Coeficientes de atrito:

Tabela 6-3 Coeficientes de arrasto de objetos bidimensionais para \(\text{Re} = 10^5 \)

<table>
<thead>
<tr>
<th>Placa</th>
<th>(C_D = 2,0)</th>
<th>Meio tubo</th>
<th>(C_D = 1,2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro quadrado</td>
<td>(C_D = 2,1)</td>
<td>Triângulo equilátero</td>
<td>(C_D = 2,3)</td>
</tr>
<tr>
<td>Cilindro circular</td>
<td>(C_D = 1,6)</td>
<td>Cilindro elíptico</td>
<td>(C_D = 2,0)</td>
</tr>
<tr>
<td>Meio cilindro</td>
<td>(C_D = 1,6)</td>
<td>Cilindro elíptico</td>
<td>(C_D = 0,2)</td>
</tr>
<tr>
<td>Placa</td>
<td>(C_D = 1,7)</td>
<td>Cilindro elíptico</td>
<td>(C_D = 0,15)</td>
</tr>
<tr>
<td>Re = (\frac{U_t}{v})</td>
<td>(C_D = 0,25)</td>
<td>Cilindro elíptico</td>
<td>(C_D = 0,1)</td>
</tr>
<tr>
<td>(t =) Altura projetada normal a (U)</td>
<td></td>
<td>Laminar Turbuleto</td>
<td>(C_D = 0,6)</td>
</tr>
</tbody>
</table>

Drag coefficients \(C_D \) of various two-dimensional bodies for \(\text{Re} > 10^4 \) based on the frontal area \(A = bD \), where \(b \) is the length normal to the direction of the paper (for use in the drag force relation \(F_D = C_D A \rho V^2/2 \) where \(V \) is the free-stream velocity away from the body).
Tabela 6.4 Coeficiente de arrasto de objetos tridimensionais $\text{Re} = 10^4$ (C_D Baseado na área frontal)

<table>
<thead>
<tr>
<th>Objeto</th>
<th>$\frac{b}{t}$</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro quadrado</td>
<td>∞</td>
<td>2,10</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1,06</td>
</tr>
<tr>
<td>Cone de 60°</td>
<td></td>
<td>0,50</td>
</tr>
<tr>
<td>Disco</td>
<td></td>
<td>1,17</td>
</tr>
<tr>
<td>Casca semi-esférica</td>
<td></td>
<td>1,42</td>
</tr>
<tr>
<td>Placa retangular</td>
<td></td>
<td>0,38</td>
</tr>
</tbody>
</table>

$\frac{b}{t} = 1$

$\frac{b}{t} = \infty$

Paraquedas

$C_D = 1,20$

Disco anular

$C_D = 1,20$

Cilindro circular

$\frac{L}{d} = 0,5$

$C_D = 1,15$

<table>
<thead>
<tr>
<th>$\frac{L}{d}$</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,90</td>
</tr>
<tr>
<td>2</td>
<td>0,85</td>
</tr>
<tr>
<td>4</td>
<td>0,87</td>
</tr>
<tr>
<td>8</td>
<td>0,99</td>
</tr>
</tbody>
</table>

Elipsóide

Re baseado em L ou t a altura projetada normal a U

<table>
<thead>
<tr>
<th>$\frac{L}{t}$</th>
<th>C_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,47</td>
</tr>
<tr>
<td>2</td>
<td>0,25</td>
</tr>
<tr>
<td>4</td>
<td>0,20</td>
</tr>
<tr>
<td>8</td>
<td>0,23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{Re} = 10^6$</th>
<th>$\text{Re} = 10^7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,090</td>
<td>0,040</td>
</tr>
<tr>
<td>0,065</td>
<td>0,041</td>
</tr>
<tr>
<td>0,100</td>
<td>0,078</td>
</tr>
</tbody>
</table>

Representative drag coefficients C_D for various three-dimensional bodies for $Re > 10^4$ based on the frontal area
(for use in the drag force relation $F_D = C_D A \rho V^2/2$ where V is the free-stream velocity away from the body)

