Meeting 11

Chapter 5

Sections 5.1 & 5.2



Open Systems
Conservation Equations

®*  We now want to develop the
conservation equations for an
open system.

 What happens when the
system is no longer closed,
but something is flowing in
and out of it?

* Need to determine how this
will change our analysis from
that of a closed system
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Mass Flow, Heat, and Work
Affect Energy Content

- The energy content of a control volume
| &= can be changed by mass flow as well as
"y heat and work interactions
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Control Volume

System - control mass

Control volume, involves mass flow in
and out of a system

pump, turbine, air conditioner, car
radiator, water heater, garden hose

In general, any arbitrary region in space
can be selected as control volume.

A proper choice of control volume will
greatly simplify the problem.
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The Physical Laws and
the System Concept

* All physical laws seen so far were
developed to systems only: a set of
particles with fixed identity.

* In a system mass is not allowed to cross
the boundary, but heat and work are.



Mass Conservation Equation

 The mass within the system is constant. If you
follow the system, in a Lagrangian frame of
reference, it is not observed any change in the
mass.




Momentum Conservation Equation

* If you follow the system, in a Lagrangian
frame of reference, the momentum change is
equal to the resultant force of all forces acting
on the system: pressure, gravity, stress etc.

dMV _
mv) g
'. dt ——
system  external

forces

. \ —
—

system  — system o

-~ -



Energy Conservation Equation — 1% Law
" - If you follow the system, in a Lagrangian
8 frame of reference, the energy change is

equal to the net flux of heat and work
which crossed the system boundary

' d(Me)
dt

= f(@g-wHA

system  boundary

¢ ¢ =utgz+v?/2 specific energy (J/kg)
* qand w = energy flux, (Js'm?)
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Systems x Control Volumes

* For continuously deforming
boundaries (gases and liquids in
general) is difficult to draw an
analysis following the system.

* It would be far easier to have a fixed
region in space (the control volume)
and then draw the analysis.

 How to transpose the system properties
to the control volume properties?



Preliminaries

 Before get into the Control Volume analysis

terms of the velocity.

/ - Boundary vel.: V,

it is necessary define the mass flow in

Normal Area: dA

Time =t

Length =1

Area = dA

Fluid vel.: VI
Boundary vel.:V

P N
H’ H’ Vel =V,

Time = t+dt
Length =1

Area =dA
Volume= L.dA
Fluid vel.: VI
Boundary vel.:Vb



Generalizing...

 For each area element there is a mass flow crossing it:

t+3t _ ¢ ) (p1dA )3t — (p1dA)!
St - St

drn = Lim(m

* 1 must be orthogonal to the crossing area:

. o Mass Flux

dA \‘ e (plcos och)”é:t— (plcosadA ) L;(ﬁ -AVI. jd "

* Vr is the relative velocity between the fluid and the
boundary: V.= V.-V,



qmm Mass Flow Rate: kg.sec™
o . Considering the area open to the flux the mass
flow is then

= [dii = [p(i - V, )dA

/ Normal Area: dA
- I ) // Boundary vel: Vh
H’ H’ Vi
/




Flow rate of a generic variable 3

B = B(ﬁ .V, )dA B flux: B.kg.sec"!
M = ”‘p(ﬁ . {/r)dA Mass flux: kg.sec!
U= up(ﬁ -V, )dA Internal Energy flux: J.sec’!

X = ] p(ﬁ .V, )VfdA Momentum flux: N



Reynolds Transport Theorem

* The control volume is a region of space
bounded by the control surface which is
deformable or not and where heat, work
and mass can cross.

 The RTT translates the system time ratio
in terms of the property ratio evaluated
at a specific region on space — the control
volume.



Reynolds Transport Theorem

& | - Let for an instant t, the control surface
4 be coincident with the system boundary

system control 27 A

S lum\ /o \
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(%) (t, + Ot)
* At the instant t,+ot the system partially left the

C.V. 111 is outside C.V.; 11 is still inside C.V. and
I is filled by another system.



Reynolds Transport Theorem

¢ * The system time ratio written in terms of C.V. properties is:

Lim [B}ﬁ5t+Bt+5t Bt]

dB
dt |g.

ot—> 0 ot
_ Lim Bt+8 +Bt+8t Bt . Bﬁrlat _
ot —> () ot ot ot
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Volume 1 ‘
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Reynolds Transport Theorem

The first term is the time ratio of B within the C.V.:

ot —> 0 St

=— m BpdV

VOl

system control
Volume 1 ‘
(1) +;.




