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This paper presents a new method to estimate linear parameter-varying (LPV) state-

space models for single-input single-output systems whose dynamics depend on one or

more time-varying parameters, called scheduling parameters. The method is based on

the interpolation of linear time-invariant models that are identified for fixed operating

conditions of the system, that is, for constant values of the scheduling parameters.

The proposed method can account for multiple scheduling parameters and yields either

a polynomial or an affine LPV model that is numerically well-conditioned and therefore

suitable for LPV control synthesis. The underlying interpolation technique is formulated

as a nonlinear least-squares optimization problem that can be solved efficiently by

standard solvers. The new interpolation method is applied to an electromechanical

system that depends on two scheduling parameters. The numerical results are

compared to existing techniques in the literature, demonstrating the potential and

advantages of the proposed method.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

For more than a decade, linear parameter-varying (LPV) synthesis procedures have received a lot of attention from the
control community (for instance, see [1–4]). In the LPV control framework, the scheduling parameters that govern the
variation of the dynamics of the system are assumed to be unknown, but measurable in real-time [5]. There is a continuing
effort to design LPV controllers that achieve higher performance while still guaranteeing stability for all possible parameter
variations [6–17]. Most of these control design methods rely on the availability of an LPV model of the system that
accurately describes the variation of the dynamics over the workspace. Although identification techniques and algorithms
for linear time-invariant (LTI) systems based on measured input–output data are well-known and widely spread,
estimation of LPV models remains a difficult problem that is still in a state of development.

Two main LPV model identification approaches exist: the global approaches and the local approaches. The global
approaches are based on the assumption that it is possible to perform one global identification experiment by exciting the
system while the scheduling parameters are persistently changing the system dynamics. The local approaches interpolate a
set of local LTI models that are estimated based on a set of local measurements, obtained by exciting the system for
different fixed operating conditions, that is, for constant values of the scheduling parameters.

Several examples of the global LPV identification approach are found in the literature. In [18], a recursive least-squares
algorithm is presented to estimate a single-input single-output (SISO) LPV model with a linear fractional transform (LFT)
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representation. The method is restricted to systems with one scheduling parameter and is based on the assumption that
all states of the system can be measured. This, however, is not possible for most practical engineering applications, since
the number of available sensors is usually limited and smaller than the order of the system, implying that full state
measurement is not possible. To identify MIMO LPV models, a nonlinear programming approach is proposed in [19].
However, the resulting nonconvex optimization problem is highly sensitive to the initial starting values. For MIMO LPV
systems with an affine parameter-dependency, a subspace identification method is presented in [20]. In this approach, the
matrices involved in the calculations grow exponentially with the order of the system. An attempt to overcome this curse of
dimensionality is proposed in [21]. A new subspace identification approach was recently suggested in [22]. This approach
uses a periodic scheduling sequence for the varying parameter, but the performance of the algorithm is affected by the
choice of the scheduling sequence. In [23], an identification approach is proposed that uses a discrete-time input–output
representation whose coefficients have a polynomial dependency on the scheduling parameter. The paper presents least-
squares techniques to obtain both time-varying and recursive autoregressive with exogenous input (ARX) models.
However, compared to a state-space representation, the input–output representation is not suitable for most existing LPV
control design techniques. Although it is shown in [24] that it is possible to transform the input–output representation to
an equivalent state-space representation, it is not straightforward to apply this transformation and the resulting state-
space representation can have a dynamic dependency on the scheduling parameter. For discrete-time systems, this means a
dependency on the scheduling parameter at different time instants and for continuous-time systems a dependency on the
scheduling parameter and its derivative(s). It is also shown in [24] that even if the system dynamics changes smoothly with
the time-varying parameter, the coefficients of the input–output representation may change in a complicated way.

As previously stated, the basic assumption in the global approaches is the possibility of performing a global
identification experiment by exciting the system while the scheduling parameters are persistently changing the system
dynamics. This type of experiment, however, is not possible for some applications, as for example the flight applications in
[25] and the vibroacoustic system in [26]. In case a global identification experiment is impossible, it is appropriate to use a
local LPV identification approach, based on the interpolation of local LTI models that are obtained from different local
experiments performed for fixed operating conditions of the system, that is, for constant values of the scheduling
parameters. Local approaches have the important practical advantage that well-known LTI identification algorithms can be
used to estimate the local LTI models. Subsequently, an appropriate interpolation method is applied to construct an LPV
model from the local LTI models. As the estimated local LTI models can be chosen to be either continuous- or discrete-time,
both continuous- and discrete-time LPV models can be obtained, which is another advantage of the local approaches.

Several papers have proposed identification schemes based on the local LPV identification approach. To properly
interpolate the local LTI models, all local approaches require that the local LTI state-space models are expressed in a
consistent form, that is, all local LTI models need to be defined with respect to the same state-space basis. For instance, the
method proposed in [27] interpolates the system matrices of local SISO LTI state-space models represented in the
controllable form. However, as indicated in [10], the well-known numerical ill-conditioning of the controllable form
reduces the practical use of the method for high-order systems. To avoid this numerical issue, a frequency-domain
subspace identification technique is used in [28], that exploits properties of internally balanced realizations [29,30] to
provide the local LTI models whose system matrices can be appropriately interpolated. Since the local LTI models are
identified using subspace techniques, this method can be used to interpolate both SISO as well as MIMO local LTI models.
Although in some cases, the non-uniqueness of the balancing transformation can be a problem for the interpolation.
Moreover, since the internally balanced realization is based on the controllability and observability Gramians, all local LTI
models need to be controllable and observable.

In [31], a different approach was proposed to obtain well-conditioned state-space LPV models. First, the poles and zeros
of the local LTI models are interpolated by polynomials and afterwards, the interpolating LPV model is obtained as the
series connection of low-order LPV submodels, constructed based on these interpolating polynomials. This method has
been successfully applied to several industrial applications, but has some significant drawbacks. First, the method cannot
handle systems with multiple scheduling parameters. Second, the method cannot cope with the transition of a complex
conjugate pole (or zero) pair to a pair of real poles (or zeros) from one local LTI model to the next.

Although useful in practice, the local approaches have disadvantages as well. The main drawback is the fact that no
information about the time variation and propagation of the scheduling parameters is used in the local approaches since
they are based on the interpolation of local LTI models that are estimated for fixed values of the scheduling parameters.
Consequently, it is not guaranteed that the interpolating LPV model will accurately describe the system for time-varying
scheduling parameters. Therefore, local approaches are more suitable for systems whose scheduling parameters vary
slowly and whose dynamics exhibit a smooth variation as a function of the scheduling parameters. These are common
guidelines in interpolating gain-scheduling control practice [32]. A second drawback is that in order to obtain the local LTI
models, the scheduling parameters must be constant during the identification experiment. It is therefore assumed that the
system can operate in different fixed operating conditions. This assumption is satisfied in many applications, as for
instance, mechatronic motion systems with position-dependent dynamics [10,27,31] and vibroacoustic systems [26].
Nevertheless, in some applications, the scheduling parameter might be constantly changing, such that no local LTI models
can be obtained and a global approach should be considered.

The aim of this paper is to present a new local LPV identification method that extends the work presented in [31] by
alleviating its restrictions. The most important extension of the proposed method is the fact that it can handle systems that
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depend on multiple scheduling parameters. Furthermore, in the method presented here, the idea of interpolating the poles
and zeros of the local LTI models is discarded and a different interpolation strategy is proposed. Throughout the paper, it
will be shown that this new interpolation strategy has two clear advantages with respect to the method proposed in [31]:
(i) it can handle the transition from a complex conjugate pair of poles (or zeros) to a pair of real poles (or zeros) from one
local LTI model to the next and (ii) the nonlinear least-squares optimization problem solved to estimate the coefficients of
the interpolating LPV model is less complex and can be solved efficiently using standard solvers.