<table>
<thead>
<tr>
<th>Shape</th>
<th>Equation</th>
<th>C_D Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cube, $A = D^2$</td>
<td></td>
<td>$C_D = 1.05$</td>
</tr>
<tr>
<td>Thin circular disk, $A = \pi D^2/4$</td>
<td></td>
<td>$C_D = 1.1$</td>
</tr>
<tr>
<td>Cone (for $\theta = 30^\circ$), $A = \pi D^2/4$</td>
<td></td>
<td>$C_D = 0.5$</td>
</tr>
<tr>
<td>Sphere, $A = \pi D^2/4$</td>
<td></td>
<td>$C_D = 0.4$</td>
</tr>
<tr>
<td>Ellipsoid, $A = \pi D^2/4$</td>
<td></td>
<td>$C_D = 1.2$</td>
</tr>
<tr>
<td>Laminar: $C_D = 0.5$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbulent: $C_D = 0.2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemispher, $A = \pi D^2/4$</td>
<td></td>
<td>$C_D = 0.4$</td>
</tr>
<tr>
<td>Short cylinder, vertical, $A = \pi D^2/4$</td>
<td>L/D</td>
<td>C_D Values</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>Short cylinder, horizontal, $A = \pi D^2/4$</td>
<td>L/D</td>
<td>C_D Values</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.0</td>
</tr>
<tr>
<td>Streamlined body, $A = \pi D^2/4$</td>
<td></td>
<td>$C_D = 0.04$</td>
</tr>
<tr>
<td>Parachute, $A = \pi D^2/4$</td>
<td></td>
<td>$C_D = 1.3$</td>
</tr>
<tr>
<td>Tree, $A =$ frontal area</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V, m/s</td>
<td>C_D Values</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.4–1.2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.3–1.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.2–0.7</td>
</tr>
</tbody>
</table>

Person (average)

- Standing, $C_D A = 9 \text{ ft}^2 = 0.84 \text{ m}^2$
- Sitting, $C_D A = 6 \text{ ft}^2 = 0.56 \text{ m}^2$

Bikes

- Upright: $A = 5.5 \text{ ft}^2 = 0.51 \text{ m}^2$
 $C_D = 1.1$
- Drafting: $A = 3.9 \text{ ft}^2 = 0.36 \text{ m}^2$
 $C_D = 0.50$
- Racing: $A = 3.9 \text{ ft}^2 = 0.36 \text{ m}^2$
 $C_D = 0.9$
- With fairing: $A = 5.0 \text{ ft}^2 = 0.46 \text{ m}^2$
 $C_D = 0.12$

Semitruck, ($A =$ frontal area)

- Without fairing: $C_D = 0.96$
- With fairing: $C_D = 0.76$

Automotive ($A =$ frontal area)

- Minivan, $C_D = 0.4$
- Passenger car, $C_D = 0.3$

High-rise buildings ($A =$ frontal area)

$C_D = 1.4$
Placa Plana

Convecção forçada – Propriedades avaliadas a Text

<table>
<thead>
<tr>
<th>Fluxo</th>
<th>Local</th>
<th>Médio</th>
<th>Constate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminar</td>
<td>$ Nu_x = 0.332 \cdot Re_x^{\frac{1}{2}} \cdot Pr^{\frac{1}{3}}$</td>
<td>$ Nu = 0.664 \cdot Re_L^{\frac{1}{2}} \cdot Pr^{\frac{1}{3}} $</td>
<td>T</td>
</tr>
<tr>
<td>$ Re_x < 5.10^3 $</td>
<td>$ Nu_x = 0.46 \cdot Re_x^{\frac{1}{2}} \cdot Pr^{\frac{1}{3}} $</td>
<td>Não há</td>
<td>Q</td>
</tr>
<tr>
<td>Transição</td>
<td>$ 5.10^3 < Re_x < 5.10^5 $</td>
<td>$ Nu = \sqrt{Nu_L^2 + Nu_T^2} $</td>
<td>T</td>
</tr>
<tr>
<td>Turbulento</td>
<td>$ 5.10^5 < Re_x < 10^7 $</td>
<td>$ Nu_x = \frac{0.0296 \cdot Re_x^{0.8} \cdot Pr}{1 + 2.185 \cdot Re_x^{-0.1} (Pr^{3} - 1)} $</td>
<td>T/Q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$ Nu = \frac{0.037 \cdot Re_x^{0.8} \cdot Pr}{1 + 2.443 \cdot Re_x^{-0.1} (Pr^{3} - 1)} $</td>
<td></td>
</tr>
</tbody>
</table>

