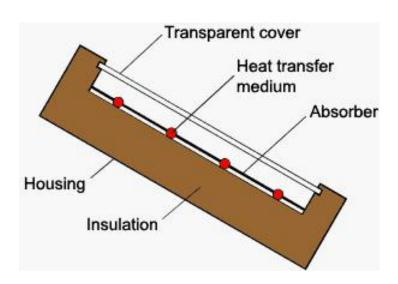


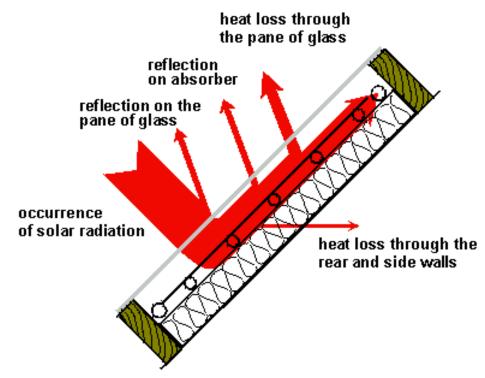


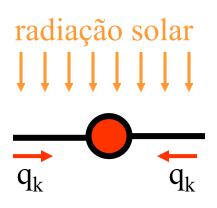
Aletas que Resfriam

Aletas que Aquecem



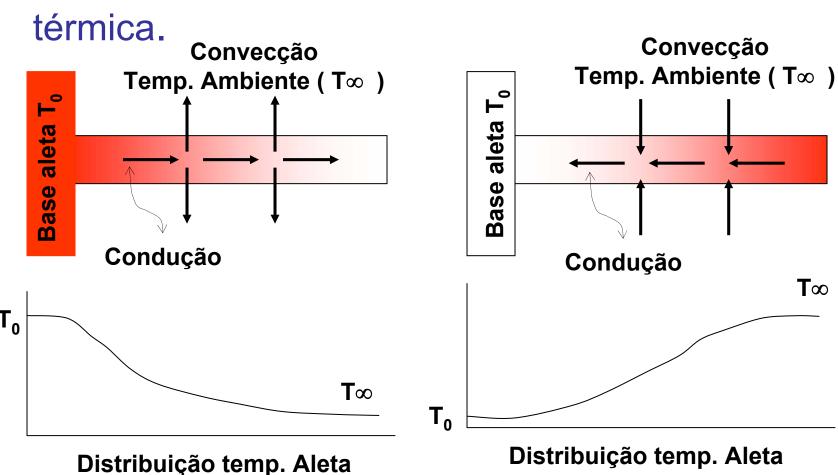




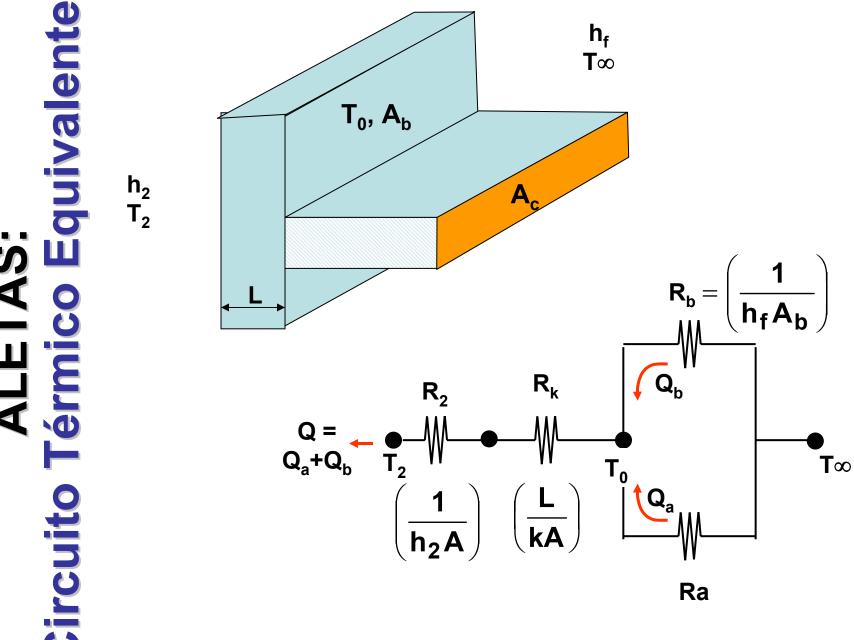


ALETAS: COMO FUNCIONAM?