The paper is organized as follows. A brief outline and flowchart of the interpolation method is presented in Section 2.
Section 3 focuses on the division of the local LTI models into submodels. For the single scheduling parameter case, Section 4
formulates the interpolation of local LTI models as an optimization problem and discusses algorithms to solve them.
The extension to multiple scheduling parameters is the topic of Section 5. Section 6 discusses the application of the
proposed interpolation method on an electromechanical system that depends on two scheduling parameters and presents
a comparison with existing local techniques from the literature. Section 7 presents the conclusions.

1.1. Notation

The set of real numbers is denoted by R and the set of natural numbers by N. Matrices, vectors and scalars associated
with the LPV model are denoted using standard font, e.g., Ak, while matrices, vectors and scalars associated with the local
LTI models are denoted using San Serif font, e.g., A‘. Throughout the paper, the following short notation:

is used to indicate the state-space model

H:¼
d½x� ¼ Axþ Bu;

y ¼ Cxþ Du;

(

where the operator d½�� denotes the time derivative for a continuous-time model and the forward time shift for a discrete-
time model. The symbol

Q
should be interpreted as the series connection of SISO state-space models, obtained by using the

output of the first model as input of the next one, and so on. For example, the series connection of two SISO state-space
models is given by

2. Outline of the interpolation method

This section presents an overview of the proposed interpolation method. To simplify the discussion, only one scheduling
parameter is considered in this outline and in Sections 3 and 4. Later, in Section 5, the extension of the method for systems
with multiple scheduling parameters is presented. For a single scheduling parameter, the interpolating LPV model is
parameterized using the following state-space representation:

(1)

where yðtÞ 2 R is the scheduling parameter. The parameter-dependent system matrices in (1) have compatible dimensions
and are chosen to have the following polynomial dependency on the scheduling parameter yðtÞ:

AðyðtÞÞ ¼
XN

k¼0

AkrkyðtÞ
k; BðyðtÞÞ ¼

XN

k¼0

BkrkyðtÞ
k,

CðyðtÞÞ ¼
XN

k¼0

CkrkyðtÞ
k; DðyðtÞÞ ¼

XN

k¼0

DkrkyðtÞ
k, (2)

where Ak 2 R
n�n, Bk 2 R

n�1, Ck 2 R
1�n, Dk 2 R

1�1 and rk 2 R, for k ¼ 0; . . . ;N. The polynomial degree of the LPV model (1)
with the system matrices (2) is denoted by N 2 N. An immediate consequence of this polynomial parameterization is that
the obtained LPV model can be used in the linear fractional transformation (LFT) framework, which has proven to be useful
for LPV control design (see, for example, [1]). As will be shown in Section 4.1, two interesting subclasses of the general
expression (1) can be derived: a polynomial LPV model in yðtÞ and an affine LPV model in rðyðtÞÞ ¼

PN
k¼1 rkyðtÞ

k.
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The purpose of the LPV model (1) is to interpolate m local LTI models

(3)

identified for m different values y‘ of the scheduling parameter. All local LTI models are single-input single-output and are
assumed to have the same number of states n, that is, A‘ 2 R

n�n, B‘ 2 R
n�1, C‘ 2 R

1�n and D‘ 2 R
1�1, for all ‘.

To properly interpolate the local LTI models (3), it is required that they are consistently defined with respect to the same
state-space basis. In this paper, this is ensured by representing the local LTI models (3) as a gain multiplied with the series
connection of first and second order submodels (see Section 3 for details). These local LTI submodels are then interpolated
by LPV submodels by minimizing an appropriate least-squares cost function. Subsequently, the unknown matrices Ak, Bk,
Ck, Dk and scalars rk in (2) are computed, for k ¼ 0; . . . ;N, from the series connection of the obtained LPV submodels.

Before the technical details are given, a brief outline of the proposed method is presented (see the flowchart in Fig. 1).
Throughout the paper, the subscript ‘ indicates the index of the local LTI model and the superscript t indicates the index of
the submodel.

Assume that m local LTI models H‘ , for ‘ ¼ 1; . . . ;m, obtained for m different values y‘ of the scheduling parameter are
available. Then:
�
 Step 1: For each local LTI model H‘ , calculate the set of poles p‘ and the set of zeros z‘ . Sort the poles and zeros in each set
p‘ and z‘ using a consistent ordering for ‘ ¼ 1; . . . ;m (Section 3.1).

�
 Step 2: Divide each local LTI model into a gain K‘ multiplied by the series connection of t1 first and t2 second order

submodels Ht
‘ (Section 3.2).
�
 Step 3: For each local LTI model, calculate the gain K‘ associated with the zero-pole-gain representation (Appendix A).

�
 Step 4: Select the subclass of interpolating LPV model: either polynomial in yðtÞ or affine in rðyðtÞÞ (Section 4.1).

�
 Step 5: Formulate and solve the appropriate optimization problem to obtain the LPV submodels Ht

ðyðtÞÞ and the
parameter-dependent gain KðyðtÞÞ that interpolate the local LTI submodels and gains (Section 4.2).

�
 Step 6: Construct the interpolating LPV model HðyðtÞÞ as the gain KðyðtÞÞ multiplied by the series connection of the LPV

submodels (Section 4.3).
Steps 1–3 are discussed in detail in the next section.
step 1
θ1

θm

θ1

step 3 step 2

θm

steps 4 & 5

step 6

H1 p1, z1

Hm pm, zm

K1

Km

H1
1 H1

τ H1
τ1+ τ2

τ1+ τ2

τ1+ τ2

Hm
1 Hm

τ Hm

K(θ(t)) H1(θ(t)) Hτ (θ(t)) H (θ(t))

H(θ(t))

... ... ...

... ... ... ... ...

Fig. 1. Flowchart of the interpolation method.
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3. Division of models in submodels

This section explains how to divide the local LTI models in a gain multiplied by the series connection of first and second
order LTI submodels. In Step 1, the set of poles p‘ and set of zeros z‘ are calculated and sorted for each local LTI model H‘ . In
Step 2, the sorted poles and zeros are used to define the local LTI submodels and in Step 3 the local gains K‘ are calculated.

3.1. Calculating and sorting the poles and zeros (Step 1)

In Step 1, the aim is to calculate and sort the poles and zeros of the m local LTI models H‘. The set of poles p‘ of each local
LTI model is readily obtained as the set of n eigenvalues of A‘ 2 R

n�n. The set of zeros z‘ is computed by solving a
generalized eigenvalue problem that involves A‘ , B‘ , C‘ and D‘ (see [33] for details). Since all local LTI models have the same
order n, they all have the same number n of poles p‘;i 2 p‘ , for i ¼ 1; . . . ;n. Furthermore, it is assumed that all local LTI
models H‘ have the same number nz of zeros z‘;i 2 z‘ , for i ¼ 1; . . . ;nz. Since a common guideline in gain-scheduling
applications [32] is that the variation of the system dynamics should be smooth, the restriction posed by the assumption of
an equal number nz of zeros for all local LTI models is not too severe.

Once the poles and zeros have been computed for all local LTI models, they can be sorted. The sorting procedure is
necessary to assure that for all local LTI models H‘ , the set of poles p‘ and the set of zeros z‘ are arranged in the same order.
This consistent ordering is necessary in the proposed interpolation method to consistently define the LTI submodels in Step
2. Unfortunately, no general procedure exists that guarantees to yield the right sorting of the poles and zeros of the local LTI
models for all applications. However, for most applications, the sorting can be easily performed based on a plot of the poles
p‘ and the zeros z‘ in the complex plane as a function of the scheduling parameters. In Section 6, this plot will be shown for
an electromechanical system. After the poles and zeros are sorted, the local LTI submodels can be constructed.