Convecção natural – Propriedades avaliadas a \(\frac{(T_p + T_{ext})}{2} \)

Vertical

<table>
<thead>
<tr>
<th>Constate</th>
<th>Fluxo</th>
<th>Local</th>
<th>Médio</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>$ Ra_x = g \rho \cdot q_{c_i} \beta (T_p - T_x) x^3 \frac{k \mu}{\rho} $</td>
<td>$ Nu_x = 0.68 + 0.503 \cdot [Ra_x \cdot \psi (Pr)]^{\frac{1}{3}} $</td>
<td>$ Nu = 0.68 + 0.67 \cdot [Ra_L \cdot \psi (Pr)]^{\frac{1}{3}} $</td>
</tr>
<tr>
<td></td>
<td>$ Ra_x < 10^9 $</td>
<td>$ Nu_x = 0.68 + 0.503 \cdot [Ra_x \cdot \psi (Pr)]^{\frac{1}{3}} $</td>
<td>$ Nu = 0.68 + 0.67 \cdot [Ra_L \cdot \psi (Pr)]^{\frac{1}{3}} $</td>
</tr>
<tr>
<td></td>
<td>Turbulento</td>
<td>$ Nu_x = 0.68 + 0.503 \cdot [Ra_x \cdot \psi (Pr)]^{\frac{1}{3}} $</td>
<td>$ Nu = 0.68 + 0.67 \cdot [Ra_L \cdot \psi (Pr)]^{\frac{1}{3}} $</td>
</tr>
<tr>
<td>Q</td>
<td>$ Ra_x^* = g \rho^2 c_i \beta qr' x^4 \frac{\mu k^2}{\rho^2} $</td>
<td>$ Nu_x = 0.68 + 0.503 \cdot [Ra_x^* \cdot \Phi (Pr)]^{\frac{1}{3}} $</td>
<td>$ Nu = 0.68 + 0.67 \cdot [Ra_L^* \cdot \Phi (Pr)]^{\frac{1}{3}} $</td>
</tr>
<tr>
<td></td>
<td>$ Ra_x < 10^9 $</td>
<td>$ Nu_x = 0.68 + 0.503 \cdot [Ra_x^* \cdot \Phi (Pr)]^{\frac{1}{3}} $</td>
<td>$ Nu = 0.68 + 0.67 \cdot [Ra_L^* \cdot \Phi (Pr)]^{\frac{1}{3}} $</td>
</tr>
<tr>
<td></td>
<td>Turbulento</td>
<td>$ Nu_x = 0.68 + 0.503 \cdot [Ra_x^* \cdot \Phi (Pr)]^{\frac{1}{3}} $</td>
<td>$ Nu = 0.68 + 0.67 \cdot [Ra_L^* \cdot \Phi (Pr)]^{\frac{1}{3}} $</td>
</tr>
</tbody>
</table>

Horizontal

<table>
<thead>
<tr>
<th>Constate</th>
<th>Fluxo</th>
<th>Quente / Fria</th>
<th>Fria / Quente</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>$ 10^4 < Ra_L < 10^7 $</td>
<td>$ Nu_L = 0.54 Ra_L^{\frac{1}{3}} $</td>
<td>$ - $</td>
</tr>
<tr>
<td></td>
<td>$ 10^7 < Ra_L < 10^{11} $</td>
<td>$ Nu_L = 0.15 Ra_L^{\frac{1}{3}} $</td>
<td>$ - $</td>
</tr>
<tr>
<td></td>
<td>$ 10^5 < Ra_L < 10^{10} $</td>
<td>$ Nu_L = 0.27 Ra_L^{\frac{1}{3}} $</td>
<td>$ - $</td>
</tr>
</tbody>
</table>

