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Abstract: This paper presents an adaptive control strategy for a tracked mobile robot, in which
the longitudinal slip of the left and right tracks are described by two unknown parameters. It
is assumed that the kinematic model of the tracked robot is approximated by the one of a
differential wheeled robot. An adaptive nonlinear feedback control law that compensates for
the longitudinal slip is proposed to achieve a given trajectory tracking objective. Asymptotic
stability of the close-loop system is ensured using an appropriate Lyapunov function. Numerical
results show the benefits of the proposed approach.
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1. INTRODUCTION

In the last years, the interest in tracked mobile robots
has grown significantly because of the great variety of
applications in unstructured environments as, for instance,
forestry, mining, agriculture, military applications, search
and rescue, hospital tasks and space exploration [Mart́ınez
et al., 2005]. However, all of these tasks require an efficient
solution to the robot navigation problem.

The problem of tracking a reference trajectory is one
of the most explored navigation problem in the robot
literature [Fierro and Lewis, 1997]. The tracking prob-
lem consists in designing control inputs that stabilize the
mobile robot about a trajectory generated by a reference
model. Morin and Samson [2006] present an overview of
recent tracking control methods for nonholonomic mobile
robots. Tracked mobile robots are typical examples of non-
holonomic systems. However, the motion control designs
suitable for differential wheeled robots cannot be directly
used for tracked robots [Mart́ınez et al., 2005], unless the
kinematic model of the tracked robot can be approximated
by the one of a differential wheeled robot.

Locomotion based on tracks has a large ground contact
patch that provides satisfactory stability and traction
on various terrain conditions [Nourbakhsh and Siegwart,
2004]. Nevertheless, it is in general difficult to control
tracked robots during applications in unstructured envi-
ronment due to slip phenomena, which is an important
factor that must be taken into account during the control
design [Fan et al., 1995].

Many researches have investigated the slip phenomena in
the navigation of mobile robots. Wang and Low [2008]
give a general presentation on modeling of wheeled mobile
robots in the presence of wheel skid and slip from the
perspective of control design. Sidek and Sarkar [2008]
provide a theoretical and systematic framework to include
the slip into the overall system dynamics of wheeled mobile

robots. González et al. [2009a] present the synthesis of a
control law for a wheeled mobile robot under slip condition
using an LMI-based approach. Zhou et al. [2007] propose
a nonlinear control law that uses an estimation of the slip
obtained from the unscented Kalman filter (UKF). Other
control designs that have also consider the slip can be
found in Zhou and Han [2008] and González et al. [2009b].

In general, most of the proposed control techniques in the
literature to deal with the slip assumes that the slip is
available in real time. However, it is usually difficult to
directly measure the slip and most techniques appeal to an
estimator. Moreover, if the slip is not precisely estimated,
for instance, due to sensor accuracy, the performance of
the controllers can be seriously affected. Le et al. [1997]
show that the slip of the tracks can be estimated from the
robot pose using an extended Kalman filter (EKF). Song
et al. [2008] present a nonlinear sliding mode observer for
the estimation of tracked vehicle slip parameters based on
the vehicle kinematic equations and sensor measurements.
Ward and Iagnemma [2008] propose a model-based ap-
proach to estimating longitudinal wheel slip and detecting
immobilized conditions of autonomous mobile robots op-
erating on outdoor terrain. An experimental model used
to describe the slip parameters of the kinematics model
of a tracked mobile robot is presented in Moosavian and
Kalantari [2008]. Others works that have also consider the
slip estimation problem can be found in Angelova et al.
[2006], Ojeda et al. [2006], Reina et al. [2008], Iagnemma
and Ward [2009].

