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Abstract: This work investigates an application of interpolating gain-scheduling control
for a structural acoustic problem. The dynamics of the system under consideration are
highly sensitive to variation in the temperature. Therefore, linear time invariantH2

output feedback controllers are designed for different temperature conditions. Afterwards,
these controllers are interpolated to provide a global discrete-time linear parameter-
varying controller. The closed-loop stability is a posteriori guaranteed using recent less
conservative analyses that consider bounds on the rate of variation of the temperature.
Copyright c© 2007 IFAC.
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1. INTRODUCTION

A main source of noise within aircraft cabins is the
noise generated by the vibration of the surrounding
structure, usually denoted as structural noise. In recent
years, a significant amount of research in the area of
acoustics has been carried out, showing that active
control strategies are efficient in reducing noise in the
low frequency range (Donadonet al., 2006). Several
of these techniques assume that the plant under con-
sideration is linear and time invariant, although, for
some applications, this is not a realistic assumption.
For instance, the structure is frequently subject to
temperature changes, and consequently, its dynamics
change considerably according to the temperature.

To deal with a time-varying system, the nominal
model and the uncertainty bounds should be appropri-
ately determined, since the trade-off between perfor-
mance and robustness plays an important role in the
control design. For most practical applications, this
is a difficult task, and the final estimated uncertainty
set is in general too conservative. Therefore, a more
elaborate strategy should be applied. Two distinct ap-

proaches are commonly used to control linear time
varying systems, interpolating gain-scheduling (IGS)
control and linear parameter-varying (LPV) control.

The main idea of the IGS control design is to split the
control design into two parts. First, local controllers
are designed for linearized models of the plant com-
puted at several fixed values of the varying parame-
ter. Second, a global parameter-dependent controller
is obtained by scheduling or interpolating these lo-
cal controllers. Although the stability of the closed-
loop system cannot be guaranteed, this approach has
been successfully used in many industrial applications
(Nicholset al., 1993; Aoufet al., 2002).

On the other hand, the LPV control design framework,
developed earlier in the 90’s, guarantees asymptotic
stability of the closed-loop system. However, the ex-
isting techniques for synthesis and analysis are still
significantly conservative for practical applications as
pointed out in (Wassinket al., 2005). Moreover, they
require an LPV model of the system which is difficult
to obtain from measured data since LPV identifica-
tion is still in a state of development. The variety of
available LPV design strategies is also limited when



compared to the IGS technique, which can use any
well-established linear control design strategy. For the
case ofH2 dynamic output feedback control design for
discrete-time LPV systems, to the best of our knowl-
edge, the only available technique is the one presented
in (Apkarianet al., 2000). A survey on gain scheduling
for nonlinear control design can be found in (Rugh and
Shamma, 2000; Leith and Leithead, 2002).

The interpolating gain-scheduling (IGS) controller
presented in Section 2 is an elegant solution for the
control of LPV systems. However, stability for all
physically possible parameter trajectories is not guar-
anteed. Therefore, it is necessary to check the stabil-
ity of the closed-loop system after designing the IGS
controller. This is analyzed in Section 3. By combin-
ing the interpolating methodology with an a poste-
riori closed-loop stability certificate, the IGS design
becomes a practical engineering tool, as shown in Sec-
tion 4 for a vibroacoustic application.

2. THE INTERPOLATING METHODOLOGY

This section presents the interpolating technique used
to construct a parameter-dependent model given a set
of linear time invariant (LTI) models selected at differ-
ent operating conditions. Here, we do not distinguish
between plant and controller, since this technique can
be used to interpolate either models. Thus, it can be
used to estimate an LPV model by interpolating local
plants, or as a gain-scheduling control technique by in-
terpolating local controllers designed for fixed operat-
ing conditions. The presented approach can be applied
for both continuous- and discrete- time systems.