`tabela.odt`
Cilindros, tubos e esferas

Isotérmico

<table>
<thead>
<tr>
<th>Convecção</th>
<th>Fluxo</th>
<th>Cilindro</th>
<th>Esfera</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Re}_{LC} < 1)</td>
<td>(\overline{N}u = 0,75 \text{Re}_{LC} \text{Pr}_r^{1/3})</td>
<td>(\overline{N}u = 1,01 \text{Re}_{LC} \text{Pr}_r^{1/3})</td>
<td></td>
</tr>
<tr>
<td>(1 < \text{Re}_{LC} < 10^5)</td>
<td>(\overline{N}u = \overline{N}u_0 + \frac{\text{Nu}_L^2 + \text{Nu}_T^2}{2})</td>
<td>(\overline{N}u = 0,664 \text{Re}_{L}^{1/2} \text{Pr}_r^{1/3})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\overline{N}u = \frac{0,037 \text{Re}_{L}^{0.5} \text{Pr}r}{1 + 2,443 \text{Re}{L}^{-0.1} (\text{Pr}_r^{3/2} - 1)})</td>
<td></td>
</tr>
</tbody>
</table>

Forçada

<table>
<thead>
<tr>
<th>Objeto</th>
<th>(\text{Lc})</th>
<th>(\overline{N}u_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fio, cilindro, tubo</td>
<td>(\pi \cdot \frac{d}{2})</td>
<td>0,3</td>
</tr>
<tr>
<td>Esferas</td>
<td>d</td>
<td>2,0</td>
</tr>
</tbody>
</table>

[tabela 6.5]

<table>
<thead>
<tr>
<th>Geometria / objeto</th>
<th>(\text{Lc})</th>
<th>(\overline{N}u_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placa inclinada</td>
<td>(x)</td>
<td>0,68</td>
</tr>
<tr>
<td>Disco inclinado</td>
<td>(\frac{9}{11}d)</td>
<td>0,56</td>
</tr>
<tr>
<td>Cilindro vertical</td>
<td>(L)</td>
<td>0,68</td>
</tr>
<tr>
<td>Cilindro horizontal</td>
<td>(\pi \cdot d)</td>
<td>0,36 (\pi)</td>
</tr>
<tr>
<td>Cone</td>
<td>(\frac{4}{5}L)</td>
<td>0,54</td>
</tr>
<tr>
<td>Esfera</td>
<td>(\pi \cdot \frac{d}{2})</td>
<td>(\pi)</td>
</tr>
<tr>
<td>Esferóide</td>
<td>(3 \pi \frac{V}{A})</td>
<td>(\frac{A^3}{36V^2})</td>
</tr>
</tbody>
</table>

\(\text{Lc} \) é medido ao longo da superfície [tabela 6.6]

Grupos adimensionais:

- Grashof \(Gr = \frac{g \beta (T_p - T_\infty) x^3}{v^2} \) [6.48]
- Nusselt \(Nu = \frac{h_x x}{k} \) [6.19]
- Prandt \(Pr = \frac{c_p \mu}{k} \) [6.3]
- Rayleigh \(Ra = \frac{g \rho^2 c_p \beta (T_p - T_\infty) x^3}{k \mu} \) \(= \text{Gr} \cdot Pr \) [6.50]

Rayleigh \(Ra^* = \frac{g \rho^2 c_p \beta q'_{\gamma' r} x^4}{\mu k^3} \) [6.58] Fluxo de calor constante \(\beta = \frac{1}{T} (K) \) coef. de expansão do gás.
Escoamentos internos:

