Thermodynamic Properties

- Property Table --
from direct measurement
- Equation of State -any equation that relates P, v, and T of a substance

Exercise 3-12

A bucket containing 2 liters of \mathbf{R} - $\mathbf{1 2}$ is left outside in the atmosphere ($0.1 \mathbf{~ M P a}$)
a) What is the $\mathrm{R}-12$ temperature assuming it is in the saturated state.
b) the surrounding transfer heat at the rate of 1KW to the liquid. How long will take for all R -12 vaporize?

See R-12 (diclorindifluormethane) on Table A-2

Solution - page 1

Part a)

From table A-2, at the saturation pressure of 0.1 MPa one finds: Tsaturation $=-\mathbf{3 0}^{\circ} \mathrm{C}$

- $\mathrm{v}_{\text {liq }}=0.000672 \mathrm{~m}^{3} / \mathrm{kg}$
- $v_{\text {vap }}=0.159375 \mathrm{~m}^{3} / \mathrm{kg}$
- $h_{\text {lv }}=165 \mathrm{KJ} / \mathrm{kg}$ (vaporization heat)

Solution - page 2

Part b)

The mass of $\mathbf{R - 1 2}$ is $\mathbf{m}=$ Volume $/ \mathbf{v}_{\mathbf{L}}$, $\mathrm{m}=\mathbf{0 . 0 0 2} / \mathbf{0} .000672=2.98 \mathrm{~kg}$

The vaporization energy:
Evap $=$ vap energy $*$ mass $=165 * 2.98=$ 492 KJ

Time $=$ Heat $/$ Power $=492$ sec or 8.2 min

GAS PROPERTIES

Ideal -Gas Equation of State $\mathrm{PV}=\mathrm{nR}_{\mathrm{u}} \mathrm{T}$;
 M
 $\mathrm{n}=\frac{\mathrm{M}}{\mathrm{n}}$
 mol

Universal gas constant is given on

$$
\begin{aligned}
\mathbf{R}_{\mathbf{u}} & =8.31434 \mathrm{~kJ} / \mathrm{kmol}-\mathrm{K} \\
& =8.31434 \mathrm{kPa}-\mathrm{m}^{3} / \mathrm{kmol}-\mathrm{k} \\
& =\mathbf{0 . 0 8 3 1 4 3 4} \mathrm{bar}-\mathrm{m}^{3} / \mathrm{kmol}-\mathrm{K} \\
& =\mathbf{8 2 . 0 5} \mathrm{L}-\mathrm{atm} / \mathrm{kmol}-\mathrm{K} \\
& =\mathbf{1 . 9 8 5 8} \mathrm{Btu} / \mathrm{lbmol}-\mathrm{R} \\
& =\mathbf{1 5 4 5 . 3 5} \mathrm{ft}-\mathrm{lbf} / \mathrm{lbmol}-\mathrm{R} \\
& =\mathbf{1 0 . 7 3} \mathrm{psia}-\mathrm{ft}^{3} / \mathrm{lbmol}-\mathrm{R}
\end{aligned}
$$

Example

Determine the particular gas constant for air ($28.97 \mathrm{~kg} / \mathrm{kmol}$) and hydrogen (2.016 $\mathrm{kg} / \mathrm{kmol})$.

$$
\mathbf{R}_{\text {air }}=\frac{\mathbf{R}_{\mathbf{u}}}{\mathbf{M}}=\frac{8.1417 \frac{\mathrm{~kJ}}{\mathrm{kmol}-\mathrm{K}}}{28.97 \frac{\mathrm{~kg}}{\mathrm{kmol}}}=0.287 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
$$

$$
\mathbf{R}_{\text {hydrogen }}=\frac{8.1417 \frac{\mathrm{~kJ}}{\mathrm{kmol}-\mathrm{K}}}{2.016 \frac{\mathrm{~kg}}{\mathrm{kmol}}}=4.124 \frac{\mathrm{~kJ}}{\mathrm{~kg}-\mathrm{K}}
$$

Ideal Gas "Law" is a simple Equation of State

$$
\begin{gathered}
\mathbf{P V}=\mathbf{M R T} \\
\mathbf{P v}=\mathbf{R T} \\
\mathbf{P V}=\mathbf{N R}_{\mathrm{u}} \mathbf{T} \\
\frac{\mathbf{P}_{1} \mathbf{V}_{1}}{\mathbf{T}_{1}}=\frac{\mathbf{P}_{2} \mathbf{V}_{2}}{\mathbf{T}_{2}}
\end{gathered}
$$

Under what conditions is it appropriate to apply the ideal gas equation of state?