Different methods to interpolate local models exits. A
straightforward approach is to interpolate the entries
of the local state-space system matrices, assuming the
same canonical state-space representation is used. For
instance, the authors in (Wassinket al., 2005) used the
controllable form. However, as indicated by the au-
thors, this can lead to numerically ill-conditioned LPV
models, reducing the use of this method for higher-
order systems. Our interpolation technique does not
explicitly interpolate the entries of the system ma-
trices, instead, the interpolation is performed by fit-
ting the poles and zeros of the LPV model on the
poles and zeros of the local models. The result-
ing model is a well-conditioned parameter-dependent
state-space model. A similar, but not equivalent ap-
proach, that also interpolates poles and zeros is pre-
sented in (Nicholset al., 1993). However, the resulting
model is a parameter-dependent transfer function.

Details of the proposed interpolating approach are
found in (Paijmanset al., 2006). Here, we briefly
describe the main ideas. Supposem SISO local mod-
els with the minimal state-space representation corre-
sponding tom distinct operating conditionsθℓ of the
scheduling parameterθ are given by

Hℓ =

{

xk+1 = Aℓxk +Bℓuk, ℓ = 1, . . . ,m

yk = Cℓxk +Dℓuk

These local modelsHℓ are not required to be stable
nor minimum-phase. We do assume, however, that
each local modelHℓ has the same ordern and can
be decomposed as the system gain times the series
connection of first and second order subsystems:

Hℓ = Gℓ
τ1+τ2

∏
τ=1

[

Aℓ
τ Bℓ

τ

Cℓ
τ Dℓ

τ

]

where the symbol∏ should be interpreted as the series
connection of state-space models. The scalarGℓ is the
system gain, the integerτ1 is the number of first order
subsystems associated with the real poles andτ2 is the
number of second order subsystems associated with
each pair of complex conjugated poles or two real
poles. In this division, the subsystems have unit gain,
since the system gain is provided byGℓ. Throughout
the paper, “gain” denotes the gain associated with the
zero-pole-gain factorization of the transfer function
andnot the DC-gain.

Notice that a first order subsystem can have either
no zeros or one zero, thus defining two types of first
order subsystems. Likewise, three types of second
order subsystems can be defined, depending on the
number of zeros. We assume that all local models
share the same numberτ1 of first order subsystems
and the same numberτ2 of second order subsystems.
The local models are also assumed to have the same
number of zeros, which are conveniently distributed
along the subsystems (with the same ordering for all
the models).

Similarly, following the same pattern as the local mod-
els, we assume that the desired global LPV model is
composed by a system gain times the series connec-
tion of τ1 + τ2 affine LPV subsystems

H(ρ(θ)) = G(ρ(θ))
τ1+τ2

∏
τ=1

[

Aτ
0 +ρ(θ)Aτ

1 Bτ

Cτ
0 +ρ(θ)Cτ

1 Dτ

]

(1)

with

ρ(θ) =
N

∑
i=0

ρiθi (2)

Since the matricesBτ andDτ do not depend onρ(θ),
the series connection of the subsystems remains affine.
We also enforce the LPV subsystems in (1) to have
unit gain. Dividing the global LPV model in low-order
subsystems allows us to obtain analytical formulas for
the poles and zeros of these LPV subsystems. For
example, any “unit gain” second order affine LPV
subsystem with two poles and two zeros can be put
in the following state-space form:

Hτ(ρ(θ)) =

{

xk+1 = (Aτ
0 +ρ(θ)Aτ

1)xk +Bτuk

yk = (Cτ
0 +ρ(θ)Cτ

1)xk +Dτuk
(3)

with Bτ =
[

1 0
]T

andDτ = 1. For this LPV subsystem,
the formulas for the poles and zeros are respectively
given by



pτ(θ) = ατ
1 +ατ

2ρ(θ)±
√

ατ
3 +ατ

4ρ(θ)+ατ
5(ρ(θ))2

and

zτ(θ) = βτ
1 +βτ

2ρ(θ)±
√

βτ
3 +βτ

4ρ(θ)+βτ
5(ρ(θ))2

where ατ = {ατ
1, . . . ,α

τ
5} and βτ = {βτ

1, . . . ,β
τ
5} are

invertible functions of the entries of the matricesAτ
0,

Aτ
1, Cτ

0, Cτ
1 in (3). In a similar way, one can derive the

formulas for all the others types of subsystems.