The main contribution of this paper is to design a con-
troller that is able to compensate for the slip without
estimating or measuring it. Inspired by Fukao et al. [2000],
an adaptive controller which uses an update rule to com-
pensate for the slip is proposed. Furthermore, the asymp-
totic stability of the closed-loop system is ensured using
an appropriate Lyapunov function based on Kim and Oh
[1998].
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The paper is organized as follows. Section 2 presents the
kinematic model of a tracked mobile robot under slip con-
dition. Section 3 introduces the adaptive tracking control
strategy that is able to compensate for the slip. Section 4
presents the numerical results using the proposed control
technique. Finally, Section 5 presents the conclusions.

2. MODEL OF THE TRACKED MOBILE ROBOT

This section presents the kinematic model of a tracked
mobile robot under slip condition. The longitudinal slip
of the left and right tracks are described by two unknown
parameters. It is assumed that the robot will operate at
low speed, since the lateral slip is zero during straight line
motion and it can be neglected when the robot turns on
the spot [González et al., 2009a]. Moreover, the kinematic
model of a tracked robot can only be approximated by the
one of a differential drive wheeled robot if slow motions
are assumed [Morales et al., 2009].

Fig. 1 shows the schematic model of a tracked mobile
robot. It is assumed that the mobile robot can be rep-
resented by a rigid body with two independent tracks.
The motion of the robot is described by its position
(X,Y ) and its orientation ψ in an inertial coordinate frame
F1(xw, yw). The robot position is given by the coordinate
of its geometric center C, which is also the origin of the
local coordinate frame F2(xm, ym). The distance between
the two tracks is b. Furthermore, the translation velocity
is denoted by v and the rotational velocity by ω = dψ/dt.
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Fig. 1. Schematic model of the tracked mobile robot.

As shown in Zhou et al. [2007], the kinematic model of a
tracked robot under slip condition is given by
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where q = (X,Y, ψ)T denotes the pose (position and
orientation) of the robot in the inertial frame F1(xw, yw), r
is the radius of the wheels, and ωL and ωR are respectively
the left and right angular velocities of the wheels. The two
unknown parameters pL and pR are defined as

pL =
1

1 − iL
and pR =

1

1 − iR
with iL and iR denoting the longitudinal slip ratio of the
left and right wheels, respectively, given by

iL =
(rωL − vL)

rωL

, 0 ≤ iL < 1

iR =
(rωR − vR)

rωR

, 0 ≤ iR < 1

where vL and vR are respectively the linear velocities of
the left and right wheels with relation to the terrain.

3. ADAPTIVE TRACKING CONTROL

This section proposes an adaptive tracking control strategy
for the kinematic model (1). The design is divided in three
steps: first, a tracking control law is found by neglecting
the slip; next, an update rule is designed to compensate
for the slip; and finally, closed-loop stability is shown using
an appropriate Lyapunov function.

To derive the control strategy, consider the auxiliary ve-
locity control input η = (v, ω)T of the kinematic model (1)
that has as effective velocity control input ξ = (ωL, ωR)T .
The effective input ξ is related to the auxiliary input η
according to the equation η = Tξ given by
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and the inverse relation ξ = T−1η is given by
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Thus, the effective input ξ can always be obtained if an
auxiliary input η exists and solves the tracking problem
for the following kinematic model:
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⇐⇒ q̇ = S(q)η (4)

where q = (X,Y, ψ)T is the robot configuration.

The control objective is to find an auxiliary input η for the
tracked mobile robot such that

lim
t→∞

(qr − q) = 0

where the robot configuration q = (X,Y, ψ)T is given
by (4) and the reference trajectory qr = (Xr, Yr, ψr)

T is
generated using the kinematic model

q̇r = S(qr)ηr

that is
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(5)

where ηr = (vr, ωr)
T is a given constant reference input

described by a linear velocity vr > 0 and an angular
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velocity ωr. Once, η is designed, the control input ξ is
given by (3).