3.2. Constructing the local LTI submodels (Steps 2 and 3)

In this section, the original local LTI models H‘ are represented by a gain K‘ multiplied by the series connection of t1 first
order and t2 second order submodels, that is, H‘ is represented as

H‘:¼K‘
Yt1þt2

t¼1

Ht
‘ , (4)

with

(5)

for t ¼ 1; . . . ; t1 þ t2. The scalar K‘ is the gain, the integer t1 is the number of first order submodels associated with a real
pole and the integer t2 is the number of second order submodels associated with a pair of complex conjugate poles or with
a pair of two real poles. All local LTI models H‘ are forced to have the same number t1 of first order submodels and the same
number t2 of second order submodels. Fig. 2 shows this representation for all local LTI models H‘ . The blue dashed
rectangle indicates the m local gains K‘ while each of the t1 þ t2 green solid rectangles indicates a set of m consistent local
LTI submodels Ht

‘ , for ‘ ¼ 1; . . . ;m.
Since a first order submodel has one pole and can have either no zeros or one zero, two types of first order submodels

are therefore defined. Likewise, a second order submodel has two poles and can have no, one or two zeros, and
consequently three types of second order submodels are defined. Table 1 shows the five different types Tt of submodels.

Different ways exist to divide an LTI model in first and second order submodels. Here, the number t1 of first order and
the number t2 of second order submodels are determined as follows. If the model order n is even, the number of second
order submodels t2 ¼ n=2 and there are no first order submodels (t1 ¼ 0). If the model order n is odd, t2 ¼ ðn� 1Þ=2 and
t1 ¼ 1.
H1 K1 H1
1 H1

τ H1

H K H1 Hτ H

Hm Km Hm
1 Hm

τ Hm

τ1 + τ2

τ1 + τ2

Fig. 2. Division of the local SISO models in consistent submodels.
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Table 1
Types Tt of submodels depending on the number of poles and of zeros.

Order First Second

Type Tt 1 2 3 4 5

number of poles 1 1 2 2 2

number of zeros 0 1 0 1 2

J. De Caigny et al. / Mechanical Systems and Signal Processing 23 (2009) 2395–24172400
The local LTI submodels are constructed by consistently assigning the sorted poles p‘ and zeros z‘ to the t1 þ t2

local LTI submodels for all local LTI models H‘. A pole p‘;i from the set of poles p‘ assigned to submodel t of local LTI model
H‘ is denoted by pt‘;i (idem for the zeros). To assure that the local LTI submodels are consistently defined, they are all
represented in the observable form. For example, a type 5 submodel which has two poles pt‘;1, pt‘;2 and two zeros zt‘;1, zt‘;2 is
represented by

(6)

where the entries of the system matrices of this observable form can be readily computed as

at‘;1 ¼ �p
t
‘;1p

t
‘;2; bt‘;1 ¼ zt‘;1z

t
‘;2 � pt‘;1p

t
‘;2;

at‘;2 ¼ pt‘;1 þ pt‘;2; bt‘;2 ¼ �ðz
t
‘;1 þ zt‘;2Þ þ ðp

t
‘;1 þ pt‘;2Þ:

For the other types of local LTI submodels, the observable form is analogously derived. In this observable form, the entries
of the system matrices Ct

‘ and Dt
‘ are independent of the poles pt‘ and zeros zt‘ of the submodel, as (6) clearly shows for the

type 5 submodel. Consequently, only the entries of the matrices At
‘ and Bt

‘ need to be interpolated. Representing the local
LTI submodels in the observable form does not lead to ill-conditioning since the submodels are of first and second order
only. Recall from (4) that the gain of the local LTI models is provided by K‘, such that all local LTI submodels (5) have unit
gain.
Remark 1. Throughout the paper, the term ‘‘gain’’ denotes the gain associated with the zero-pole-gain factorization of the
model and not the DC-gain. Appendix A describes how the gain K‘ can be obtained without using the numerically ill-
conditioned transfer function representation.
3.3. Parameterization of the LPV submodels

Once the division of the local LTI models into submodels is performed, these local LTI submodels can be interpolated
using appropriate LPV submodels. Therefore, the desired LPV model is parameterized using a similar decomposition in a
parameter-dependent gain KðyðtÞÞ multiplied by the series connection of t1 þ t2 LPV submodels, that is, the interpolating
LPV model is parameterized as

HðyðtÞÞ:¼KðyðtÞÞ
Yt1þt2

t¼1

Ht
ðyðtÞÞ, (7)

with

(8)

for t ¼ 1; . . . ; t1 þ t2. Recall that only the entries of the system matrices At
‘ and Bt

‘ of the local LTI submodels need to be
interpolated and therefore matrices Ct and Dt of the LPV submodels are independent of yðtÞ. Similar to the local LTI
submodels (Table 1), five types of LPV submodels can be defined. Each LPV submodel is parameterized such that it
resembles the form of the local LTI submodels it needs to interpolate. For example, an LPV submodel of type 5 has the
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following form:

(9)

where ati;k (resp. bti;k) denotes the coefficient i of matrix At
k (resp. matrix Btk) of the LPV submodel Ht

ðyðtÞÞ. Note that the
above parameterization of the LPV submodels (8) is still in the general form, since the subclass (polynomial in yðtÞ or affine
in rðyðtÞÞ) of interpolating LPV model has not yet been defined. This is the subject of the next section.

Remark 2. The fact that the output equation in (8) is independent of the scheduling parameter has an important
advantage. It ensures that the LPV model obtained as the series connection of the LPV submodels has the same polynomial
order N as the LPV submodels. In addition, once the series connection is obtained, the output equation can be multiplied by
the parameter-dependent gain KðyðtÞÞwithout changing the polynomial order N. For instance, an LPV model given by a gain
multiplied by the series connection of two LPV submodels is represented as

(10)

4. Interpolation and optimization

This section presents the interpolation scheme and the related optimization problem that needs to be solved to find the
unknown parameters Ak, Bk, Ck, Dk and rk, for k ¼ 0; . . . ;N, of the LPV model (1). The goal is to interpolate the local LTI
submodels using LPV submodels of the corresponding type, that is, each set of m local LTI submodels Ht

‘ for ‘ ¼ 1; . . . ;m
(indicated by the green solid rectangles in Fig. 2), of a given type Tt, will be interpolated by an LPV submodel Ht

ðyðtÞÞ of
type Tt. To formulate the optimization problem, an appropriate cost function needs to be defined. Depending on the choice
of the subclass of the interpolating LPV model, this cost function will lead to different optimization problems.

4.1. Subclasses of interpolating models (Step 4)

As briefly stated in the introduction, the general LPV model (1) is polynomial in the scheduling parameter yðtÞ and can
be particularized into the following two subclasses:
(1)
 By fixing rk ¼ 1 for k ¼ 0; . . . ;N, the LPV model HðyðtÞÞ becomes polynomial in yðtÞ:

(11)
(2)
 By fixing r0 ¼ 1 and Ak ¼ A1, Bk ¼ B1, Ck ¼ C1 and Dk ¼ D1 for k ¼ 2; . . . ;N, the LPV model HðyðtÞÞ becomes affine in
rðyðtÞÞ:

(12)
Which subclass of LPV model to choose depends on the application at hand. From an interpolation point of view, the first
subclass (11) offers more freedom and consequently allows better interpolation of the local LTI models. On the other hand,
the second subclass (12) with affine dependency on rðyðtÞÞ is appealing for LPV control synthesis since many control design
strategies exist for affine LPV models. Moreover, when the scheduling parameter is bounded, that is, y � yðtÞ � y, the affine
LPV model (12) can be easily converted in a polytopic LPV model GðaðyðtÞÞÞ depending on the scheduling parameter
aðyðtÞÞ ¼ ½a1ðyðtÞÞ a2ðyðtÞÞ�0:
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where

a1ðyðtÞÞ ¼
rðyðtÞÞ � r
r� r

and a2ðyðtÞÞ ¼ 1� a1ðyðtÞÞ,

with

r ¼ max
y�yðtÞ�y

rðyðtÞÞ and r ¼ min
y�yðtÞ�y

rðyðtÞÞ.