- Good approximation for P-v-T behaviors of real gases at low densities (low pressure and high temperature).
- Air, nitrogen, oxygen, hydrogen, helium, argon, neon, carbon dioxide,
.... ($<\mathbf{1 \%}$ error).

Percent error for applying ideal gas equation of state to steam

Compressibility Factor

- It accounts mainly for two things
- Molecular structure
- Intermolecular attractive forces

-What is it really doing?

Compressibility Factor

-The deviation from ideal-gas behavior can be properly accounted for by using the compressibility factor Z, defined as

$$
Z=\frac{P v}{R T} \quad \text { or } \quad Z=\frac{v_{\text {actual }}}{v_{\text {ideal }}}
$$

$\cdot \mathrm{Z}$ represents the volume ratio or compressibility,
-Ideal Gas: $\mathrm{Z}=1$;
-Real Gases: $\mathbb{Z}>1$ or $\mathbb{Z}<1$.

Principle of corresponding states

-The compressibility factor Z is approximately the same for all gases at the same reduced temperature and reduced pressure.

$$
\mathbf{Z}=\mathbf{Z}\left(\mathbf{P}_{\mathrm{R}}, \mathrm{~T}_{\mathrm{R}}\right) \text { for all gases }
$$

Reduced Pressure and Temperature

where:
P_{R} and T_{R} are reduced values. $P_{c r}$ and $T_{c r}$ are critical properties.

Compressibility factor for ten substances (applicable for all gases Table A-3)

OTHER

THERMODYNAMIC

PROPERTIES

Other Thermodynamic Properties: Isobaric (c. pressure) Coefficient

Other Thermodynamic Properties: Isothermal (c. temp) Coefficient

For ideal gas,

$$
\kappa=1 / \mathrm{P}
$$

Other Thermodynamic Properties:

We can think of the volume as being a function of pressure and temperature, $v=v(P, T)$. Hence infinitesimal differences in volume are expressed as infinitesimal differences in P and T, using κ and β coefficients

$$
\mathbf{d v}=\left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}}\right)_{\mathbf{P}} \mathbf{d T}+\left(\frac{\partial \mathbf{v}}{\partial \mathbf{P}}\right)_{\mathbf{T}} \mathbf{d P} \equiv \beta \mathbf{v d T}-\kappa \mathbf{v d P}
$$

For ideal gas: $\mathbf{d v} / \mathbf{v}=\mathbf{d T} / T-\mathbf{d P} / \mathbf{P} \rightarrow \mathrm{VP} / \mathbf{T}=$ const!
For substances other than ideal gas, it can be approximated by:

$$
\mathbf{L n}\left(\frac{\mathbf{v}}{\mathbf{v}_{\mathbf{0}}}\right)=\beta\left(\mathbf{T}-\mathbf{T}_{\mathbf{0}}\right)-\kappa\left(\mathbf{P}-\mathbf{P}_{\mathbf{0}}\right)
$$

If κ and β are nearly constant,

Other Thermodynamic Properties:

$$
\begin{aligned}
& \mathbf{u}=\mathbf{u}(\mathbf{T}, \mathbf{v}) \quad \text { - Internal Energy } \\
& \mathbf{h}=\mathbf{h}(\mathbb{T}, \mathbf{P}) \equiv \mathbf{u}+\mathbf{P v} \quad \text { - Enthalpy } \\
& \mathbf{S}=\mathbf{s}(\mathbf{u}, \mathbf{v}) \quad \text { - Entropy }
\end{aligned}
$$

Other Thermodynamic Properties: Specific Heat at Const. Volume

Other Thermodynamic Properties: Specific Heat at Const. Pressure

Specific Heats for Some Gases

Ideal Gases: $u=u(T)$

$$
d u=\left(\frac{\partial u}{\partial T}\right)_{v} d T+\left(\frac{\partial \nu}{\partial v}\right)_{T}^{T} d \boldsymbol{d}
$$

Therefore,

$$
d u=\left(\frac{\partial u}{\partial T}\right)_{v} d T=C_{v}(T) d T
$$

The internal energy change is:

$$
\Delta \mathrm{u}=\mathrm{u}_{2}-\mathrm{u}_{1}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{v}}(\mathrm{~T}) \mathrm{dT}
$$

As C_{v} changes with temperature it cannot be pulled out from the integral (for general cases).

