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Abstract— This paper presents the design of an adaptive control law that guarantees stability for a tracked

mobile robot under unknown longitudinal slip condition. The kinematic model of the mobile robot is derived

considering the slip as an unknown parameter. A control law that actuates on the angular velocities of the robot

wheels is designed such that the robot follows a given reference trajectory. An update rule is used to estimate in

real time the unknown slip parameter. The asymptotic stability of the global closed-loop system is ensured using

an appropriate Lyapunov function. Numerical results show the usefulness of the proposed control strategy.
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Resumo— Este trabalho apresenta o projeto de uma lei de controle adaptativo que garante estabilidade para

um robô móvel acionado por rodas do tipo esteira sujeito a um deslizamento longitudinal desconhecido. O

modelo cinemático do robô móvel é derivado considerando o deslizamento como um parâmetro incerto. Uma lei

de controle que fornece as velocidades angulares das rodas do robô é projetada para que o robô siga uma dada

trajetória de referência. Uma lei de adaptação é usada para estimar o parâmetro de deslizamento. A estabilidade

assintótica do sistema em malha-fechada é assegurada usando-se uma função de Lyapunov apropriada. Resultados

numéricos mostram a eficácia do método de controle proposto.

Palavras-chave— Sistemas não-holonômicos, robôs móveis, modelo cinemático, controle adaptativo.

1 Introduction

In recent years, the interest in mobile robots has
grown significantly because of the great variety of
applications in unstructured environments, where
a high degree of autonomy is required. These ap-
plications usually require the robot to travel across
off-road environments in tasks as forestry, mining,
agriculture, army, etc (González et al., 2009). All
of these tasks require an efficient solution to the
robot navigation problem, which has received in-
creasing attention due to its theoretical challenges.

One of the main navigation problem, the
problem of tracking a reference trajectory, con-
sists in designing control inputs that stabilize the
mobile robot in a given reference trajectory. In
general, this is a difficult problem, since mobile
robots are typical examples of systems that has
nonholonomic constraints (Kolmanovsky and Mc-
Clamroch, 1995). According to Josephs and Hus-
ton (2002), if a system has constraint equations
that involve velocities, accelerations, or deriva-
tives of system coordinates, the constraint equa-
tions are said to be nonholonomic, or kinematic,
and the mechanical system is said to be a non-
holonomic system.

Many researchers investigate various tracking
control designs (Dierks and Jagannathan, 2009;
Lee et al., 2009; Michalek et al., 2009). Track-
ing control design for wheeled and for tracked mo-
bile robots can be respectively found in Morin and
Samson (2008) and in Fan et al. (1995). Although
the kinematics model of the tracked robot are sim-
ilar to the wheeled one, the former has a much

larger ground contact patch, which is able to pro-
vide better stability and traction at various terrain
conditions (Nourbakhsh and Siegwart, 2004).

Most control design techniques for mobile
robots are based on the assumption that the
wheels roll without slipping. However, the slip has
a critical influence on the performance of mobile
robots that cannot be neglected. Thus, to attain
higher performance, it is necessary to incorporate
the slip parameters into the model of the robot.

Many researches have addressed the slip phe-
nomenon in the navigation of mobile robots
(Matyukhin, 2007; Wang and Low, 2008; Sidek
and Sarkar, 2008). However, in such works, the
slip parameters are considered as disturbance or
noise (Scaglia et al., 2009) or are estimated using
some filtering technique (Zhou et al., 2007). Here,
we propose an adaptive rule based in Fukao et al.
(2000) to estimate the slip parameter.

In our paper, feedback velocity control inputs
are designed, according to Gu and Hu (2006), for
the kinematic steering system to enforce the po-
sition error converges to zero. Then, an update
rule is designed such that the estimated slip pa-
rameter converge to the true slip parameter of the
tracked robot. The update rule is derived using
a Lyapunov function that guarantees the stability
of the close-loop system.

The paper is organized as follows. In sec-
tion 2, a kinematic model of a tracked mobile
robot is derived, where the longitudinal slip is
modeled by a unknown parameter. In section 3,
an adaptive tracking controller is designed for the
kinematic model and the stability of the proposed



control system is analyzed using Lyapunov the-
ory. The section 4 presents the results obtained
by numerical simulations of the controlled system.
Conclusions are presented in section 5.