To achieve the control objective, we define the tracking
error e = (e1, e2, e3)

T in the frame F1(xw, yw) as

(

e1
e2
e3

)

=

(

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

)(

Xr −X
Yr − Y
ψr − ψ

)

(6)

The dynamics of the error e, obtained using (4), (5)
and (6), is given by

(

ė1
ė2
ė3

)

=

(

ωe2 + vr cos e3 − v
−ωe1 + vr sin e3

ωr − ω

)

(7)

Neglecting the slip, the following control input

ω = ωr +
vr

2

[

k2 (e2 + k3e3) +
1

k3

sin e3

]

v = vr cos e3 − k3e3ω + k1e1

(8)

with ki > 0 and vr > 0 drives the error signals e to zero.
This can be shown using the following Lyapunov function
based on Kim and Oh [1998]:

V0(e) =
1

2
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2
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whose derivative V̇0(e) is

V̇0(e) = −k1e
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2
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Note that, in the domain D = {e ∈ R
3 | − π <

e3 < π}, V0(e) is continuously differentiable, V0(0) = 0,

V0(e) is positive definite and V̇0(e) is negative definite.
Thus, the equilibrium e = 0 is asymptotically stable and
consequently q − qr converge to zero.

To use equation (3), it is necessary the knowledge of the
parameters pL and pR. In some cases, it can be assumed
that the slip parameters can be measured (see Zhou et al.
[2007]). However, it is in general difficult to precisely
measure the slip. To overcome this difficulty, we propose
an update rule to compensate for the slip without the need
of actually measuring it. Equation (3), considering now the
estimates p̂L = pL + p̃L and p̂R = pR + p̃R, is given by
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where p̃L and p̃R are respectively the estimation error of
pL and pR.

To derive the update rule, it is necessary to rewrite
(7) that depends on the auxiliary velocity (2) which in
turns depends on the new control velocity (10). Thus, the
derivative of the error ė is now given by
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To obtain the update rule, we consider the following
Lyapunov function candidate

V (e) = V0(e) +
p̃2

L
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R

2γ2pR

with γi > 0. Assuming that the unknown parameters pL

and pR are constant, and using (11), we obtain
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Now, choosing the update rule for p̂L and p̂R as
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with v and ω given by (8), equation (12) for V̇ (e) becomes

V̇ (e) = −k1e
2

1
−
vr

2
k2k3(e2 + k3e3)

2 −
vr

2k2k3

sin2 e3

= V̇0(e) < 0

which is similar to (9) and consequently the equilibrium
e = 0 is asymptotically stable. However, the convergence
of the estimated parameters to their true values are not
guaranteed.

Thus, we have shown that if we choose the control in-
put as (8) and (10) with the parameters update rules
as (13) for the kinematic model (1) of the mobile robot
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with the constant unknown parameters pL and pR, the
equilibrium e = 0 is asymptotically stable. Thus, the robot
configuration q asymptotically converge to the reference
configuration qr.

Fig. 2 shows the schematic representation of the system
composed of the reference trajectory, the adaptive kine-
matic controller and the robot. The numbering inside the
blocks indicates the corresponding equation number.
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Fig. 2. Schematic representation of the close-loop system.

4. NUMERICAL RESULTS

The physical parameters for the model of the robot, taken
from Zhou et al. [2007], are given by b = 0.65 m and
r = 0.35 m. The parameters of the adaptive controller are
heuristically chosen as k1 = 1, k2 = 20 and k3 = 1, and the
parameters of the update rule are chosen as γ1 = γ2 = 20.
The initial conditions of the update rule are taken as
p̂L(0) = 1.0 and p̂R(0) = 1.2. The total time for the
computer simulation is t = 100 s.