The interpolation technique now consists of the fol-
lowing two main steps. First, we determine theατ,
βτ andρ0,ρ1, . . . ,ρN by minimizing the least-squares
error between the poles and zeros of the local LTI
subsystems and the poles and zeros of the affine sub-
system, without considering the system gains. For this
purpose, we formulate the following nonlinear least-
squares optimization problem:

E = min
α,β,ρ

τ1+τ2

∑
τ

m

∑
ℓ=1

1
2
‖pτ(θℓ)− p̂τ

ℓ‖
2

+
1
2
‖zτ(θℓ)− ẑτ

ℓ‖
2 , (4)

where p̂τ
ℓ and ẑτ

ℓ denote the poles and zeros of the
subsystemτ for the local modelℓ. We solve this prob-
lem using a standard Levenberg-Marquardt algorithm.
Once the optimalατ andβτ are found, the unknown
entries of the subsystem matricesAτ

0, Aτ
1, Cτ

0 andCτ
1

can be directly computed.

Second, after the above optimization is solved, the
gain of the entire LPV model has to be determined.
For this purpose, we calculate the polynomial

G(ρ(θ)) =
M

∑
j=0

g j (ρ(θ)) j (5)

such that it fits the local gainsGℓ. Since theρi were
already determined from (4), it now suffices to solve
a linear least square problem to obtain theg j . After
G(ρ(θ)) is calculated, the complete LPV model is
readily obtained as the series connection (1), that is,

H(ρ(θ)) = G(ρ(θ))

[

A0 +ρ(θ)A1 B

C0 +ρ(θ)C1 D

]

. (6)

Note that by choosingM = 0 in (5), the gain is
constant and the LPV model (6) is affine inρ(θ).

3. STABILITY ANALYSES

Since closed-loop stability is not guaranteed by the
IGS technique presented in the previous section, it is
necessary to provide a certificate of stability. Different
approaches based on the Lyapunov theory exist. The
most common ones are based on the quadratic stability
(QS) analysis, although they can be very conservative.
Trying to reduce this conservatism, techniques us-
ing parameter-dependent Lyapunov functions (PDLF)
have been recently investigated. However, few results

seem to exist that guarantee stability for discrete-time
systems with time varying parameters.

In (Xie et al., 1997) a piecewise-constant Lyapunov
function is proposed, whereas in (Daafouz and Bernus-
sou, 2001) an affine PDLF is used. These techniques,
however, do not explicitly consider the bounds on
the rate of variation of the parameters, which can be
a source of conservatism. Taking the bounds on the
rate of variation explicitly into account, (Haddad and
Kapila, 1996) use a modified Lur’e-Postnikov Lya-
punov function and (Amatoet al., 2005) use a grid
over the parameter space that depends on a bound on
the rate of variation.

We now shortly present some of the technical de-
tails of the works cited above necessary to guarantee
closed-loop stability. Consider the following linear-
parameter varying (LPV) system

x(k+1) = A(ρ(k))x(k), (7)

whereA(ρ(k)) belongs to the following polytopic set

A = {A : A = ρ(k)A1 +(1−ρ(k))A2,

0≤ ρ(k) ≤ 1}. (8)

Note that the matrixA in (1) can be represented in
this form by an appropriate definition ofA1, A2 and
ρ(k). With some abuse of notation we useρ(k) in-
stead ofρ(θ(k)). Usually, the system is considered
slowly varying whenever|ρ(k + 1) − ρ(k)| is suffi-
ciently small compared to the dynamics of the system.

