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Open Systems Open Systems 
Conservation EquationsConservation Equations
• We now want to develop the 

conservation equations for an 
open system.

• What happens when the 
system is no longer closed, 
but something is flowing in 
and out of it?

• Need to determine how this 
will change our analysis from 
that of a closed system



Difference Between Difference Between 
Closed and Open SystemsClosed and Open Systems

SYSTEM CONTROL
VOLUME



Mass Flow, Heat, and Work 
Affect Energy Content

Mass Flow, Heat, and Work Mass Flow, Heat, and Work 
Affect Energy ContentAffect Energy Content

The energy content of a control volume 
can be changed by mass flow as well as 
heat and work interactions



Control VolumeControl Volume
• System - control mass
• Control volume, involves mass flow in 

and out of a system
• pump, turbine, air conditioner, car 

radiator, water heater, garden hose 
• In general, any arbitrary region in space 

can be selected as control volume.
• A proper choice of control volume will 

greatly simplify the problem.



Example Example ––
Automobile EngineAutomobile Engine

Fuel in at T and P Air in at T and P

Wout
Qout

Exhaust out at 
T and P.



Control VolumeControl VolumeControl Volume



The Physical Laws and 
the System Concept

• All physical laws seen so far were 
developed to systems only: a set of 
particles with fixed identity.

• In a system mass is not allowed to cross 
the boundary, but heat and work are.



Mass Conservation Equation

0
dt

dM

system
=

• The mass within the system is constant. If you 
follow the system, in a Lagrangian frame of 
reference, it is not observed any change in the 
mass.



Momentum Conservation Equation

( )
{

forces  
externalsystem

F
dt

VMd
∑=
r

r

• If you follow the system, in a Lagrangian
frame of reference, the momentum change is 
equal to the resultant force of all forces acting 
on the system: pressure, gravity, stress etc.

system system



Energy Conservation Equation – 1st Law

( ) ( )dAwq
dt
Med

boundarysystem
∫∫ −= &&

• If you follow the system, in a Lagrangian
frame of reference, the energy change is 
equal to the net flux of heat and work 
which crossed the system boundary

• e = u+gz+v2/2   specific energy (J/kg)
• = energy flux, (Js-1m-2)w and q &&
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• For continuously deforming 
boundaries (gases and liquids in 
general) is difficult to draw an 
analysis following the system. 

• It would be far easier to have a fixed 
region in space (the control volume) 
and then draw the analysis.

• How to transpose the system properties 
to the control volume properties?

Systems x Control VolumesSystems x Control Volumes



PreliminariesPreliminaries
•• Before get into the Before get into the Control Volume analysisControl Volume analysis

it is necessary define the mass flow in it is necessary define the mass flow in 
terms of the velocity.terms of the velocity.

Time = t
Length = l
Area = dA
Fluid vel.: Vf
Boundary vel.:Vb

Vel = Vf

Normal Area: dA
Boundary vel.: Vbl

Time = t+dt
Length = l
Area = dA
Volume= l.dA
Fluid vel.: Vf
Boundary vel.:Vb



GeneralizingGeneralizing……
•• For each area element there is a mass flow crossing it: For each area element there is a mass flow crossing it: 
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•• l must be orthogonal to the crossing area:l must be orthogonal to the crossing area:

l
α

n
dA ( ) ( ) ( )dAVn

t
dAcosldAcoslmd r

ttt rr
& ⋅ρ≡

δ
αρ−αρ

=
δ+

•• VrVr is the relative velocity between the fluid and the is the relative velocity between the fluid and the 
boundary: boundary: VVrr = = VVff -- VVbb

Mass Flux



Mass Flow Rate: kg.secMass Flow Rate: kg.sec--11

Vf

Normal Area: dA
Boundary vel: Vbl

( )∫∫ ⋅ρ=∫= dA Vnmdm r
rr

&&

•• Considering the area open to the flux the mass Considering the area open to the flux the mass 
flow is thenflow is then



Flow rate of a generic variable Flow rate of a generic variable ββ

Mass flux: kg.sec-1( )dA VnM r∫∫ ⋅ρ=
rr&

( )dA VnuU r∫∫ ⋅ρ=
rr&

( ) dAVVnX fr
rrrr

& ∫∫ ⋅ρ=

( )dA VnB r∫∫ ⋅β=
rr&

Internal Energy flux: J.sec-1

Momentum flux: N

B flux: β.kg.sec-1



RReynolds eynolds TTransport ransport TTheorem heorem 

• The control volume is a region of space 
bounded by the control surface which is 
deformable or not and where heat, work 
and mass can cross.