By construction, it is clear that 0 � aiðyðtÞÞ � 1, for i ¼ 1;2. From an LPV control synthesis point of view, polytopic LPV
models are of particular interest as can be seen from the vast amount of publications in the area (see [15,16] and the
references therein).

As shown in the next section, the optimization problems arising from the polynomial and affine subclass are
significantly different.

4.2. Optimization approach (Step 5)

This section presents the details of the optimization problem and the algorithms used to solve them. First, an
appropriate cost function needs to be formulated. Naturally, this cost function depends on the number and the types
of local LTI submodels that need to be interpolated. For instance, the cost function to interpolate a set of m local LTI
submodels of type 5, given by (6), by an LPV submodel of type 5, given by (9), is chosen to be

Etða
t; bt;rÞ ¼

Xm

‘¼1

X2

i¼1

at‘;i �
XN

k¼0

ati;krky
k
‘

�����
�����
2

þ bt‘;i �
XN

k¼0

bti;krky
k
‘

�����
�����
2

,

where at ¼ fati;kg, bt ¼ fbti;kg for i ¼ 1;2, and k ¼ 0; . . . ;N, and r ¼ frkg for k ¼ 0; . . . ;N. In an analogous way, the cost
functions related to the other types of submodels can be constructed. The cost function to fit the interpolating gain,
parameterized by

KðyðtÞÞ ¼
XN

k¼0

gkrkyðtÞ
k,

to the local gains K‘ is defined as

EK ðg;rÞ ¼
Xm

‘¼1

K‘ �
XN

k¼0

gkrky
k
‘

�����
�����
2

,

with g ¼ fgkg for k ¼ 0; . . . ;N. The total cost function can now be formulated as

Eða; b; g;rÞ ¼ EK ðg;rÞ þ
Xt1þt2

t¼1

Etða
t;bt;rÞ,

with a ¼ fatg and b ¼ fbtg for t ¼ 1; . . . ; t1 þ t2. This cost function can be conveniently rewritten as

Eða; b; g;rÞ ¼ kFðqÞk2
2 ¼ FðqÞ0FðqÞ,

with FðqÞ the vector-valued function

(13)

in the vector of variables
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for t ¼ 1; . . . ; t1 þ t2; k ¼ 0; . . . ;N, and i ¼ 1;2.
Depending on the choice of the subclass (polynomial in yðtÞ or affine in rðyðtÞÞ) of the interpolating LPV model presented

in Section 4.1, the cost function Eða; b; g;rÞ can be particularized, leading to either a linear or a nonlinear least-squares
optimization problem. These two optimization problems and the algorithms to solve them are presented next.

4.2.1. Polynomial dependency on yðtÞ
In this case, the parameters rk ¼ 1 are fixed for k ¼ 0; . . . ;N, and the vector-valued function (13) simplifies to

which is clearly linear in the reduced vector of variables

q ¼ ½g0 � � � gN j a1
1;0 b1

1;0 � � � ati;k bti;k � � � at1þt2

2;N bt1þt2

2;N �0.

This function can be written as

FPðqÞ ¼ Fq� b, (14)

with the matrix F and the vector b promptly determined from FPðqÞ. With this cost function, the optimization problem

min
a;b;g

Eða; b; gÞ ¼min
q
kFq� bk2

2

is a standard linear least-squares problem that has the well-known minimum-length solution q ¼ Fyb, where Fy is the
pseudo-inverse of F.

4.2.2. Affine dependency on rðyðtÞÞ
In the case of affine dependency on rðyðtÞÞ, r0 is fixed to be r0 ¼ 1 and the parameters ati;k ¼ ati;1 and bti;k ¼ bti;1 are fixed

for k ¼ 2; . . . ;N. Consequently, the vector-valued function (13) simplifies to

(15)

which is now nonlinear in the reduced vector of variables
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The vector-valued function (15) is nonlinear due to the multiplication of the variables rk with the variables g1, ati;1 and bti;1.
With this cost function, the optimization problem

min
a;b;g;r

Eða; b; g;rÞ ¼min
q
kFAðqÞk

2
2 (16)

is a nonlinear least-squares problem, which can be solved, for instance, using the standard implementation of the
Levenberg–Marquardt algorithm found in the optimization toolbox from Matlab [34]. This algorithm requires the Jacobian
matrix JðqÞ ¼ @FAðqÞ=@q, which is promptly derived from (15).

It is well-known that nonconvex optimization problems are usually sensitive to the starting value of the optimization
variables. Unfortunately, there are no general rules for choosing the initial condition. For problem (16), one possible
starting value is obtained by fixing the variables g1, ati;1 and bti;1 equal to 1. This results in the linear vector-valued function

The solution qn of this linear least-squares problem, qn ¼ arg minkFSV ðqÞk
2
2, together with g1 ¼ ati;1 ¼ bti;1 ¼ 1, provides the

starting value for the nonlinear optimization problem (16). Using this starting value, the nonlinear least-squares problem
(16) is solved to obtain the polynomial rðyðtÞÞ and the coefficients of the system matrices of the LPV submodels. Numerical
experiments and comparisons with randomly generated starting values have shown that the above procedure usually
yields good results. However, it is important to emphasize that most existing nonlinear optimization solvers cannot
guarantee convergence to a global optimum.

4.3. Construction of the interpolating LPV model (Step 6)

Once the coefficients ati;k, bti;k, rk and gk are obtained from the above optimization problem, the LPV submodels are
readily constructed. Subsequently, the final interpolating LPV model can be obtained by explicitly computing the series
connection (7). For an LPV model with two LPV submodels, this series connection is shown in (10).

5. Multiparameter-dependency

In this section, the interpolation method is extended to systems whose dynamics depend on a vector of scheduling
parameters denoted by fðtÞ ¼ ½f1ðtÞ . . . fMðtÞ�

0 2 RM, with M the number of parameters. In this case, the interpolating LPV
model of polynomial degree N is parameterized by the following state-space representation:

(17)

where GMðNÞ represents the set of all possible M-tuples of degree N or less, given by

GMðNÞ ¼ k ¼ ½k1 . . . kM � 2 N
M :
XM
i¼1

ki � N

( )
, (18)

and the monomial fðtÞk is given by fðtÞk:¼f1ðtÞ
k1f2ðtÞ

k2 . . .fMðtÞ
kM . Similarly to the single scheduling parameter case, the

purpose of the above LPV model (17) is to interpolate m local LTI models identified for fixed operating conditions, that is, for
constant values f‘ , for ‘ ¼ 1; . . . ;m, of the vector of scheduling parameters fðtÞ.