 O calor é transportado da base (ou para a base) por meio da condução térmica e adicionado (ou removido) ao ambiente externo pela convecção térmica



ALETAS: Circuito Térmico Ed



Balanço de Energia **ALETAS:**

$h_f T \infty$ T_0, A_b P $\Delta \textbf{x}$ X Q_c $\mathbf{Q}_{\mathbf{k}}$ Q_c $\Delta \mathbf{x}$

Convecção:

$$Q_c = (P^*\Delta x)^* h_f^* [T\infty - T(x)]$$

Condução:

$$Q_k = -Ac^*k^*dT/dx$$

Balanço:

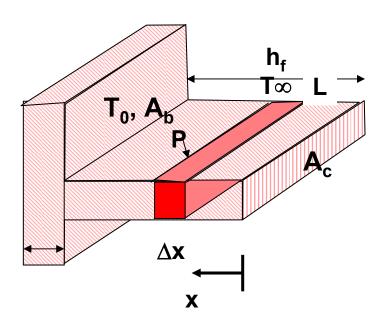
$$- (dQ_k/dx) \Delta x + Qc = 0$$

ALETAS: Modelo Térmico

$$\frac{d}{dx} \left(A_c k \frac{dT}{dx} \right) \Delta x + (P \Delta x) h (T_{\infty} - T) = 0$$

$$m^{2} = \frac{h \cdot P}{kA_{c}}$$
&
$$\theta = (T - T\infty)$$

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0$$



Condições de Contorno:

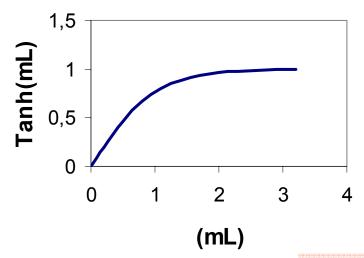
$$x = L \rightarrow T(L) = T_0 \Rightarrow \theta(L) = \theta_0 = (T_0 - T\infty)$$
 temp igual base aleta

$$x = 0 \rightarrow \frac{dT}{dx}\Big|_{0} = 0 \Rightarrow \frac{d\theta}{dx}\Big|_{0} = 0$$
 ponta aleta isolada

ALETAS: Solução do Modelo Térmico

$$\frac{\mathsf{T} - \mathsf{T} \infty}{\mathsf{T}_0 - \mathsf{T} \infty} = \frac{\mathsf{cosh}(\mathsf{mx})}{\mathsf{cosh}(\mathsf{mL})}$$

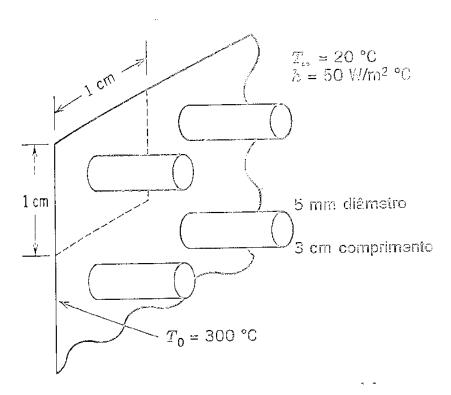
Fluxo de Calor
$$Q_a = -A_c k \frac{dT}{dx} \Big|_{L} = \sqrt{h \cdot PkA_c} \cdot (T_0 - T_{\infty}) \cdot Tanh (mL)$$



Fluxo Calor aumenta: h, P, k, Ac e mL

$$R_{a} = \frac{1}{\sqrt{h \cdot PkA_{c} \cdot Tanh(mL)}} \rightarrow Q_{a} = \frac{(T_{0} - T\infty)}{R_{a}}$$

• 8-21 Determine a taxa de transferência de calor para uma aleta reta de seção transversal circular instalada numa superfície em contato com o ar a 20°C na qual calor é retirado. As aletas são de aço inox (k 56.7 W/m°C tab A-14) com 5mm de diâmetro e 3mm de comprimento com espaçamento de 1cm x 1cm como mostrado na figura. Considere o coeficiente de transferência de calor de 50 W/m²°C e a temperatura da base de 300°C.



$$Q_a = \frac{\left(T_0 - T\infty\right)}{R_a}$$

$$R_a = \frac{1}{\sqrt{h_f PkA_c} \cdot Tanh(mL)}$$

8-21 continuação.