Although the unknown parameters are assumed constants
during the control design, to demonstrate the performance
of the close-loop system, the unknown parameters pL and
pR are given by

0s ≤ t < 20s : pL = 2.00 and pR = 1.00

20s ≤ t < 30s : pL = 1.00 and pR = 1.00

30s ≤ t < 40s : pL = 1.00 and pR = 2.50

40s ≤ t < 50s : pL = 1.50 and pR = 2.50

50s ≤ t < 60s : pL = 1.50 and pR = 1.00

60s ≤ t < 75s : pL = 1.00 and pR = 1.00

75s ≤ t < 85s : pL = 1.00 and pR = 1.50

85s ≤ t : pL = 1.00 and pR = 1.00

To generate the reference trajectory, model (5) is used with
the initial condition qr(0) = (0, 0, 0)T and inputs vr and
ωr taken from Fukao et al. [2000]:
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35s ≤ t < 40s : vr = 0.25
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Fig. 3 shows the robot trajectory in the fixed frame
F1(xw, yw) obtained using our proposed adaptive con-
troller (ADP) and using the controller without slip com-
pensation (WSC) by directly applying the control input
(8) into kinematic model (4). The dashed line, the solid
line and the dashdot line stand respectively for the refer-
ence trajectory (RT), the robot trajectory obtained using
the adaptive controller (ADP) and the robot trajectory
obtained using the controller without slip compensation
(WSC). The initial conditions of the robot, depicted by
a circle, is given by q(0) = (1/2,−1/2,−π/6)T . This
figure shows that the robot trajectory using the adaptive
controller is able to follow the reference trajectory, even
if the slip parameters change during the motion. On the
other hand, the robot trajectory using the WSC controller
is not able to follow the reference trajectory when the slip
occurs.
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Y
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Fig. 3. Reference trajectory (RT), robot trajectory us-
ing the adaptive controller (ADP) and robot trajec-
tory using the controller without slip compensation
(WSC).

Fig. 4 shows the tracking errors e1, e2 and e3 in the
fixed frame F1(xw, yw). The solid line stands for the error
obtained using the adaptive controller (ADP), while the
dashdot line stands for the error using the controller with-
out slip compensation (WSC). As expected, the ADP con-
troller achieves significantly better performance compared
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to the WSC controller, whose graphs show an excessively
large error whenever the slip occurs. On the other hand,
the tracking error for the ADP controller is significantly
smaller and only at the start it is large due to the robot
initial condition.
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Fig. 4. The tracking error e = (e1, e2, e3)
T obtained using

the adaptive controller (ADP) and the controller
without slip compensation (WSC).

Fig. 5 shows the parameter estimation using the ADP
controller. The dashed line denotes the true values of the
unknown parameters pL and pR and the solid line denotes
the estimated values p̂L and p̂R. The high variation of the
estimated parameters at the start is due to the large robot
initial conditions in relation to the reference model. In this
figure, the absence of slip on the left and right wheels is
respectively represented as pL = 1 and pR = 1.

Figs. 6 and 7 show for the ADP and WSC controllers,
respectively, the effective velocities control input ωL (solid
line) and ωR (dashed line). The two inputs ωL and ωR are
independently applied to each wheel. It is worth to notice
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Fig. 5. True values of the unknown parameters pL and pR

and the respective estimated values p̂L and p̂R.

that the the magnitude of the ADP control input in Fig. 6
is only slightly larger that the one obtained with the WSC
controller in Fig. 7.
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Fig. 6. Angular velocity of the right wheel ωR and and of
the left wheel ωL using the ADP controller.
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Fig. 7. Angular velocity of the right wheel ωR and of the
left wheel ωL using the WSC controller.
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5. CONCLUSIONS

This paper provides an adaptive control strategy for a
tracked mobile robot with longitudinal slip. This control
strategy is based on the kinematic model of the tracked
robot, in which the longitudinal slip of the left and
right tracks are described by two unknown parameters.
A nonlinear feedback control law is proposed to achieve
the trajectory tracking objective using an update rule
that compensates for the slip. The stability of the close-
loop system is guaranteed using an appropriate Lyapunov
function. Numerical results show that the the proposed
controller is able to ensure that the robot trajectory
follows a given reference trajectory even when slip occurs,
thus, outperforming techniques that can not consider the
slip effect. The proposed control design procedure can be
extended to include the dynamics of the tracked mobile
robot.
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