Enthalpy for an Ideal Gas

- $h=u+P v$ where $P v$ can be replaced by RT because $\mathbf{P v}=$ RT.
- Therefore, $h=u+R T=>$ since u is only a function of T, R is a constant, then h is also only a function of T !
- so $h=h(T)$

Similarly, for a change in

 enthalpy for ideal gases:$$
C_{p}=C_{p}(T) \quad \& \quad\left(\frac{\partial h}{\partial P}\right) \equiv 0
$$

$d h=C_{p} d T$, and

$$
\Delta h=h_{2}-h_{I}=\int_{T_{l}}^{T_{2}} C_{p}(T) d T
$$

Summary: Ideal Gases

- For ideal gases u, h, C_{v}, and C_{p} are functions of temperature alone.
- For ideal gases, C_{v} and C_{p} are written in terms of ordinary differentials as

$$
C_{v}=\left(\frac{d u}{d T}\right)_{\text {ideal gas }} ; C_{p}=\left(\frac{d h}{d T}\right)_{\text {ideal gas }}
$$

Three Ways to Calculate Δu and Δh

$$
\begin{aligned}
& \text { - } \Delta u=u_{2}-u_{1} \text { (table) } \cdot \Delta h=h_{2}-h_{1} \text { (table) } \\
& -\Delta u=\int_{I}^{2} C_{v}(T) d T \quad \Delta h=\int_{I}^{2} C_{p}(T) d T \\
& -\Delta u=C_{v, a v} \Delta T \\
& \text { - } \Delta h=C_{p, a v} \Delta T
\end{aligned}
$$

Problem $3.31-N_{2}$ is heated from 373 K to $1773 K$ at constant pressure. Evaluate the specific entalpy change (KJ per kg).

- $\Delta h \approx C_{p, 300 k} \Delta T=(t a b . A-7)$
$1,0416 x(1773-373)=1457 \mathrm{~kJ} / \mathrm{kg}$
- $\Delta h=\int_{1}^{2} \mathbf{C}_{\mathbf{p}}(\mathbf{T}) \mathrm{dT} \quad$ tab $A-5, \theta=t(K) / 100$
$C p=39,060-512,79 \theta^{-1.5}+1072,7 \theta^{-2}-820,40 \theta^{-3}$
$\Delta h=1635.98 \mathrm{~kJ} / \mathrm{kg}$

There is an error of 11\% for using Cp constant when the temperature span is of 1400 K !

Cp x Cv Relationship for an Ideal Gas,

$$
h=u+P v=u+R T
$$

$$
\frac{d h}{d T}=\frac{d u}{d T}+R
$$

$$
C_{p}=C_{v}+R \quad\left[\frac{k J}{\mathrm{~kg} \cdot \boldsymbol{K}}\right]
$$

Ratio of Specific Heats γ
 $$
\gamma \equiv \frac{\mathbf{C}_{\mathbf{p}}}{\mathbf{C}_{\mathbf{v}}}=\frac{\mathbf{C}_{\mathbf{p}}(\mathbf{T})}{\mathbf{C}_{\mathbf{v}}(\mathbf{T})}=\gamma(\mathbf{T})
$$

For most gases γ is almost constant with temperature and equals to 1.4

$$
\begin{aligned}
& \frac{\mathbf{C}_{\mathbf{p}}}{\mathbf{C}_{\mathbf{v}}}=\mathbf{1}+\frac{\mathbf{R}}{\mathbf{C}_{\mathbf{v}}}=\gamma>\mathbf{1} \\
& \mathbf{C}_{\mathbf{v}}=\frac{\mathbf{R}}{\gamma-1} \text { and } \mathbf{C}_{\mathbf{p}}=\frac{\gamma \mathbf{R}}{\gamma-1}
\end{aligned}
$$