• The RTT translates the system time ratio 
in terms of the property ratio evaluated 
at a specific region on space – the control 
volume.



Reynolds Transport Theorem Reynolds Transport Theorem 
• Let for an instant t0 the control surface 

be coincident with the system boundary

( t0 ) (t0 + δt)

system control 
volume

I II

III

• At the instant t0+δt the system partially left the 
C.V. III is outside C.V.; II is still inside C.V. and 
I is filled by another system.



Reynolds Transport Theorem Reynolds Transport Theorem 
The system time ratio written in terms of C.V. properties is:
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Reynolds Transport Theorem Reynolds Transport Theorem 
The first term is the time ratio of B within the C.V.:
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Reynolds Transport Theorem Reynolds Transport Theorem 
The 2nd and 3rd terms represent the flux of B out and in of the C.V.:
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Reynolds Transport Theorem Reynolds Transport Theorem 
• The system changes written in terms of a 

Control Volume, 

( )∫∫∫ ∫∫ ⋅βρ+βρ=
.V.C .S.C

r
sys

dAVndV
dt
d

dt
dB rr

• The change of B in the system is equal to the 
change of B in the C.V. plus the net flux of B 
across the control surface. 

• The lagrangian derivative of the system is 
evaluated for a region in space (fixed or not) 
by means of the RTT.



Transport Equations Transport Equations 
in Terms of Control Volume in Terms of Control Volume 

• The Reynolds Transport Theorem is applied 
to the transport equations to express them 
by means of control volume properties

( )∫∫∫ ∫∫ ⋅βρ+βρ=
.V.C .S.C

r
sys

dAVndV
dt
d

dt
dB rr



SteadySteady--flow assumptionflow assumption
Extensive and intensive properties 
within the control volume don’t 
change with time, though they may 
vary with location.

Thus mCV, ECV, and VCV are constant.
Pressure, temp, velocity do not 
change with time, but with 
space



SteadySteady--flow assumptionflow assumption
• Observe that the time derivatives of the 

system and the C.V have different meanings:

( ) ( ) ( )
0

dt
Med 

dt
VMd 

dt
Md

CVCVCV
===

r

∫∫∫ ρβ≡≠
vcCVSYS

dV
dt
d

dt
dB

dt
dB

• This allows the properties to vary from point-
to-point but not with time, that is:

• However, material can still flow in and out 
of the control volume.

• The flow rate terms   ‘m’ are not zero.



Mass Equation, Mass Equation, ββ = 1 (scalar = 1 (scalar eqeq.) .) 
• It express a mass balance for the C.V. 
• The mass change within the C.V. is equal to 

the flux of mass crossing the C.S.

( ) 0dA VndV
dt
d

dt
dM

.V.C .S.C
r

sys
=∫∫∫ ∫∫ ⋅ρ+ρ=

rr

• The integral form is too complex to evaluate.
• Assume uniform properties, i.e, density and 

velocities at the inlets and outlets
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The Conservation of MassThe Conservation of Mass

CV
OUTIN dt

dMMM =− &&
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During Steady Flow Process, 
Volume Flow Rates are not 

Necessarily Conserved

During Steady Flow Process, During Steady Flow Process, 
Volume FlowVolume Flow Rates are not Rates are not 

Necessarily ConservedNecessarily Conserved

• Steady flow
• One inlet
• One outlet
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Momentum Equation, Momentum Equation, ββ = V, = V, 
(vector (vector eqeq., it has three components) ., it has three components) 

• It express a force balance for the C.V. 
accordingly to Newton’s 2nd Law. 