Basically, all six steps of the interpolation method presented in the two previous sections can be adopted to the
multiparameter case. The first three steps, calculating and sorting the poles and zeros of the local LTI models (Step 1),
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representing the local LTI models by a gain multiplied with the series connection of first and second order submodels
(Step 2) and calculating the local gains for all local LTI models (Step 3) are performed in exactly the same way as described
in Section 3. In order to interpolate the local LTI submodels and local gains defined in Steps 2 and 3, the parameterization of
the LPV submodels and LPV gain is extended to incorporate the multiparameter-dependency using multivariable
polynomials. For instance, the LPV submodel of type 5, defined in (9) for the single scheduling parameter case, is extended
to the multiple parameter case as follows:

(19)

with GMðNÞ defined in (18).
The next step in the interpolation method (Step 4) is the choice of the subclass of interpolating LPV model. Similarly to

the single parameter case, a polynomial LPV model in fðtÞ and an affine model in rðfðtÞÞ can be defined by fixing different
combinations of the coefficients in (17).
(1)
 By fixing rk ¼ 1 for all k the LPV model HðfðtÞÞ becomes polynomial in fðtÞ:

(20)
(2)
 By fixing r0 ¼ 1 and Ak ¼ A1, Bk ¼ B1, Ck ¼ C1 and Dk ¼ D1 for ka0, the LPV model HðfðtÞÞ becomes affine in rðfðtÞÞ:

(21)

where GMðNÞ=f0g denotes the set of M-tuples of degree N or less, without the zero element.
Moreover, since the LPV model now depends on multiple scheduling parameters, more subclasses can be defined. For
instance, it is straightforward to define an LPV model by

(22)

that is affine in M polynomials riðfiðtÞÞ ¼
PN

j¼1 ri;jfiðtÞ
j. This subclass is interesting whenever it is a priori known that there

is no physical interaction between the different scheduling parameters. Formulating and solving the optimization problems
for these subclasses is analogous to the single parameter case presented in Section 4.2. For example, the cost function to
interpolate a set of m local LTI submodels of type 5, given by (6), by an LPV submodel of type 5, given by (19), is chosen to be

Etða
t; bt;rÞ ¼

Xm
‘¼1

X2

i¼1

at‘;i �
X

k2GM ðNÞ

ati;krkf
k
‘

������
������
2

þ bt‘;i �
X

k2GM ðNÞ

bti;krkf
k
‘

������
������
2

,

where at ¼ fati;kg, bt ¼ fbti;kg, for i ¼ 1;2 and k 2 GMðNÞ, and r ¼ frkg for k 2 GMðNÞ. The cost functions to interpolate the
other types of submodels and the local gains are analogously defined. Thus, the total cost function is given by

Eða; b; g;rÞ ¼ EK ðg;rÞ þ
Xt1þt2

t¼1

Etða
t; bt;rÞ,

with a ¼ fatg and b ¼ fbtg for t ¼ 1; . . . ; t1 þ t2. Depending on the type of the interpolating LPV model chosen in Step 4, this
cost function leads to either a linear or a nonlinear least-squares optimization problem that can be solved using the same
techniques discussed in Section 4.2.

6. Numerical example

This section discusses the application of the interpolation method on an electromechanical system that depends on two
scheduling parameters. First, in Section 6.1, an analytic LPV model of the electromechanical system is derived based on its
equations of motion. This analytical LPV model will be used to validate the proposed interpolation technique. To apply the
interpolation method, it is necessary to have local LTI models, which, in this case, are readily obtained by evaluating
the analytic LPV model for different values of the two scheduling parameters. Subsequently, Section 6.2 shows how the
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Fig. 3. The electromechanical system with two scheduling parameters c1ðtÞ and c2ðtÞ. (a) Electromechanical system. (b) Lumped parameter model.
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different steps of the interpolation method are applied to the local LTI models. Finally, Section 6.3 presents the numerical
results and Section 6.4 compares the proposed method to others techniques available in the literature.

6.1. The electromechanical system

The electromechanical system (presented in Fig. 3a) consists of two rotating discs connected by a flexible torsional
beam. Each disc has an electromagnetic brake with a time-varying damping coefficient. Fig. 3b shows a lumped parameter
model for this system. The discs are represented by their moment of inertia (I1 ¼ 5:4625� 10�5 and I2 ¼ 5:4088�
10�5 kg m2), the flexible beam by a torsional spring with stiffness k12 ¼ 0:0256 N m=rad and viscous friction between
each disc and the fixed world by the damping coefficients C1 ¼ 3:2223� 10�4 and C2 ¼ 5:1921� 10�4 N m s=rad. The
electromagnetic brakes are represented by two additional damping coefficients c1ðtÞ and c2ðtÞ. The angular displacement of
the two discs is denoted by g1ðtÞ and g2ðtÞ. The input to the system is the torque TðtÞ applied by a DC-motor to the first disc.
Based on Fig. 3b, the equations of motion are readily obtained as

I1 €g1ðtÞ ¼ �ðC1 þ c1ðtÞÞ _g1ðtÞ þ k12ðg2ðtÞ � g1ðtÞÞ þ TðtÞ

I2 €g2ðtÞ ¼ �ðC2 þ c2ðtÞÞ _g2ðtÞ þ k12ðg1ðtÞ � g2ðtÞÞ.

These equations can be conveniently represented in a state-space form, affine in the two scheduling parameters c1ðtÞ and
c2ðtÞ:

_g1ðtÞ

_g2ðtÞ

€g1ðtÞ

€g2ðtÞ

2
66664

3
77775 ¼

0 0 1 0

0 0 0 1

�k12=I1 k12=I1 �ðC1 þ c1ðtÞÞ=I1 0

k12=I2 �k12=I2 0 �ðC2 þ c2ðtÞÞ=I2

2
66664

3
77775

g1ðtÞ

g2ðtÞ

_g1ðtÞ

_g2ðtÞ

2
66664

3
77775þ

0

0

1=I1

0

2
6664

3
7775uðtÞ, (23)

where the system input uðtÞ is defined as the torque TðtÞ. The output of the system is the angular displacement of disc 1.
Hence, the output equation is given by yðtÞ ¼ g1ðtÞ.

The analytic state-space LPV model (23) is now used to obtain m local continuous-time LTI models

(24)

for m different fixed operating conditions. Note that there are many different possibilities to choose the operating
conditions. Essentially, the choice depends on the dynamics of the system and the expertise of the user. However, one
general approach to select the fixed operation conditions is to choose, for each scheduling parameter, an equidistant grid
of values between its lower and upper bound and to take all possible combinations. The density of the grid for each
scheduling parameter should be chosen as small as possible (to reduce the number of LTI identification experiments), but
high enough such that the influence of the parameter on the system dynamics is captured. For the electromechanical
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system, an equidistant grid of five constant values is chosen for each scheduling parameters

c1 2 0;
�c1

4
;
�c1

2
;
3 �c1

4
; �c1

� �
ðN m s=radÞ,

c2 2 0;
�c2

4
;
�c2

2
;
3 �c2

4
; �c2

� �
ðN m s=radÞ, (25)

where �c1 ¼ 1:0552� 10�3 and �c2 ¼ 2:2977� 10�3 N m s=rad represent the maximum additional damping that can be
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added by the electromagnetic brakes. Fig. 4 presents all possible (m ¼ 25) different values for the pair ðc1;‘ ; c2;‘Þ for
‘ ¼ 1; . . . ;25. The dynamics of the resulting m local LTI models provide a reasonable representation of the different possible
operating conditions of the system. Fig. 5 shows the Bode plot of the 25 local LTI models as a function of the index ‘ of the
local model.

With the 25 local LTI models (24) obtained for the values given in (25), the proposed interpolation method can be
applied. As stated in Section 4.1, the method can be used to obtain both polynomial and affine LPV models. To analyze the
differences and similarities between the subclasses of interpolating LPV model, both a polynomial and an affine
interpolating LPV model are obtained in the next section.