ISOTHERMAL,

POLITROPIC AND

ADIABATIC PROCESSES

FOR AN IDEAL GAS

Isothermal Process

- Ideal gas: $P V=m R T=$ constant

For ideal gas, $\mathbf{P V}=\mathbf{m R T}$ We substitute into the integral

$$
W_{b}=\int_{1}^{2} P d V=\int_{1}^{2} \frac{m R T}{V} d V
$$

Collecting terms and integrating yields:

$$
W_{b}=m \boldsymbol{R} \boldsymbol{T} \int_{1}^{2} \frac{d V}{V}=m \boldsymbol{R} \boldsymbol{T} \ell \boldsymbol{n}\left(\frac{V_{2}}{V_{1}}\right)
$$

Polytropic Process: $\boldsymbol{P}^{n}=C ; \quad 1 \leq \mathbf{n} \leq \gamma$

Isothermal $\mathrm{n}=1$
Adiabatic ($\mathbf{Q}=\mathbf{0}$) $\ldots \ldots \ldots . . \mathrm{n}=\gamma=\mathbf{C p} / \mathbf{C v}$
Others:
Constant nressure ${ }_{\text {pin }} \ldots \ldots . . n=\mathbf{n}$

The politropic lines are always to the right of the isothermal lines.

P, v and T Relationship in a Polytropic Process, $1 \leq$ n ≤ 1

- The path is described by: $\mathrm{Pv}^{\mathrm{n}}=\mathbf{C}$
- The ideal gas state equation is: $\mathbf{P v}=\mathbf{R T}$
- Combining these two expressions is possible to relate the initial to the final states

$$
\begin{gathered}
\left(\frac{P_{2}}{P_{1}}\right)=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{\mathrm{n}} \quad\left(\frac{\mathrm{~T}_{2}}{T_{1}}\right)=\left(\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}\right)^{\mathrm{n}-1} \\
\left(\frac{\mathrm{~T}_{2}}{T_{1}}\right)=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{n-1}{n}}
\end{gathered}
$$

Boundary work for a gas which obeys the polytropic equation

$$
\begin{aligned}
\mathrm{W}_{\mathrm{b}} & =\int_{1}^{2} P d V=\mathrm{c} \int_{1}^{2} \frac{\mathrm{dV}}{\mathrm{~V}^{\mathrm{n}}} \\
& =\mathrm{c}\left[\frac{\mathrm{~V}^{1-\mathrm{n}}}{1-\mathrm{n}}\right]_{\mathrm{v}_{1}}^{\mathrm{V}_{2}}=\mathrm{c}\left[\frac{\mathrm{~V}_{2}^{1-\mathrm{n}}-\mathrm{V}_{1}^{1-\mathrm{n}}}{1-\mathrm{n}}\right] \quad \operatorname{para}(\mathrm{n} \neq 1)
\end{aligned}
$$

Where \mathbf{C} stands for the constant $\mathbf{P v}^{\mathbf{n}}=\mathbf{C}$

We can further simplify

The constant $\mathbf{c}=\mathbf{P}_{1} \mathbf{V}_{1}{ }^{\mathbf{n}}=\mathbf{P}_{2} \mathbf{V}_{2}{ }^{\mathbf{n}}$

$$
\begin{aligned}
\boldsymbol{W}_{\boldsymbol{b}} & =\frac{\boldsymbol{P}_{2} \boldsymbol{V}_{2}^{n}\left(V_{2}^{1-n}\right)-\boldsymbol{P}_{1} V_{1}^{n}\left(V_{1}^{1-n}\right)}{1-n} \\
& =\frac{\boldsymbol{P}_{2} V_{2}-\boldsymbol{P}_{1} V_{1}}{1-n}, \quad n \neq 1
\end{aligned}
$$