• The momentum change within the C.V. is 
equal to the resultant force acting on the C.V.
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Constituting the external forces,

( ) ( ) ( )∫∫∫ ∫∫ τ⋅+∫∫ ⋅−+ρ=∫∫∫ ∫∫ ⋅ρ+ρ
.V.C .S.C.S.C.V.C .S.C

r dAndAPndVgdA VVndVV
dt
d rrrrrrr

• The gravity force acts on the volume.
• The pressure force is a normal force acting 

inward at the C.S.
• The shear force acts tangentially at the C.S.

Momentum Equation, Momentum Equation, ββ = V, = V, 
(vector (vector eqeq., it has three components)., it has three components)



Momentum Equation, Momentum Equation, ββ = V, = V, 
(vector (vector eqeq., it has three components) ., it has three components) 

• Assuming uniform properties: density and 
velocities (inlets/outlets)

• Neglecting the shear forces 
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The Conservation of Momentum The Conservation of Momentum 
-- Newton 2Newton 2ndnd Law Law --

Two Ports C.V. (one inlet/one outlet)Two Ports C.V. (one inlet/one outlet)
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Energy Equation, Energy Equation, ββ = e, (scalar = e, (scalar eqeq.) .) 

• It express the energy balance for the C.V. 
• The momentum change within the C.V. is 

equal to the resultant force acting on the C.V.

( )
dt

dW
dt
dQdA e VnedV

dt
d

dt
dMe

.V.C .S.C
r

sys
−=∫∫∫ ∫∫ ⋅ρ+ρ=

rr



Energy Equation, Energy Equation, ββ = e, (scalar = e, (scalar eqeq.) .) 
• The integral form is dropped. We will 

launch a lumped analysis with uniform 
properties. 

• The energy equation becomes:
( ) ( ) ( )

dt
dW

dt
dQemem

dt
ed

inout −=∑−∑+
∀ρ

&&

• The heat and work convention signs for 
system holds for C.V.:

1. Heat IN and Work OUT to C.V. are ( + )
2. Heat OUT and Work IN to C.V. are ( - )



LetLet’’s look at the heat s look at the heat 
transfer terms first:transfer terms first:

We want to combine them into a single 
term to give us the net heat transfer

outQ&−netQ& inQ&=
For simplicity, we’ll drop the “net” subscript

Q& netQ&=



WeWe’’ll do the same thing ll do the same thing 
with workwith work

Work involves boundary, 
shaft, electrical, and others

W& outin WW && +−=



steady state regime and a two 
port (one inlet/one outlet) C.V. 
the energy equation reduces to:

( ) WQeem inout &&& −=−

FLUX FLUX NET HEAT 
OF ENERGY OF ENERGY AND WORK 

OUT TO THE C.S. IN TO THE C.S. ON THE C.S.

     
     − =     
     
     



Energy Equation, Energy Equation, ββ = e, (scalar = e, (scalar eqeq.) .) 

To constitute the energy equation is 
necessary now establish:

1- The specific energy terms, ‘e’

2 – Split the work terms in pressure work 
or flow work (PdV) plus other type of 
work modes



The Specific Energy The Specific Energy ‘‘ee’’
We will consider the  specific energy the 

contribution of the:
1. fluid internal energy, 
2. potential energy and 
3. kinetic energy:

2
V

gzue
2
I++=

Where VI stands for the fluid velocity as 
seen from an inertial frame of reference.



Control Volume May Involve Boundary, 
Electrical, Shaft, and other Work

Control Volume May Involve Boundary, Control Volume May Involve Boundary, 
Electrical, Shaft, and other WorkElectrical, Shaft, and other Work



The breakup of the The breakup of the 
work term:work term:

• Work includes, in the general case, shaft work, 
such as that done by moving turbine blades or 
a pump impeller; 

• the work due to movement of the CV surface 
or boundary work (usually the surface does 
not move and this is zero); 

• the work due to magnetic fields, surface 
tension, etc., if we wished to include them 
(usually we do not); and 

• the work to move material in and out of the CV.