For system (7) in the polytope given by (8), it is well
known that asymptotic stability is guaranteed if there
exists a quadratic Lyapunov function

V(x(k),ρ(k)) = x(k)TP(ρ(k))x(k)

with P(ρ(k)) a bounded symmetric positive definite
matrix for allk≥ 0 satisfying

A(ρ(k))TP(ρ(k+1))A(ρ(k))−P(ρ(k)) < 0. (9)

If the matrix P(ρ(k)) in (9) is assumed constant, the
problem reduces to the standard QS analysis for which
it suffices to check the LMI (9) only on the vertices of
the polytope given by (8). The QS analysis allows for
arbitrary fast variations of the scheduling parameter,
and in general, is a conservative approach.

For a time varying matrixP(ρ(k)), the results in
(Daafouz and Bernussou, 2001), which we denote
by DS, alleviate some of the conservatism associated
with the standard QS analysis. Using a PDLF that
depends on the parameterρ(k), sufficient conditions
are derived for the stability of (7) in the polytope
given by (8). Bounds on the rate of variation are not
considered in this approach, thus it can be conservative
in some situations. On the other hand, the authors in
(Amato et al., 2005) provide a sufficient condition
for the stability of a linear parameter varying system
that considers a bound∆ρ on the rate of variation of
ρ(k), using a piecewise constant parameter-dependent
Lyapunov function. This condition is denoted by AS.



4. RESULTS

This section presents the results obtained by applying
the methods proposed in Section 2 and Section 3 to
the structural acoustic problem. First, the experimental
setup is presented, followed by an overview of the
frequency response function (FRFs) measured at dif-
ferent set points of the scheduling parameterθ, in this
case the temperature.

Based on the measured FRFs, local plant models are
identified and for each of these local models anH2

controller is designed. Then, using the IGS procedure
described in Section 2, these local controllers are
interpolated to obtain a global LPV controller that
is affine inρ(θ), whereρ(θ) ∈ [0,1] is a polynomial
function of the temperatureθ in degrees Celsius.

Since the IGS approach does not guarantee closed-
loop stability, different methods from the literature,
presented in Section 3, are used to check the closed-
loop stability. For this purpose, the IGS procedure is
used to derive an estimated model for the open-loop
plant that is affine inρ(θ) as well. Using the same
polynomial ρ(θ) for both the affine LPV controller
and the affine LPV model results in an affine closed-
loop that depends on the sameρ(θ).

4.1 Experimental data and its estimated model

The setup consists of a lexan plate, highly sensitive to
the temperature, clamped on a rigid baffle. For details
see (Donadonet al., 2006). The exogenous distur-
bancew that causes the vibration of the plate is pro-
vided by a point force driven by a shaker. The control
input u used to attenuate the sound pressure inside a
semi-anechoic room is provided by a flexural moment
driven by a piezoelectric patch attached to the plate.
The sound pressure measured by a single microphone,
located near the plate, provides the measured outputy.
We usez= y as the controlled output. Thus, the system
represented byy= Hyww+Hyuu has two inputs,w and
u, and one outputy.

We experimentally measured the FRFs at four dif-
ferent temperaturesθ = {22.9, 23.4, 24.4, 25.4}. For
each operating condition, we compute an estimate
state-space model using the command PEM from the
Matlab Identification toolbox, which uses a subspace
method and further refines the model by optimizing
the prediction error fit. Figure 1(a) presents the mag-
nitude of the experimental FRFŝHyw and of the es-
timated modelHyw, from the disturbancew to the
outputy. Figure 1(b) shows the magnitude of the ex-
perimental FRFŝHyu and of the estimated modelHyu,
from the control inputu to the outputy. All estimated
models are 10th order and have the same number of
poles and zeros. For this application, we focus on the
frequency range 120–260Hz. The sampling frequency
is fs = 2048 Hz.
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Fig. 1. Measured FRFŝHyw andĤyu (dotted lines) and
estimated modelsHyw andHyu (solid lines).

4.2 Designing the IGS controller

For each of these 10th-order estimated models, anH2

controller is designed using the same weighting func-
tion as in (Donadonet al., 2006). These controllers,
shown in Figure 2 (dotted lines), provide satisfac-
tory real-time performance for the corresponding fixed
operating condition. On average, they reduced the
closed-loopH2 norm by an amount of approximately
35% compared to the open loop situation. However,
we emphasize that the standardH2 controller is not
robust (Doyle, 1987).