2 Kinematic Model of a Tracked Mobile

Robot with Slip

This section derives the kinematic model of a
tracked robot with longitudinal slip. The slip is
described by a unknown parameter, under the as-
sumption that the robot will operate at low veloc-
ities. The lateral slip is zero for straight line mo-
tions, and it can be neglected when the vehicles
turns “on the spot” or at low velocities. Figure 1
shows a model of the tracked mobile robot.

yw

Y

X
xw

b

ω

ym

xm

ẋ
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Figure 1: Model of the tracked mobile robot.

To describe the motion of the robot, its is nec-
essary to define a fixed reference frame F1(xw, yw)
and a moving frame F2(xm, ym) attached to the
robot body with origin at its geometric center Om.
The motion of the robot is composed of the trans-
lation velocity ẋ in the xm-axis direction and the
rotational velocity dψ/dt with ψ the yaw angle.
Furthermore, the motion of the vehicle is con-
strained in the ym-axis direction with ẏ = 0 (non-
holonomic constraint).

The longitudinal slip ratio of the two wheels
is defined as follows

i =
(rωL − vL)

rωL

=
(rωR − vR)

rωR

, 0 ≤ i < 1

where r is the radius of the wheels, ωL and ωR

are respectively the angular velocities of the left
and the right wheels. To simplify the notation, we
redefine the slip parameter as

a =
1

(1 − i)

In the moving frame F2, the model with lon-

gitudinal slip is given by

ẋ = r(ωL + ωR)/2a

ẏ = 0

ψ̇ = r(ωR − ωL)/ba

where b is the distance between the two wheels.
Using some appropriate rotation matrix, from

the reference frame F2 to the reference frame F1,
the kinematic model can be written as





Ẋ

Ẏ

ψ̇



 =





r(ωL + ωR) cosψ/2a
r(ωL + ωR) sinψ/2a
r(ωR − ωL)/ba



 (1)

where q = (X,Y, ψ)T denotes the coordinates of
the tracked vehicle in the inertial Cartesian frame
F1. The yaw angle ψ is assumed to be in (−π, π].

The auxiliary control input η is defined as η =
(v, ω)T with v = ẋ and ω = ψ̇. The effective
control input u for the model (1) is defined as u =
(ωL, ωR)T . Note that η is related to u according
to the following equation

(

v
ω

)

=

(

r(ωL + ωR)/2a
r(ωR − ωL)/ba

)

= T

(

ωL

ωR

)

(2)

with

T =
r

2a

(

1 1
−2/b 2/b

)

We have also that the effective control input u =
T−1η is given by

(

ωL

ωR

)

=
a

2r

(

2 −b
2 b

)(

v
ω

)

(3)

Substituting (3) in (1), we arrive to the fol-
lowing model

q̇ = S(q)η

that is




Ẋ

Ẏ

ψ̇



 =





cosψ 0
sinψ 0

0 1





(

v
ω

)

(4)

Note that the nonholonomic constraint ẏ = 0
restrict the robot to move only in the direction
normal to the axis of the driving tracks. This non-
holonomic constraint can equivalently be written
in the frame F1 as

(

− sinψ cosψ 0
)





Ẋ

Ẏ

ψ̇



 = A(q)q̇ = 0

3 Adaptive Tracking Control

In this section, we consider the tracking control
problem for the kinematic model (1) of tracked
mobile robots with the slip given by the parameter
i. The design is divided in three steps as follows:
first, the tracking control law is found neglecting



the slip; next, an update rule is designed to esti-
mate the slip parameter; and finally, closed-loop
stability is shown using an appropriate Lyapunov
function.

In order to deal with the tracking control
problem, we need to define the reference trajec-
tory. The trajectory reference qr = (Xr, Yr, ψr)

T ,
in the fixed frame F1, is generated using the kine-
matic model

q̇r = S(qr)ηr

that is




Ẋr

Ẏr

ψ̇r



 =





cosψr 0
sinψr 0

0 1





(

vr

ωr

)

(5)

with ηr = [vr ωr]
T containing the desired lin-

ear vr and angular ωr constant reference veloci-
ties. Note that the signals vr and ωr can not be
simultaneously zero, otherwise, the reference tra-
jectory qr does not exist. The signal ηr in (5) is
constructed to produce the desired motion. It is
assumed that the signals ηr and η̇r are bounded.
This is not a severe restriction, since most practi-
cal reference trajectories satisfy this assumption.

The goal of the proposed methodology is to
design an adaptive tracking controller for the
tracked mobile robot with slipping such that

lim
t→∞

(q − qr) = 0

where q is the robot configuration given by (1) and
qr is the reference trajectory given by (5).