<table>
<thead>
<tr>
<th>Fluxo</th>
<th>Constante</th>
<th>Duto circular</th>
<th>Outras formas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>(T_m(x) = \frac{\dot{q}'' x A}{m C_p} + T_{mc}) [7.20]</td>
<td>(A = P.x); (T_p = \frac{\dot{q}'' p}{h_x} + T_m) [7.21]</td>
<td>Laminar plenamente desenvolvido</td>
</tr>
<tr>
<td></td>
<td>Local p/</td>
<td>(P_e \frac{d}{L} > 10^4)</td>
<td>(Nu_x = 1,302 \left(P_e \frac{d}{L} \right)^{1/3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(P_e \frac{d}{L} < 10^3)</td>
<td>(Nu_x = 4,36)</td>
</tr>
<tr>
<td></td>
<td>Médio p/</td>
<td>(P_e \frac{d}{L} > 100)</td>
<td>(\bar{Nu} = 1,953 \left(P_e \frac{d}{L} \right)^{1/3})</td>
</tr>
<tr>
<td></td>
<td>Médio p/</td>
<td>(P_e \frac{d}{L} < 10)</td>
<td>(\bar{Nu} = 4,36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\frac{T_p - T_m(x)}{T_p - T_{mc}} = e^{-\frac{h_{pp} x}{m C_p}}) [7.22]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Local p/</td>
<td>(P_e \frac{d}{L} > 100)</td>
<td>(Nu_x = 1,077 \left(P_e \frac{d}{L} \right)^{1/3})</td>
</tr>
<tr>
<td></td>
<td>Local p/</td>
<td>(P_e \frac{d}{L} < 100)</td>
<td>(Nu_x = 3,66)</td>
</tr>
<tr>
<td></td>
<td>Médio:</td>
<td>(\bar{Nu} = \left(3.66^3 + 1,61^3 \right) \left(P_e \frac{d}{L} \right)^{1/3})</td>
<td></td>
</tr>
</tbody>
</table>

Turbuleto

Q / T	\(0,5 < Pr < 1,5 \)	\(Nu = 0,0214 \left(Re^{4/5} - 100 \right) \cdot Pr^{2/5} \left[1 + \left(\frac{d_h}{L} \right)^{2/3} \right] \) [7.28]
	\(1,5 < Pr < 500 \)	\(\bar{Nu} = 0,012 \left(Re^{0,87} - 280 \right) \cdot Pr^{2/5} \left[1 + \left(\frac{d_h}{L} \right)^{2/3} \right] \) [7.29]
	Correção radial para das propriedades para líquidos: \(Nu_{corr} = Nu \left(Pr_m / Pr_p \right)^{0,11} \)	
	\(d_h = 4 \left(\frac{Area}{Perímetro} \right) \) : Quadrado: \(d_h = a \), triângulo: \(d_h = 2a \)	
	Placas paralelas: \(d_h = \frac{a}{\sqrt{48}} \)	

Para tubos rugosos:

- Proposta Chilton-colburn:
 \(f = \frac{1}{8} \cdot St \cdot Pr^{2/3} \)
- \(f \) é o fator de atrito retirado do diagrama de Moody (pg. 242)

\(St = \frac{Nu}{Re \cdot Pr} \)

\(\bar{Nu} = \frac{f}{8} \cdot Re_{dh} \cdot Pr^{1/3} \)

Variação das propriedades na direção radial:

\(Nu_{corr} = Nu \left(\mu_m / \mu_p \right)^{0,14} \) onde \(m \) refere-se à temperatura de mistura e \(p \) da parede

\(Pe = Re \cdot Pr \) (Peclet)

\(Re = U \frac{d_h}{v} \)

\(h = k \frac{Nu}{L} \left[\frac{W}{m^2 \cdot ^{0}C} \right] \)

\(\dot{Q} = L \cdot h \left(T_p - T_{mc} \right) \) [W/m]

Notas:

<table>
<thead>
<tr>
<th>Configuração</th>
<th>Temp.</th>
<th>(\dot{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Círculo</td>
<td>3,66</td>
<td>4,36</td>
</tr>
<tr>
<td>Quadrado</td>
<td>2,98</td>
<td>3,61</td>
</tr>
<tr>
<td>Retângulo 2x1</td>
<td>3,39</td>
<td>4,12</td>
</tr>
<tr>
<td>Retângulo 8x1</td>
<td>5,6</td>
<td>6,49</td>
</tr>
<tr>
<td>Planos paralelos (\infty \times 1)</td>
<td>7,56</td>
<td>8,24</td>
</tr>
<tr>
<td>Triângulo equilátero</td>
<td>2,35</td>
<td>3</td>
</tr>
</tbody>
</table>
Função erro de Gauss:

<table>
<thead>
<tr>
<th>Material</th>
<th>(r) (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riveted steel</td>
<td>0.003–0.03</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.001–0.01</td>
</tr>
<tr>
<td>Wood slat</td>
<td>0.0008–0.0005</td>
</tr>
<tr>
<td>Cast iron</td>
<td>0.0005</td>
</tr>
<tr>
<td>Galvanized iron</td>
<td>0.0004</td>
</tr>
<tr>
<td>Asphalted cast iron</td>
<td>0.0005</td>
</tr>
<tr>
<td>Commercial steel</td>
<td>0.00015</td>
</tr>
<tr>
<td>Drawn tubing</td>
<td>0.000005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluid at 60°F (v) (ft/s)</th>
<th>0.0400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.2176–0.001</td>
</tr>
<tr>
<td>Air (14.70 psi)</td>
<td>0.0001593</td>
</tr>
</tbody>
</table>

| Reynolds number \(R = \frac{VD}{v} \) (V in fps, \(D \) in ft, \(v \) in ft/s) |
|----------------------------------|-------|
| 0 | 0.0000 |
| 0.0200 | 0.5200 |
| 0.0400 | 0.5400 |
| 0.0600 | 0.5600 |
| 0.0800 | 0.5800 |
| 0.1000 | 0.6000 |
| 0.1200 | 0.6200 |
| 0.1400 | 0.6400 |
| 0.1600 | 0.6600 |
| 0.1800 | 0.6800 |
| 0.2000 | 0.7000 |
| 0.2200 | 0.7200 |
| 0.2400 | 0.7400 |
| 0.2600 | 0.7600 |
| 0.2800 | 0.7800 |
| 0.3000 | 0.8000 |
| 0.3200 | 0.8200 |
| 0.3400 | 0.8400 |
| 0.3600 | 0.8600 |
| 0.3800 | 0.8800 |
| 0.4000 | 0.9000 |
| 0.4200 | 0.9200 |
| 0.4400 | 0.9400 |
| 0.4600 | 0.9600 |
| 0.4800 | 0.9800 |
| 0.5000 | 1.0000 |

| \(VD \) for water at 60°F (V in fps, \(D \) in inches) |
|--|-------|
| 0.1 | 0.2 |
| 0.2 | 0.4 |
| 0.3 | 0.6 |
| 0.4 | 0.8 |
| 0.5 | 1.0 |

| \(VD \) for atmospheric air at 60°F |
|---------------------------------------|-------|
| 0.1 | 0.2 |
| 0.2 | 0.4 |
| 0.3 | 0.6 |
| 0.4 | 0.8 |
| 0.5 | 1.0 |

Moody Diagram

- Lamellar flow
- Critical zone
- Transition zone
- Complete turbulence, rough pipes, \(R > 3500,\) \(\nu = 1.14 - 2 \log r \)

Conversion factors:
- \(1 \) ft = 0.3048 m
- \(1 \) in = 2.54 cm
- \(1 \) lb = 0.45359 kg
- \(1 \) kcal = 4.184 kJ

Acceleration at sea level latitude 45°, \(g = 2.74174 \) ft/s²

Calculated values

- \(r = \frac{\nu}{D} \) (in ft ft²/s)
- \(f = 0.5 \) for smooth pipes
- \(f = 0.40 \) for pipes of \(R > 2000 \)
- \(f = 0.32 \) for \(R > 4000 \)
- \(f = 0.28 \) for \(R > 8000 \)

- \(\frac{V}{D} \) in ft/s
- \(D \) in ft

Página 7 de 7