Reynolds Transport Theorem

The 2"d and 3" terms represent the flux of Qo_ut and in of the C.V.:

( o, N
ot - n-V. dA ot- n-V,. dA
Lim (B> B _ Lim IIIIIB ( r . IIIB P ( ")d
5t —> 0| &t 5t 5t — 0 St 5t
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= ﬁBp(ﬁ'VrﬁA
C.S.
- Vi, . Leaving
system control PR n C.V.
volume I | n.v, >0

/ » Entering
() (ty+ 51) - n V.
V. n.vV, <0




Reynolds Transport Theorem

* The system changes written in terms of a
Control Volume,

9B _ 4 ppav+ fppli- v, Jaa

dt gy dtCV CS.

* The change of B in the system is equal to the
change of B in the C.V. plus the net flux of B
across the control surface.

 The lagrangian derivative of the system is
evaluated for a region in space (fixed or not)
by means of the RTT.



Transport Equations
in Terms of Control Volume

 The Reynolds Transport Theorem is applied
to the transport equations to express them
by means of control volume properties

9B _ D i gpav+ Hppli- v, A

dt [gys dtcv CS.




Steady-flow assumption

Extensive and intensive properties
within the control volume don’t
change with time, though they may
vary with location.

Thus my, E.y, and V., are constant.

Pressure, temp, velocity do not

change with time, but with
— space
N o

—
4—



Steady-flow assumption

¢ * Observe that the time derivatives of the
& system and the C.V have different meanings:

dB dB

S i_
dt

_d
ol = aglepay

CV dt ve

| This allows the properties to vary from point-
7 to-point but not with time, that is:

dM)  dMv)  d(Me)

— — 0
dt |oy  dt | dt oy

 However, material can still flow in and out
of the control volume.

e The flow rate terms ‘m’ are not zero.



Mass Equation, § = 1 (scalar eq.)

* It express a mass balance for the C.V.
 The mass change within the C.V. is equal to
the flux of mass crossing the C.S.
am
dt

Qi pav+ Bol-v,)da =0
SyS dtCV C.S.

* The integral form is too complex to evaluate.

e Assume uniform properties, i.e, density and
velocities at the inlets and outlets

+ ; (pVA)outJ — Z (pVA)inj =0

m

out mj,




( MASS FLOW )
RATE INTO

Min —Mout =

( MASS FLOW
RATE OUT OF

e

e 2

The Conservation of Mass

dM

dt |y

( RATE OF CHANGE
OF MASS IN THE

\ C.V. )



During Steady Flow Process,
Volume Flow Rates are not
Necessarily Conserved

HTIE =2 kg!s
1:'2 = 0.8 m>/s
* Steady flow ‘r\l T L
|
* One inlet | | TS
| Alr |
 One outlet : CcOmMpressor :
| .
o o | e =
m, = m, -I" R
I/1 = VZ my =2 Kkg/s

V,= 1.4 mds



Momentum Equation, f =V,
_(vector eq., it has three components)

* It express a force balance for the C.V.
accordingly to Newton’s 2"d Law.

 The momentum change within the C.V. is
2 "%  equal to the resultant force acting on the C.V.

. ; gravity
T — a [[] pVdV + ﬁp(ﬁ -V, )V dA = > Fey¢| presure
Sys C.v. C.S.  shear stress |




Momentum Equation, =V,
(vector eq., it has three components)

! = Constituting the external forces,

5 :lflfi?

d .. - -\ . . .
£ 11 pVav+ Fplii-V, VdA = [ pgdV + §(-ii-P)dA+ f(i-1)dA
dtcy. CS. C.V. CS. CsS.

* The gravity force acts on the volume.

* The pressure force is a normal force acting
inward at the C.S.

 The shear force acts tangentially at the C.S.




Momentum Equation, =V,

* Assuming uniform properties: density and
velocities (inlets/outlets)

* Neglecting the shear forces

A




The Conservation of Momentum
- Newton 2" Law -

+ M(VOUT - Vour ) =Y Fpxr
CV

OF MOMENTUM FLUX IN FLUX OUT ACTING

RATE OF CHANGE MOMENTUM MOMENTUM NET FORCE
—_ + =
IN THE C.V. TOTHE C.V. TO THE C.V. ON THE C.V.