To investigate the closed-loop stability, we de-
fine the error e = (e1, e2, e3)

T in the frame F1 as




e1
e2
e3



 =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









Xr −X
Yr − Y
ψr − ψ



 (6)

Then, the dynamics of the error e, derived us-
ing (4), (5) and (6), is given by





ė1
ė2
ė3



 =





ωe2 + vr cos e3 − v
−ωe1 + vr sin e3

ωr − ω



 (7)

Neglecting the slip, Gu and Hu (2006) showed
that the control input

(

v
ω

)

=

(

vr cos e3 + k1e1
ωr + vrk2e2 + k3 sin e3

)

(8)

with ki > 0 drives the error signals e to zero using
the following Lyapunov function

V0 =
1

2

(

e2
1

+ e2
2

)

+
(1 − cos e3)

k2

whose derivative is

V̇0 = e1ė1 + e2ė2 + ė3
sin e3
k2

= −k1e
2

1
−
k3

k2

sin2 e3 ≤ 0

Now, if the slip parameter a that appear in (3)
is unknown, we cannot choose directly the auxil-
iary control input as given by (8). Hence, we de-
sign an update rule to attain the control objective
using estimate for a. Since a is not known, we use
formula (3) considering now the estimate â = a+ã
with ã is the estimation error:

(

ωL

ωR

)

=
â

2r

(

2 −b
2 b

)(

v
ω

)

(9)

To derive the update rule, it is necessary to
calculate (7) that depends on the auxiliary con-
trol input (2) which in turns depends on the new
effective control input (9). Thus, the derivative of
the error ė is given by

ė1 =
(a+ ã)

a
(e2ω − v) + vr cos e3

ė2 = −
(a+ ã)

a
e1ω + vr sin e3

ė3 = ωr −
(a+ ã)

a
ω

(10)

To obtain the update rule, we consider the follow-
ing Lyapunov function candidate

V = V0 +
ã2

2γa
(11)

with a ≥ 1 and γ > 0. The derivative of V is
given by

V̇ = e1ė1 + e2ė2 + ė3
sin e3
k2

+
ã

γa
˙̂a

substituting (10) in V̇ , we obtain

V̇ = V̇0 +
ã

a

[

˙̂a

γ
−

(

ve1 +
ω sin e3
k2

)

]

(12)

Now, choosing the update rule for â as

˙̂a = γ

(

ve1 +
ω sin e3
k2

)

(13)

with v and ω given by (8), the equation (12) for
V̇ take the form

V̇ = V̇0 = −k1e
2

1
−
k3

k2

sin2 e3 ≤ 0 (14)

It is now possible to guarantee closed-loop sta-
bility by showing that e = 0 is an asymptotically
stable equilibrium. Let the domain D be given
by D = {e ∈ R

3 | − π < e3 < π}, then the
Lyapunov function given in (11) is positive def-
inite in D − {0} with derivative V̇ ≤ 0 in D.
This implies that e1, e2 and the estimate param-
eter â are bounded. Since the reference velocity
ηr = (vr, ωr)

T is bounded, we known from (8)
that the auxiliary control input η is also bounded.
Thus, ė is bounded by (7). After all, V̈ (e, ė) given
by

V̈ = −2k1e1ė1 −
2k3

k2

sin e3 cos e3ė3



is also bounded.
Since V is a nonincreasing function that con-

verges to some constant value. Barbalat’s Lemma
(Li and Slotine, 1991; Khalil, 2001) shows that
V̇ → 0 as t→ ∞. Thus, from (14), we know that
e1 and e3 tend to zero as t→ ∞.

It now remains to show that e2 also converges
to zero. Since we have already shown that all
variables are bounded, closed-loop stability can
be asserted by linearizing around the origin the
augmented system ṗ = [ė ˙̃a]T which contains the
error equation (10) and the update law (13). Note
that ˙̃a = ˙̂a since a is constant. Thus, the linearized
model is given by