Cálculo da aleta

$$P = \pi \cdot d = \pi \cdot 0.005 = 0.0157m$$

$$Ac = \pi d^2 / 4 = 1.9635 \cdot 10^{-5} \,\mathrm{m}^2$$

$$m = \sqrt{\frac{h \cdot P}{kA_c}} = \sqrt{\frac{50 \cdot 0.0157}{56.7 \cdot 1.96 \cdot 10^{-5}}} = 26.56 \qquad R_b = \frac{1}{h \cdot A_b} = 248.9$$

$$R_{a} = \frac{1}{\sqrt{hPk A_{c} \cdot \tanh(mL)}} = 51.06$$

Cálculo da base

$$A_b = (1cmx1cm - A_c) = 8.034 \cdot 10^{-5} \text{ m}^2$$

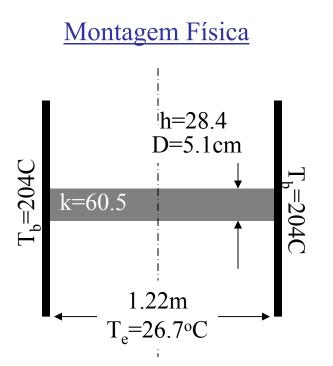
$$R_b = \frac{1}{h \cdot A_b} = 248 .9$$

Taxa de Calor

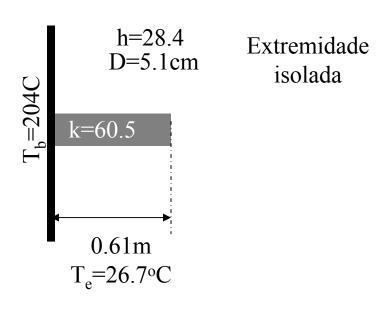
$$Req = \frac{R_a \cdot R_b}{\left(R_a + R_b\right)} = 42 \cdot 4$$

$$\dot{Q} = 6 \cdot 6W$$

• 8-22 Uma haste de aço carbono com 5.1cm de diâmetro é instalada como suporte estrutural entre duas superfícies que estão a 204°C. O comprimento da haste exposta ao ar a 26.7°C é de 1.22m. O coeficiente de transferência de calor por convecção é de 28.4 W/m²°C. Determine a taxa de transferência de calor da barra para o ar. <u>Dica:</u> analise o problema como se a barra fosse composta por duas aletas com extremidades isoladas – simetria em transf calor é frequentemente utilizada para resolver problemas.



Problema Equivalente



8-22 continuação.

Cálculo da aleta

$$P = \pi \cdot d = \pi \cdot 0.051 = 0.160 m$$

$$Ac = \pi d^2 / 4 = 2 \cdot 10^{-3} \, \text{m}^2$$

$$m = \sqrt{\frac{h \cdot P}{kA_c}} = \sqrt{\frac{28.4 \cdot 0.16}{60.5 \cdot 2 \cdot 10^{-3}}} = 6.06$$