Energy Equation, p = e, (scalar eq.)

* It express the energy balance for the C.V.

The momentum change within the C.V. is
equal to the resultant force acting on the C.V.

Sys

dQ dW
< m pedV + {:;p(n V,)eda =39 _




Energy Equation, [ = e, (scalar eq.)

A d - The integral form is dropped. We will
o launch a lumped analysis with uniform
. properties.

* The energy equation becomes:

d(peV) . (e _dQ dW
——+ X (me)yy (e, = -~

 The heat and work convention signs for
system holds for C.V.:

1. Heat IN and Work OUT to C.V. are ( +)
2. Heat OUT and Work IN to C.V. are ( -)



Let’s look at the heat
transfer terms first:

& We want to combine them into a single
% term to give us the net heat transfer

Qnet — Qin - Qout
For simplicity, we’ll drop the “net” subscript

Q — Qnet




m We’'ll do the same thing
with work

'I% Work involves boundary,
| 2 shaft, electrical, and others

W — _Will + W()llt



: ,' steady state regime and a two
§ port (one inlet/one outlet) C.V.
the energy equation reduces to:

Ih(eout — ein): Q -W

( FLUX N\ [ FLUX \ ( NET HEAT )
OF ENERGY |-| OF ENERGY |=| AND WORK
\OUTTOTHEC.S.) \INTOTHEC.S.) ( ONTHEC.S.,




Energy Equation, p = e, (scalar eq.)

To constitute the energy equation is
necessary now establish:

1- The specific energy terms, ‘e’

2 — Split the work terms in pressure work
or flow work (PdV) plus other type of
work modes



The Specific Energy ‘e’

| We will consider the specific energy the
' contribution of the:

@9 1. fluid internal energy,
B 2. potential energy and
9 3. Kkinetic energy:

Where V, stands for the fluid velocity as
seen from an inertial frame of reference.



K Control Volume May Involve Boundary,
Electrical, Shaft, and other Work




The breakup of the
work term.

. Work includes, in the general case, shaft work,
such as that done by moving turbine blades or
a pump impeller;

* the work due to movement of the CV surface
or boundary work (usually the surface does
not move and this is zero);

* the work due to magnetic fields, surface
tension, etc., if we wished to include them
(usually we do not); and

e the work to move material in and out of the CV'.




Breakup of work, continued.

We are interested in breaking up
work into two terms:

. The work done on the CV by the
increment m; of mass as it enters and
by the increment ., of mass as it exits

2. All other works, which will usually
just be shaft work, and which we will
usually symbolize as W, , or just .

\)




We normally split work
into two terms:

W = WFLOW T WSHAFT

........
& T

il ]
o
| ._.,!'. o, L]
g
. W w 2

W .. .w = work done moving
fluid in / out of c.v.

W, =netshaft work & other types



| " Schematic for Flow Work

Think of the slug of mass about to enter the CV
as a piston about to compress the substance in

A |

A [

I

v i

I

e

F N |
Frl | CV

I

I

/ l

I

I

iI—L—II-

T

Imaginary o —— — — — — _ 1|
piston




Te flow work is:

AW,

=2

Schematic for Flow Work

= PAV

M

and the rate: Wy =P d(AV (
dt
Which is the volumetric A
work to push or pull the L -
slug of mass in to the F’% P
C.V. =
L—

The scalar product gives
the right sign if the C.V. :}fi‘:gjl"ﬂfb’
is receiving or giving

work

CV

________

-




Energy Equation

Replacing the definitions of ‘e’ and W, into
the energy equation:

% P
u+—+gz+—
2 p

]m

OUT

|

\'%% P
u+—+gz+—
2 p

]m

IN

— Q — Wshaft




Rate of
change

of energy
in CV.

!

Rate at which
energy is
convected into
the CV.

p

!

Rate at which
energy is
convected out
of the CV.

~ What do the terms mean?

P V? P V?
n u+—+ 21 +gzj +n'r{u+ + 21 +gz} Q Wshaf
in out

!