Summary for

Polytropic Process

$$
\begin{aligned}
\boldsymbol{W}_{\boldsymbol{b}} & =\int_{1}^{2} P d \boldsymbol{V}=\int_{1}^{2} \frac{\boldsymbol{c}}{\boldsymbol{V}^{\boldsymbol{n}}} d \boldsymbol{V} \\
& =\frac{\boldsymbol{P}_{2} V_{2}-P_{1} V_{1}}{1-n}, \quad n \neq 1 \\
& =\boldsymbol{P V} \ell \boldsymbol{n}\left(\frac{V_{2}}{\boldsymbol{V}_{1}}\right), \quad n=1
\end{aligned}
$$

Ideal Gas Adiabatic Process and Reversible Work

Why $\mathbf{P v}^{\gamma}=\mathbf{C}$ represents a process where the volume is expanding or contracting without heat flux, $Q=0$?

Ideal Gas Adiabatic Process and Reversible Work (cont)

First Law:

$$
\underbrace{\mathbf{d Q}}_{=0}-\underbrace{\mathbf{d W}}_{\mathbf{P d V}}=\underbrace{\mathbf{d U}}_{\mathbf{M C _ { \mathbf { V } }} \mathbf{d T}}
$$

Substituting $\mathbf{P}=\mathbf{M R T} / \mathbf{V}$

$$
\left(\frac{d V}{V}\right)=-\underbrace{\frac{C_{V}}{R}}_{(1-\gamma)^{-1}}\left(\frac{d T}{T}\right)
$$

Integrating from
(1) to (2)

$$
\left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right)=\left(\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}\right)^{(1-\gamma)} \Rightarrow\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)=\left(\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}\right)^{\gamma}
$$

Which are the polytropic relations seen before!

Exercise 3-30

Air is compressed reversibly and adiabatically from a pressure of 0.1 MPa and a temperature of $20^{\circ} \mathrm{C}$ to a pressure of 1.0 MPa .
a) Find the air temperature after the compression
b) What is the density ratio (after to before compression)
c) How much work is done in compressing 2 kg of air?
d) How much power is required to compress 2 kg per second of air?

Solution - page 1

- In a reversible and adiabatic process P, T and v follows:

$$
\begin{aligned}
& \left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right)=\left(\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}\right)^{(\gamma-1)} \\
& \left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)=\left(\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}\right)^{\gamma} \\
& \left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right)=\left(\frac{\mathbf{P}_{2}}{\mathbf{P}_{1}}\right)^{(\gamma-1) / \gamma}
\end{aligned}
$$

Solution - page 2

Part a)
The temperature after compression is

$$
\mathrm{T}_{2}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{(\gamma-1) / \gamma} \rightarrow \mathrm{T}_{2}=293 \cdot\left(\frac{1}{0.1}\right)^{0.4 / 1.4}=566 \mathrm{~K} \quad(2930 \mathrm{C})
$$

Part b)
The density ratio is

$$
\left(\frac{V_{2}}{V_{1}}\right) \equiv\left(\frac{\rho_{1}}{\rho_{2}}\right)=\left(\frac{P_{2}}{P_{1}}\right)^{-1 / \gamma} \rightarrow\left(\frac{\rho_{2}}{\rho_{1}}\right)=\left(\frac{1}{0.1}\right)^{1 / 1.4}=5.179
$$

Solution - page 3

Part c)
The reversible work:
$\mathbf{W}_{\mathbf{R E V}}=-\frac{\left\lfloor(\mathbf{P V})_{2}-(\mathbf{P V})_{1}\right\rfloor}{(\gamma-1)} \equiv \frac{\mathbf{M} \cdot \mathbf{R}\left(\mathbf{T}_{2}-\mathbf{T}_{1}\right)}{(\gamma-\mathbf{1})}=$
Part d) $=\frac{2 \cdot 287 \cdot(566-293)}{0.4}=391 \mathrm{KJ}$
The power is:

$$
\mathbf{P}=\frac{\mathbf{d W}}{\mathbf{d t}}=-\frac{\dot{\mathbf{M R}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{(\gamma-1)}=391 \mathrm{KW}
$$

Exercícios - Capítulo 3 Propriedades das Substâncias Puras

Exercícios Propostos: 3.6 / 3.9 / 3.12 / $3.16 / 3.21 / 3.22 / 3.26 / 3.30 / 3.32 / 3.34$

Team Play: 3.1 / 3.2 / 3.4