Breakup of work, continued.Breakup of work, continued.
• We are interested in breaking up 

work into two terms:

1. The work done on the CV by the 
increment mi of mass as it enters and 
by the increment me of mass as it exits

2. All other works, which will usually 
just be shaft work, and which we will 
usually symbolize as Wshaft or just W.



We normally split work We normally split work 
into two terms:into two terms:

SHAFTFLOW WWW &&& +=

.v.cofout/influid
movingdoneworkWFLOW =&

SHAFTW net shaft work &  other types=&



Schematic for Flow WorkSchematic for Flow Work
Think of the slug of mass about to enter the CV 
as a piston about to compress the substance in 
the CV



Schematic for Flow WorkSchematic for Flow Work
The flow work is: 

and the rate:

Which is the volumetric 
work to push or pull the 
slug of mass in to the 
C.V.
The scalar product gives 
the right sign if the C.V. 
is receiving or giving 
work

fW P V∆ = ∆

( ) ( ) MPAVnP
dt

VdPW rf &
rr&

ρ
=⋅=

∆
=



Energy EquationEnergy Equation
Replacing the definitions of ‘e’ and Wf into 
the energy equation:
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What do the terms mean?What do the terms mean?
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A Note About HeatA Note About Heat
• Heat transfer should not be 

confused with the energy 
transported with mass into and 
out of a control volume

• Heat is the form of energy 
transfer as a result of 
temperature difference



Energy Equation Energy Equation 
Remember the ENTALPY definition?

h = u +P/ρ      

Lets use it in the Energy Equation!
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The energy equation can be The energy equation can be 
simplified even moresimplified even more……....

Divide through by the mass flow:

m
Qq
&

&
= Heat transfer per unit mass

m
W

w shaft
shaft &

&
= Shaft work per unit mass



We get the following for the We get the following for the 
Steady StateSteady State Energy Equation Energy Equation 

in a Two Port C.V.in a Two Port C.V.
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Or in short-hand notation:

pekehwq shaft ∆∆∆ ++=−

where zout or zin mean the cote at the out and 
in C.V. ports 
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•• Problem 5.9Problem 5.9 The water 
tank is filled through 
valve 1 with V1 = 10ft/s 
and through valve 3 
with Q = 0.35 ft3/s. 
Determine the velocity 
through valve 2 to keep 
a constant water level.

V=?

C.S.



Steady and Unsteady FlowSteady and Unsteady FlowSteady and Unsteady Flow
• Thermodynamic processes involving 

control volumes can be considered in two 
groups: steady-flow processes and 
unsteady-flow processes. 

• During a steady-flow process, the fluid 
flows through the control volume 
steadily, experiencing no change with 
time at a fixed position. The mass and 
energy content of the control volume 
remain constant during a steady-flow 
process.



Nozzle Reaction ForceNozzle Reaction Force
The control surface bounds the nozzle (solid) plus the fluid.
Every time the C.S. cross a solid there may be a mechanical 
force due to reaction.
Consider the inlet and outlet nozzle diameters as d1 and d2

C.S.

(1) (2)Patm
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tm

Patm
P 1

For steady state, d/dt = 0 and from mass conservation,
ρV1d1

2 = ρV2d2
2 V2=V1(d1/d2)2  and  m = ρV1πd1

2/4
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Nozzle Reaction Force Nozzle Reaction Force 
(Vector equation (Vector equation x component)x component)



22ndnd Law Equation, Law Equation, ββ = s, (scalar = s, (scalar eqeq.) .) 

• It express the entropy transport by the mean 
flow field 
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Where 
1. q is the local heat flux per unit area, that is 

in W/m2, and 
2. Sgen is the entropy generation term due to 

the Irreversibilities , Sgen ≥0



22ndnd Law Equation, Law Equation, ββ = s, (scalar = s, (scalar eqeq.) .) 
• For uniform properties the integral forms can 

be dropped in favor of simple forms: 
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Where 
1. q is the local heat flux per unit area, that is 

in W/m2, and 
2. Sgen is the entropy generation term due to 

the Irreversibilities , Sgen ≥0



Nozzle Reaction ForceNozzle Reaction Force

100 Psi & 50 – 350 GPM

Why is necessary two man to hold a fire hose?
Why to accelerate the water within the fire nozzle a 
reaction force appears?

Nozzle with 
adjustable throat 

diameter