Rates of
heat and
work inter-
actions



A Note About Heat

 Heat transfer should not be
confused with the energy
transported with mass into and
out of a control volume

 Heat is the form of energy
transfer as a result of
temperature difference



Energy Equation

| Remember the ENTALPY definition?

h=u+P/p

JOUT

IN

= Q — V.Vshaft




The energy equation can be
simplified even more.....

Divide through by the mass flow:

Heat transfer per unit mass

— Shaft work per unit mass



We get the following for the

Steady State Energy Equation
in a Two Port C.V.

2 2
vout _ vin
2 2

4 — Wghaft = (hout ll LT )+ [ J + 8(Zout - Zin)

where z_ . or z. mean the cote at the our and
in C.V. ports

Or in short-hand notation:

qd— Wy = Ah+ Ake + Ape




MMARY OF THE C. V. EQUAT,O/VS

dt - z (pYA)in + ; (p.VVA)outj =0
d %YV > (@v; ), " > (Ve ), . = pEAY + [J(~1i-P)A
C.S.
d Vi 5 P|. \' P|. .
dt[ p u+2]‘v’] — Z[[u+2+gz+Jm] + Z[[u+2+g2+jm] = Q_Wshaft
P IN P ouT
d( psv . . .
( (;)ts ) — 2 (ms)in + 2 (ms)out = CES% + Sgen
RATE OF FLUX IN FLUX OUT SOURCE
CHANGE  THRU THE THRU THE TERMS

INSIDE C.V. C.S. C.S.




* Problem 5.9 The water
tank is filled through
valve 1 with V1 = 10ft/s
and through valve 3 e
with Q =035 ft3/s. —2_ &I | in.
Determine the velocity , _, |  » | =?
through valve 2 to keep =
a constant water level. Sy yTy—

Figure P5-9 Water distribution tank.

(PVA), —(pVA); - (pVA); =0
_ Vidj +V3d3
- 1oL

2

V,




gy Steady and Unsteady Flow

| * Thermodynamic processes involving

| control volumes can be considered in two
groups: steady-flow processes and
unsteady-flow processes.

;, | * During a steady-flow process, the fluid
% flows through the control volume
steadily, experiencing no change with
time at a fixed position. The mass and
energy content of the control volume
remain constant during a steady-flow
process.



Nozzle Reaction Force

The control surface bounds the nozzle (solid) plus the fluid.
Every time the C.S. cross a solid there may be a mechanical
force due to reaction.

- .« Consider the inlet and outlet nozzle diameters as d, and d,

(1) == -5 + (2)

For steady state, d/dt = 0 and from mass conservation,
pV.,d,?=pV,d,* #% V,=V, (d,/d,)* and m =pV, nd, */4



Nozzle Reaction Force
(Vector equation cRx component)

(mve)  —(mVy) =+ §(-i-P)dA+F,

C.S.
C.S. C.
/ P Patm /CS Fx _____
w— _}i&;— G
| Ya E
| — d S |
{_/-' — ' X |
""" '@ O TR ) T
X X - X
nd%
m(V, - Vy)= (P - Patm)'T"' Fy




2"l Law Equation, B =s, (scalar eq.)

=
] n, nr BERELE
HF Jﬁ;
‘ Y
A ft.

* It express the entropy transport by the mean
flow field

dMs

~ dS
_4 [[[ psdV + jjp(ﬁ-Vr)sdAz [ LgA 480
dt | dtcy. CsS. cs. T dt
Where

1. q s the local heat flux per unit area, that is
in W/m2, and

2. Sgen is the entropy generation term due to
the Irreversibilities , Sgen >0



Zd Law Equation, B = s, (scalar eq.)

¢ * * For uniform properties the integral forms can
be dropped in favor of simple forms:

d(ps‘v’) o (e . B g -
d Z(ms)in T Z:(ms)out — CZ.:S. T T Sgen

; Where

1. q s the local heat flux per unit area, that is
in W/m2, and

2. Sgen is the entropy generation term due to
the Irreversibilities , Sgen >0



Nozzle Reaction Force

Why is necessary two man to hold a fire hose?
Why to accelerate the water within the fire nozzle a
reaction force appears?

Nozzle with
adjustable throat
diameter

4/ 95LB-15-1/8"

= 100 Psi & 50 — 350 GPM