6.2. Application of the interpolation method

Since the dynamics of the electromechanical system depend on two scheduling parameters c1ðtÞ and c2ðtÞ, the vector of
scheduling parameters fðtÞ is given by

fðtÞ ¼
f1ðtÞ

f2ðtÞ

" #
¼

c1ðtÞ

c2ðtÞ

" #
2 R2.

The proposed interpolation method is now applied to the 25 local LTI models to obtain both a polynomial interpolating LPV
model and an affine interpolating LPV model, respectively, denoted by HPðfðtÞÞ and by HAðfðtÞÞ.

6.2.1. Step 1. For each local LTI model, calculate the set of poles p‘ and the set of zeros z‘

For each of the 25 local LTI models, Fig. 6a shows the four poles in the complex plane as a function of the index ‘ of the
local LTI model. There is a fixed pole p‘;1 at 0 (blue, squares), a varying real pole p‘;2 (black, crosses) and a varying complex
conjugate pole pair p‘;3 and p‘;4 (red, diamonds). All local LTI models have two zeros z‘;1 and z‘;2. As shown in Fig. 6b (green,
circles), these zeros change from a complex conjugate pair to a pair of real zeros between ‘ ¼ 20 and 21.

6.2.2. Step 2. Divide each local LTI model into a series connection of first and second order submodels

Given the sorted poles and zeros, the local LTI models can be represented by a gain multiplied by the series connection
of first and second order submodels. Since the order n of the local LTI models is 4, the number of second order submodels
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t2 ¼ 2 and there are no first order submodels (t1 ¼ 0). The first submodel H1
‘ is chosen to contain the two real poles p‘;1 and

p‘;2 and no zeros. Thus, this submodel is of type 3. The second submodel H2
‘ is chosen to contain the complex conjugate pole

pair and the two zeros, thus being of type 5. These submodels are represented by

where

a1
‘;1 ¼ �p‘;1p‘;2; a1

‘;2 ¼ p‘;1 þ p‘;2,

a2
‘;1 ¼ �p‘;3p‘;4; a2

‘;2 ¼ p‘;3 þ p‘;4,

b2
‘;1 ¼ z‘;1z‘;2 � p‘;3p‘;4; b2

‘;2 ¼ �ðz‘;1 þ z‘;2Þ þ ðp‘;3 þ p‘;4Þ, (26)

for ‘ ¼ 1; . . . ;25. Computing the series connection of these two submodels, the local LTI models H‘ can now be expressed as

(27)
6.2.3. Step 3. Calculate the gain

The local gain K‘ in (27) is calculated using the procedure of Appendix A. For this example, the gain was found to be
K‘ ¼ 1:8307� 104 for all local LTI models.
6.2.4. Step 4. Select the subclass of LPV model

For this application the aim is to compute both a polynomial interpolating LPV model HPðfðtÞÞ and an affine
interpolating LPV model HAðfðtÞÞ. The polynomial degree of HPðfðtÞÞ and HAðfðtÞÞ is chosen to be N ¼ 2. Since the system
has two scheduling parameters, the LPV models HPðfðtÞÞ and HAðfðtÞÞ will have a polynomial dependency of degree 2
in two variables and therefore, using (18), the possible exponents of the monomials are given by G2ð2Þ ¼
00;10;01;20;11;02f g. For the polynomial LPV model HPðfðtÞÞ, the two LPV submodels, denoted by H1

PðfðtÞÞ and H2
PðfðtÞÞ,

are parameterized as

where

aP
1
1ðfðtÞÞ ¼ aP

1
1;00 þ aP

1
1;10f1ðtÞ þ aP

1
1;01f2ðtÞ þ aP

1
1;20f1ðtÞ

2
þ aP

1
1;11f1ðtÞf2ðtÞ þ aP

1
1;02f2ðtÞ

2,

aP
1
2ðfðtÞÞ ¼ aP

1
2;00 þ aP

1
2;10f1ðtÞ þ aP

1
2;01f2ðtÞ þ aP

1
2;20f1ðtÞ

2
þ aP

1
2;11f1ðtÞf2ðtÞ þ aP

1
2;02f2ðtÞ

2,

aP
2
1ðfðtÞÞ ¼ aP

2
1;00 þ aP

2
1;10f1ðtÞ þ aP

2
1;01f2ðtÞ þ aP

2
1;20f1ðtÞ

2
þ aP

2
1;11f1ðtÞf2ðtÞ þ aP

2
1;02f2ðtÞ

2,

aP
2
2ðfðtÞÞ ¼ aP

2
2;00 þ aP

2
2;10f1ðtÞ þ aP

2
2;01f2ðtÞ þ aP

2
2;20f1ðtÞ

2
þ aP

2
2;11f1ðtÞf2ðtÞ þ aP

2
2;02f2ðtÞ

2,

bP
2
1ðfðtÞÞ ¼ bP

2
1;00 þ bP

2
1;10f1ðtÞ þ bP

2
1;01f2ðtÞ þ bP

2
1;20f1ðtÞ

2
þ bP

2
1;11f1ðtÞf2ðtÞ þ bP

2
1;02f2ðtÞ

2,

bP
2
2ðfðtÞÞ ¼ bP

2
2;00 þ bP

2
2;10f1ðtÞ þ bP

2
2;01f2ðtÞ þ bP

2
2;20f1ðtÞ

2
þ bP

2
2;11f1ðtÞf2ðtÞ þ bP

2
2;02f2ðtÞ

2. (28)

The two polynomial LPV submodels are completely parameterized by the 36 unknown coefficients aP
t
i;k and bP

2
i;k, for i ¼ 1;2,

t ¼ 1;2 and k 2 G2ð2Þ ¼ f00;10;01;20;11;02g.
For the affine LPV model HAðfðtÞÞ, a parameterization of the form (22) is chosen. In this case, HAðfðtÞÞ is affine in two

polynomials of degree N ¼ 2: a polynomial that is only function of the first scheduling parameter f1ðtÞ, denoted by
r1ðf1ðtÞÞ ¼

P2
j¼1 r1;jf1ðtÞ

j, and a polynomial that is only function of the second scheduling parameter f2ðtÞ, denoted by
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r2ðf2ðtÞÞ ¼
P2

j¼1 r2;jf2ðtÞ
j. Consequently, the two LPV submodels, denoted by H1

AðfðtÞÞ and H2
AðfðtÞÞ, are parameterized as

where

aA
1
1ðfðtÞÞ ¼ aA

1
1;0 þ aA

1
1;1ðr1;1f1ðtÞ þ r1;2f1ðtÞ

2
Þ þ aA

1
1;2ðr2;1f2ðtÞ þ r2;2f2ðtÞ

2
Þ,

aA
1
2ðfðtÞÞ ¼ aA

1
2;0 þ aA

1
2;1ðr1;1f1ðtÞ þ r1;2f1ðtÞ

2
Þ þ aA

1
2;2ðr2;1f2ðtÞ þ r2;2f2ðtÞ

2
Þ,

aA
2
1ðfðtÞÞ ¼ aA

2
1;0 þ aA

2
1;1ðr1;1f1ðtÞ þ r1;2f1ðtÞ

2
Þ þ aA

2
1;2ðr2;1f2ðtÞ þ r2;2f2ðtÞ

2
Þ,

aA
2
2ðfðtÞÞ ¼ aA

2
2;0 þ aA

2
2;1ðr1;1f1ðtÞ þ r1;2f1ðtÞ

2
Þ þ aA

2
2;2ðr2;1f2ðtÞ þ r2;2f2ðtÞ

2
Þ,

bA
2
1ðfðtÞÞ ¼ bA

2
1;0 þ bA

2
1;1ðr1;1f1ðtÞ þ r1;2f1ðtÞ

2
Þ þ bA

2
1;2ðr2;1f2ðtÞ þ r2;2f2ðtÞ

2
Þ,

bA
2
2ðfðtÞÞ ¼ bA

2
2;0 þ bA

2
1;1ðr1;1f1ðtÞ þ r1;2f1ðtÞ

2
Þ þ bA

2
2;2ðr2;1f2ðtÞ þ r2;2f2ðtÞ

2
Þ. (29)

The two affine LPV submodels are completely parameterized by the four unknown coefficients ri;j, for i ¼ 1;2 and j ¼ 1;2,
and the eighteen unknown coefficients aA

i
t;k and bA

i
2;k, for i ¼ 1;2, t ¼ 1;2 and k ¼ 0;1;2.