ṗ = App

with

Ap =









−k1 ωr 0 −vr/a
−ωr 0 vr 0

0 −k2vr −k3 −ωr/a
γvr 0 γωr/k2 0









The characteristic equation for this linear sys-
tem is readily obtained as

α4s
4 + α3s

3 + α2s
2 + α1s

1 + α0 = 0

with

α4 = 1

α3 = k1 + k3

α2 = k1k3 +
γ

a
v2

r + k2v
2

r + ω2

r +
γ

ak2

ω2

r

α1 = k1k2v
2

r +
γk3

a
v2

r +
γk1

ak2

ω2

r + k3ω
2

r

α0 =
γk2

a
v4

r +
2γ

a
v2

rω
2

r +
γ

ak2

ω4

r

Since αi > 0, α3α2 − α1α4 > 0, α1α2α3 − α0α
2

3
−

α2

1
α4 > 0 and α0(α1α2α3 − α0α

2

3
− α2

1
α4) > 0,

the Routh-Hurwitz stability criterion (Gradshteyn
and Ryzhik, 2000) ensures that all eigenvalues of
Ap have negative real parts. Thus, the equilibrium
p = 0 of the augmented system is asymptotically
stable and consequently the system error e and
the estimation error ã converge to zero as t→ ∞.

The next theorem summarizes our main re-
sults.

Theorem 1 Consider the kinematic model (1) of

the mobile robot with an unknown slip parameter

given by a. If we choose the control input as (8)-
(9) and the parameter update rule as (13), then the

equilibrium e = 0 is asymptotically stable. Con-

sequently, the robot configuration q asymptotically

follows the reference configuration qr.

4 Numerical Results

This section presents the numerical results using
the proposed adaptive tracking control methodol-
ogy.

The data for the mobile robot used in this
section, taken from Zhou et al. (2007), are b =
0.65 m and r = 0.35 m. The control parameters
for the controller are chosen as k1 = 6, k2 = 8 and
k3 = 6. The parameter for the adaptive rule is
chosen as γ = 10. The initial conditions are taken
as qr(0) = (0, 0, 0)T and â(0) = 1. Two reference
trajectories are used. First, a linear trajectory
generated with vr = 0.5 m/s and ωr = 0 rad/s.
Second, a circular trajectory generated with vr =
0.5 m/s and ωr = 0.25 rad/s. The robot initial
conditions for the linear and circular trajectory
are respectively given by q(0) = (0,−1, π/6)T and
q(0) = (0, 1, π/4)T . To demonstrate the tracking
performance, the unknown slip parameter changes
from i = 0 to i = 0.25 at t = 30 s and from
i = 0.25 to i = 0 at t = 60 s.

Figures 2 and 3 show the tracking error e in
the fixed frame F1 for the linear and circular ref-
erences trajectories, respectively.

0 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

P
o
st

u
re

er
ro

rs

 

 

e1
e2
e3

Figure 2: The posture error for the linear reference
trajectory.
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Figure 3: The posture error for the circular refer-
ence trajectory.

Figures 4 and 5 show the estimate â for the



linear and circular references trajectories, respec-
tively. The red dashed line represents the true
value of the slip parameter and the blue solid line
is the estimated value.
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Figure 4: Estimated parameter â for the linear
reference trajectory.
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Figure 5: Estimated parameter â for the circular
reference trajectory.

Figures 6 and 7 show the robot trajectory in
the fixed frame F1 for the linear and circular refer-
ences trajectories, respectively. The red solid line
stands for the reference trajectory, while the blue
circle stands for the robot trajectory.

5 Conclusions

This paper provides an adaptive tracking control
design for a nonholonomic tracked mobile robot
with unknown longitudinal slip. A kinematic
model containing the slip parameter is proposed.
An update rule is derived to estimate the slip pa-
rameter in real time. The proposed adaptive con-
trol law ensures that the robot trajectory follows
a given reference trajectory. Asymptotic stabil-
ity of the global closed-loop system is guaranteed
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Figure 6: Results for the linear reference trajec-
tory.
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Figure 7: Results for the circular reference trajec-
tory.

using an appropriate Lyapunov function. Numer-
ical results show the effectiveness of the proposed
control strategy.

Acknowledgments

The authors are supported through grants from
CAPES Proc. 1755/2008 and FAPESP Proc.
09/03304-5.

References

Dierks, T. and Jagannathan, S. (2009). Asymptotic
adaptive neural network tracking control of non-
holonomic mobile robot formations, Journal of

Intelligent and Robotic Systems 56(1): 153–176.

Fan, Z., Koren, Y. and Wehe, D. (1995). Tracked
mobile robot control: Hybrid approach, Control

Engineering Practice 3(3): 329–336.

Fukao, T., Nakagawa, H. and Adachi, N. (2000).
Adaptive tracking control of a nonholonomic mo-
bile robot, IEEE Transactions on Robotics and

Automation 16(5): 609–615.
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