$$R_a = \frac{1}{\sqrt{hPk A_c} \cdot \tanh(mL)} = 1.349$$

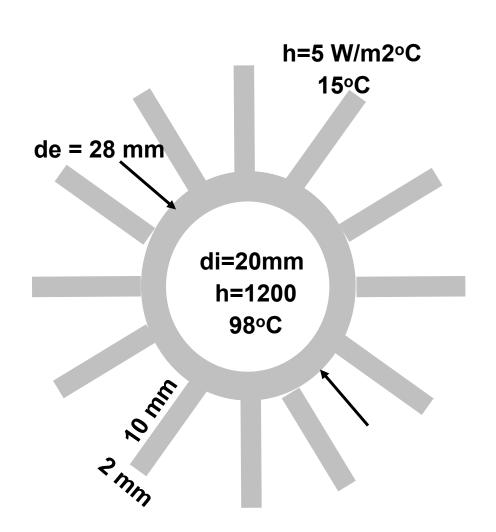
Taxa de Calor

$$\dot{Q} = \frac{(Te - Tb)}{Ra} = \frac{(204 - 26.7)}{1.349} = 131.5W$$

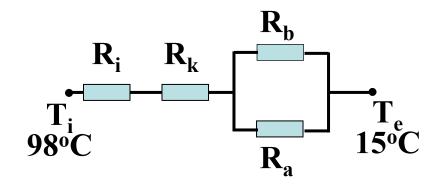
131.5W é a taxa de calor que UMA aleta transfere, portanto a barra toda transferirá 263W

Ex. 8-23: Qual é o Q transf. por metro tubo?

Material do Tubo & Aletas: Bronze (tab. A14)



Circuito Equivalente

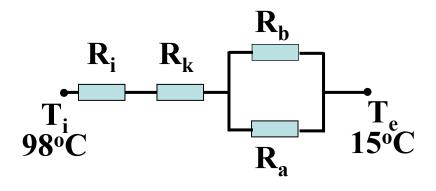


$$\mathbf{Q} = (\mathbf{T_i} - \mathbf{T_e}) / \mathbf{R_{eq}}$$

&

$$R_{eq} = R_i + R_k + (R_b \cdot R_a) / (R_b + R_a)$$

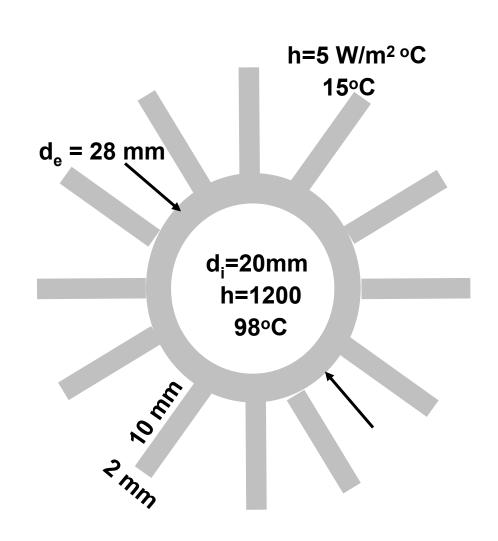
Ex. 8-23: Cálculo das Resistências



$$Ri = \frac{1}{h_i \pi d_i L} = \frac{1}{1200 \cdot \pi \cdot 0 \text{-}02 \cdot L} = \frac{0 \text{-}03}{L}$$

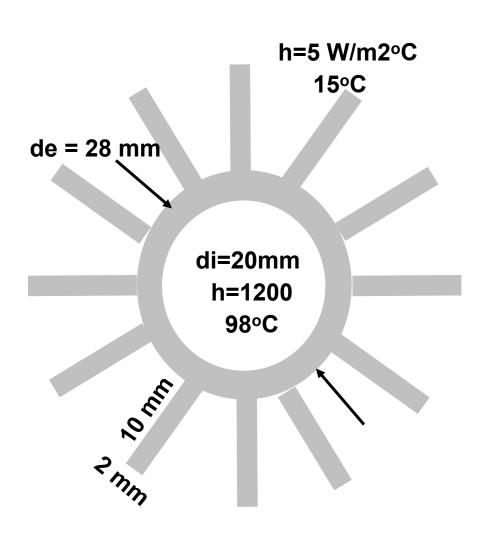
$$Rk = \frac{Ln\left(d_e/d_i\right)}{2\pi kL} = \frac{Ln\left(2 \text{..}8/2\right)}{2\pi 54 \cdot L} = \frac{9 \text{..}92 \cdot 10^{-4}}{L}$$

$$Rb = \frac{1}{h_e A_b} = \frac{1}{h_e \left(\pi d_e - 12 \cdot 0.002\right)} = \frac{3.13}{L}$$