6.2.5. Step 5. Formulate and solve the optimization problem

Using the entries of the system matrices of the constructed local LTI submodels (26) and the parameterization of the
coefficients of the polynomial LPV submodels (28), the cost function for the linear least-squares problem is formulated as

EP ¼
Xm
‘¼1

X2

t¼1

X2

i¼1

at‘;i � aP
t
i ðf‘Þ

��� ���2 þXm

‘¼1

X2

i¼1

b2
‘;i � bP

2
i ðf‘Þ

��� ���2. (30)

Analogously, using (26) and the parameterization of the coefficients of the affine LPV submodels (29), the cost function for
the nonlinear least-squares problem is formulated as

EA ¼
Xm

‘¼1

X2

t¼1

X2

i¼1

at‘;i � aA
t
i ðf‘Þ

��� ���2 þXm

‘¼1

X2

i¼1

b2
‘;i � bA

2
i ðf‘Þ

��� ���2. (31)

These cost functions are minimized using the techniques proposed in Section 4.2. For the linear problem (30), the optimal
value is EP ¼ 99:3341 and for the nonlinear problem (31), the optimal value is EA ¼ 240:6264. The residue of the
interpolation of the entries of the system matrices of the local LTI submodels is smaller for the polynomial LPV model, as
expected, since the parameterization of this LPV model has more optimization variables.

It is unnecessary to interpolate the local gains since the local gain K‘ is the same for all local LTI models. Therefore, the
gain of the polynomial interpolating LPV model, denoted by KPðfðtÞÞ, and the gain of the affine interpolating LPV model,
denoted by KAðfðtÞÞ, are constant and given by KPðfðtÞÞ ¼ KAðfðtÞÞ ¼ K‘ ¼ 1:8307� 104.

6.2.6. Step 6. Construct the interpolating LPV model

The interpolating LPV models are obtained as the series connection of the LPV submodels multiplied by the gain. For
instance, using (10), the obtained affine interpolating LPV model is given by

6.3. Validation

The interpolating LPV models need to be validated to verify whether they accurately represent the dynamics of the
electromechanical system, even for operating conditions that are not used during the LPV modeling. For this purpose,
the analytical state-space LPV model (23) and the obtained interpolating LPV models are evaluated and compared for the
following values of the scheduling parameters

ce1;i ¼
�c1

2
þ
�c1

2
sin

p
13

i
� �

ðN m s=radÞ; ce2;i ¼
�c2

2
þ
�c2

2
sin

2p
13

i

� �
ðN m s=radÞ, (32)
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for i ¼ 1; . . . ;25. These values, presented in Fig. 7 with red circles, result in a smooth variation of the dynamics of the
obtained LTI models as a function of the index i which facilitates visualization of the results.

Evaluating the polynomial interpolating LPV model HPðfðtÞÞ and the affine interpolating LPV model HAðfðtÞÞ for the 25
values of the two scheduling parameters (32), results in two sets of 25 models, which are denoted by

LP ¼ fHPðfe;iÞjfe;i ¼ ½ce1;i ce2;i�
0 for i ¼ 1; . . . ;25g,

LA ¼ fHAðfe;iÞjfe;i ¼ ½ce1;i ce2;i�
0 for i ¼ 1; . . . ;25g.
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Fig. 8 presents the Bode plots of the models in LP (blue) and LA (red) and the Bode plots of the 25 LTI models obtained by
evaluating the analytical LPV model (23) for the operating conditions (32) (black). Clearly, the dynamics of the LTI models
obtained from the analytical LPV model (23) are smoothly interpolated. The amplitude and phase plots show that the fit by
the polynomial interpolating LPV model HPðfðtÞÞ is better than the fit by the affine interpolating LPV model HAðfðtÞÞ. This
can also be seen in Fig. 9, which shows the poles and zeros of the models in sets LP (blue, dashed) and LA (red, dotted)
and the poles and zeros of the LTI models obtained from the analytical LPV model (23). The curves for the poles and zeros of
the models in set LP accurately fit the pole and zero curves of the local LTI models, while the fit by the curves for the poles
and zeros of the models in set LA is slightly worse. Recall that the optimal value EP for the polynomial interpolating LPV
model was significantly lower than the optimal value EA for the affine interpolating LPV model (see Step 5 in Section 6.2).
Therefore, it can be concluded that a better fit of the entries of the system matrices of the local LTI submodels results in a
better fit of the dynamics of the local LTI models. Since the parameterization of the polynomial interpolating LPV model has
more optimization variables, this model yields a better fit of the local LTI models.

6.4. Comparison with existing techniques

To show the advantages of the proposed interpolation method, the following three techniques from the literature are
also applied to the 25 local LTI models:
�
 the interpolation of the poles and zeros, proposed in [31];

�
 the interpolation of the controllable form, proposed in [27];

�
 the interpolation of internally balanced realizations, proposed in [28].
The resulting LPV models from these three techniques are validated and compared to the polynomial interpolating LPV
model HPðfðtÞÞ and the affine interpolating LPV model HAðfðtÞÞ obtained in Section 6.2.

6.4.1. Interpolation of the poles and zeros

For systems depending on a single scheduling parameter, the technique presented in [31] proposes a polynomial
interpolation of the real and imaginary part of the poles and zeros of the local LTI models. Since this electromechanical
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system depends on two scheduling parameters and has a transition from a complex conjugate pair of zeros to a pair of real
zeros (as shown in Fig. 6b), it is impossible to apply the technique from [31].
6.4.2. Interpolation of the controllable form

The technique presented in [27] represents the local LTI models in the controllable form and then interpolates the
entries of the A and C system matrices. Although the technique presented in [27] only considers dependency on a single
scheduling parameter, the technique can be extended, by fitting multivariable polynomials to the entries of the A and C

system matrices, to provide a multiparameter-dependent interpolating LPV model. The resulting optimization problem can
be posed as a linear least-squares optimization problem.

Figs. 10 and 11 show a validation of the obtained interpolating LPV model, denoted by HSðfðtÞÞ. Fig. 10 shows the Bode
plot of the 25 local LTI models and the Bode plot of the 25 models from the set

LS ¼ fHSðfe;iÞjfe;i ¼ ½ce1;i ce2;i�
0 for i ¼ 1; . . . ;25g,
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obtained by evaluating HSðfðtÞÞ for the operating conditions (32). Clearly, the models in LS smoothly interpolate the LTI
dynamics obtained from the analytical LPV model (23). Figs. 11a and b show that the curves for the poles and zeros of the
25 models in the set LS accurately fit the curves for the poles and zeros of the 25 LTI models obtained from the analytical
LPV model. Therefore, it can be concluded that for this electromechanical system, the technique proposed in [27] results in
an interpolating LPV model that smoothly interpolates the local LTI dynamics. Comparing Figs. 10 and 11 for HSðfðtÞÞ with
Figs. 8 and 9 for HPðfðtÞÞ, shows that both polynomial interpolating LPV models smoothly interpolate the local system
dynamics. Consequently, for this electromechanical system, the proposed interpolation method and the technique of [27]
yield similar results.

However, as indicated in [10,27], the technique from [27] suffers from the well-known numerical ill-conditioning of the
controllable form [35], which arises for medium to high-order models with realistic data. For the application presented in
[10], the local LTI models are restricted to be of order 8. It is concluded by the authors that to fully exploit the possibilities of
state-of-the-art LPV control, parameter-dependent behavior that appears at higher frequencies should have been taken into
account, which was not possible due to the poor numerical conditioning associated with the applied LPV modeling
technique. On the other hand, the proposed interpolation method based on the division of the local LTI models in a series
connection of first and second order submodels does not pose this problem. Thus, the size of the system is immaterial for
the proposed technique, as the poles and zeros can be calculated very efficiently.
6.4.3. Interpolation of internally balanced realizations

The technique presented in [28] represents the local LTI models in an internally balanced state-space realization and
then interpolates the entries of the system matrices. The internally balanced realization, implemented in Matlab as
balreal, uses an eigenvalue decomposition of the product of the observability and controllability Gramians to construct
the balancing transformation matrix that contains the corresponding eigenvectors (see [30] for more details). As stated in
[28], the most interesting property of this balanced realization, with respect to the interpolation of local LTI models, is its
uniqueness property (up to a sign change). In [28], three situations are defined.
�

Fig
das
If the entries of the system matrices of the local LTI models show a smooth variation after the balancing transformations
have been applied, then the interpolating LPV model can be obtained by interpolating these entries.

�
 If, on the other hand, the entries of the system matrices show abrupt sign changes, the eigensystem of the product of the

Gramians needs to be checked.
� If the eigenvalues are distinct, a so-called ‘‘mild’’ nonuniqueness is occurring, which can be corrected by changing the

sign of the corresponding eigenvector.
� If there are repeated eigenvalues, the local LTI model should be momentarily neglected and left out of the

interpolation.
. 12.
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Using the Matlab command balreal, the balancing transformations for the 25 local LTI models of the electromechanical
system are computed. Checking the variation of the entries of the system matrices, after these transformations have been
applied, reveals that there are many abrupt changes. Therefore, the uniqueness of the eigenvalues of the product of the
Gramians needs to be checked. Since all local LTI models are fourth order, the product of the Gramians of all local LTI
models should have four eigenvalues. However, due to the pole at 0 in each local LTI model, balreal only computes three
eigenvalues and sorts them in descending order. For the 25 local LTI models, these three eigenvalues are shown in Fig. 12 as
a function of the index ‘ of the local model. In this figure, the largest eigenvalue is indicated with blue circles, the middle
eigenvalue with green squares and the smallest with red diamonds. For each local LTI model, the eigenvalues are distinct.
Therefore, according to [28], the sign changes can be fixed. Note, however, that for 5 � ‘ � 10, the green squares and red
diamonds almost coincide.

Fig. 13 shows the entries of the A-matrices of the local LTI models after the balancing transformations have been applied
and the sign changes have been fixed. The entries of the first row and column are zero (due to the pole at 0 in all local LTI
models), but all other elements clearly show a nonsmooth variation with abrupt changes. The reason for this is visualized
by the solid, dashed and dotted line in Fig. 12: these lines are calculated by evaluating the analytic LPV model (23) of the
electromechanical system for 24 000 values of the scheduling parameters (1000 equidistantly values between each two
consecutive pairs ðc1;‘ ; c2;‘Þ and ðc1;‘þ1; c2;‘þ1Þ, for ‘ ¼ 1; . . . ;24) and then calculating the eigenvalues of the product of the
Gramians of these models. Using this fine grid, it is possible to analyze the variation of the eigenvalues of the product
of the Gramians of the LPV model (23). Fig. 12 shows that the three lines cross each other between ‘ ¼ 10 and 11
(see magnification on the right in Fig. 12). As a result, the blue circles and green squares, indicating the two largest
eigenvalues of the local LTI models are sorted in the wrong way for ‘ 	 10. At ‘ ¼ 10 Fig. 13 shows the abrupt changes in the
elements of the A-matrices. Therefore, it can be concluded that a straightforward interpolation of the balanced realizations
of the local LTI models is not possible without a correct sorting of the eigenvalues of the product of the Gramians. Based on
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the local LTI models, it is unclear how this sorting should be performed. Indeed, for the electromechanical system, the true
variation is only clear after evaluating the analytical LPV model (23) for a very high number of 24 000 values of the
scheduling parameters. In practice, it is usually impossible to collect this number of local LTI models from a system.

6.4.4. Implementation issues

The comparison of the proposed interpolation method with the three existing techniques is concluded with a final
remark about the implementation of the different techniques.
�
 The interpolation of the poles and zeros proposed in [31].
This technique requires the sorting of the poles and zeros of the local LTI models, for which an automatic procedure does
not exist. However, when the local LTI dynamics show a smooth variation, their poles and zeros will also show a smooth
variation and the sorting is straightforward. The other steps in the technique can be automated.

�
 The interpolation of the controllable form proposed in [27].

This technique can be completely automated.

�
 The interpolation of internally balanced realizations proposed in [28].

This technique requires the sorting of the eigenvalues of the product of the Gramians, for which an automatic procedure
does not exist. Moreover, a smooth variation of the local LTI dynamics, does not necessarily result in a straightforward
sorting of the eigenvalues, as shown for the electromechanical system. This is a drawback of this technique. An
automatic implementation to correct the sign changes of the eigenvectors, to construct the balancing transformation
matrices might be possible.

�
 The proposed interpolation method.

The technique also requires the sorting of the poles and zeros, which cannot be automated. All other steps can be
automated.

7. Conclusions

In this paper a new method is developed to obtain numerically well-conditioned SISO LPV models for systems
depending on multiple scheduling parameters. The new method is based on the interpolation of a set of local LTI models
that are obtained for fixed operating conditions of the system. Starting from a general parameterization, both polynomial
and affine LPV models can be obtained. While the parameterization of the polynomial LPV model offers more degrees of
freedom to yield a more accurate interpolation, the affine LPV model can be more interesting from a control point of view,
since many LPV control design techniques are based on affine and polytopic LPV models. The application of the proposed
interpolation method on an electromechanical system depending on two scheduling parameters and a comparison with
three existing LPV identification techniques from the literature clearly shows the benefits of the proposed interpolation
method. The extension to the interpolation of MIMO local LTI models is the topic of current research.
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Appendix A. Calculating the gain of an LTI model

Calculate the following series connection of the local LTI submodels, without addition of the gain K‘ ,

�H‘:¼
Yt1þt2

t¼1

Ht
‘

and denote the system matrices of the obtained LTI model as

Comparing �H‘ with (4) yields

H‘ ¼ K‘ �H‘ . (33)



ARTICLE IN PRESS

J. De Caigny et al. / Mechanical Systems and Signal Processing 23 (2009) 2395–2417 2417
Since both H‘ and �H‘ are SISO LTI models, it is clear that (33) implies the following relation between the transfer function of
both LTI models

C‘ðqI � A‘Þ
�1B‘ þ D‘ ¼ K‘ð �C‘ðqI � �A‘Þ

�1 �B‘ þ �D‘Þ.

Since the matrices A‘ , B‘ , C‘ , D‘ , �A‘ , �B‘ , �C‘ and �D‘ are given, the gain K‘ can be calculated in a straightforward manner by
evaluating this expression for some value of q that makes the determinants jqI � A‘ja0 and jqI � �A‘ja0.
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