Ex. 8-23: Resistência da Aleta

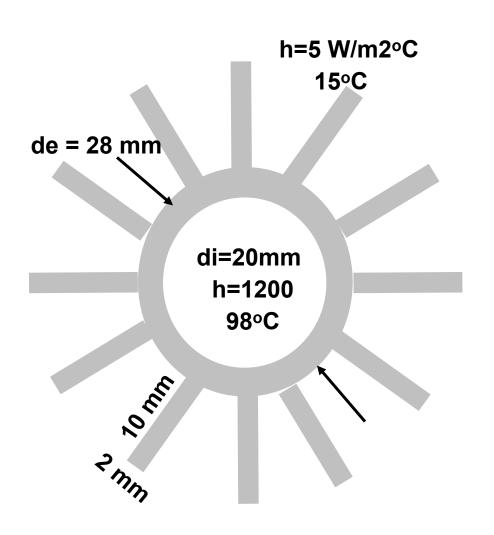
Material do Tubo & Aletas: Bronze (tab. A14)



Perimetro Aleta \rightarrow P = 2L(m) Area transv. Aleta \rightarrow A_c = 0.002L (m) Área Int. Tub \Leftrightarrow A_i = $\pi \cdot 0.02L = 0.06L$ (m) Área Base $\rightarrow A_b = (\pi 0.028 - 12 \cdot 0.002)L =$ $A_b = 0.06L (m)$ Comprimento Aleta $\rightarrow L_a = 0.01$ (m) $hi = 1200 W/m^{20}C$ $he = 5 W/m^{20}C$ $k = 54W/m^{0}C$ $m = \sqrt{\frac{h_e P}{kA_c}} = \sqrt{\frac{5 \cdot 2}{54 \cdot 0.002}} = 9,62$ $mL_a = 9,62 \cdot 0,01 = 0,0962$ Tanh(mL) = 0,10 $\sqrt{h_e PkA_c} = \sqrt{5 \cdot 2 \cdot L \cdot 54 \cdot 0,002 \cdot L} =$ = 1,04L (w/° C)

Ex. 8-23: Resistência da Aleta

Material do Tubo & Aletas: Bronze (tab. A14)



Considerando uma aleta:

$$Q = \Delta T/Ra$$

Se tivermos N aletas,

$$\mathbf{Q}_{\mathrm{T}} = \mathbf{N} \cdot \mathbf{Q} = \mathbf{N} \Delta \mathbf{T} / \mathbf{R} \mathbf{a}$$

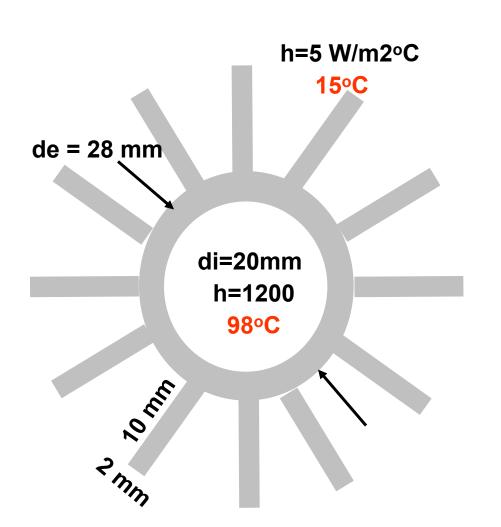
$$Logo Ra_T = Ra/N$$

Para o problema,

$$Ra_{T} = \frac{1}{N\sqrt{hPkA_{c}}Tanh(mL)} = \frac{1}{12 \cdot 1.04 \cdot 0.1} = \frac{0.80}{L}$$

Ex. 8-23: Calculo do Calor Transferido

Material do Tubo & Aletas: Bronze (tab. A14)



$$Q = (T_i - T_e)/R_{eq}$$

&

$$R_{eq} = R_i + R_k + (R_b \cdot R_a)/(R_b + R_a)$$

$$R_{eq} = 0.03/L + 0.001/L + 0.64/L$$

$$R_{eq} = 0.67/L$$

Q/L = (98-15)/0.67 = 123.9 W/m