Each of the local controllers hasn = 10 poles (four
complex pole pairs and two real poles), andnz = 9
zeros (four complex zero pairs and one real zero).
Each local controller is decomposed into the product
of five second-order subsystems, thusτ1 = 0 andτ2 =
5. Note that we could have chosenτ1 = 2 andτ2 = 4 as
well. The complex zeros are placed in the subsystems
containing the complex poles and the real zero in the
remaining subsystem.

Using the IGS procedure described in Section 2, an
LPV controllerK, affine in ρ(θ), will be determined
in order to interpolate these localH2 controllers. The
LPV controllerK will be in the form (6), that is, it will
be given by

K(ρ(θ)) = ḠK

[

AK0 +ρ(θ)AK1 BK

CK0 +ρ(θ)CK1 DK

]

. (10)

To proceed, we choose the orderN of ρ(θ) in (2) to be
N = 3 and solve the optimization problem (4) in the
unknownsAK0, AK1, BK , CK0, CK1, DK andρ(θ). The
optimal solution is

ρ(θ) = 1145−142.2θ+5.895θ2−0.082θ3, (11)

which satisfies 0≤ ρ(θ) ≤ 1 for 22.9 ≤ θ ≤ 25.4.
It now remains to determine the controller gain̄GK .
For this purpose, we chooseM = 0 in (5), such that
ḠK = g0 is constant (thus, (10) remains affine inρ(θ))
and solve a linear least square problem to fitg0 at the
gain of the localH2 controllers.



Figure 2 shows the affine LPV controller evaluated at
ten equidistant points (solid lines) together with the
local controllers (dotted lines). Figure 3 shows the
variation of two of the ten poles of the controller in
the z-plane. The diamonds indicate the poles of the
local controllers and the x-marks indicate the poles of
the LPV controller evaluated at ten different operat-
ing conditions. The thick solid line in the top of the
graphic represents part of the unit circle and the arrows
indicate increasing values of temperature. These fig-
ures show that the resulting LPV controller provides a
good fit for the local controllers.
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Fig. 2. Local LTI controller (dotted lines) and LPV
controller evaluated at ten equidistant values of
the scheduling parameter (solid lines).
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Fig. 3. Variation of two poles for the four local LTI
controllers (diamonds) and for ten evaluations of
the LPV controller (x-marks).

Recall that the LPV controller evaluated at the four set
points is not exactly the same as the LTI controllers
specifically designed for these set points. Hence, it
is important to check the change in performance that
may occur. In this example, the maximum variation
of the closed-loopH2 norm is approximately 2.2%,
which indicates no significant loss of performance at
the set points.

We also evaluate at the four set points two closed-loop
systems, one using the local LTI controller (denoted
by CL-LTI) and the other one using the LPV controller
evaluated at the set points (denoted by CL-LPV).
These closed-loop systems for the specific set point

θ = 23.4 are presented in Figure 4. The other set points
show similar behavior.
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Fig. 4. Open loopHyw (dashed line), closed-loop CL-
LTI (dotted line), and closed-loop CL-LPV (solid
line), computed atθ = 23.4.

4.3 Affine plant interpolation

To check whether the IGS controller obtained in the
previous section ensures stability, we need an LPV
model of the closed-loop system. Therefore, an LPV
model of the open-loop plant has to be derived. Note
that to verify closed-loop stability, we only need to
estimate an LPV model forHyu.

We impose that the plant model has the same schedul-
ing functionρ(θ) as the one obtained in the IGS con-
trol design given by (11), since this ensures that the
resulting closed-loop system will affinely depend on a
unique scheduling parameterρ(θ). After solving the
optimization problem (4), the state-space matrices of
the estimated LPV plant modelP(ρ(θ)) are readily
obtained in the form (6) as

P(θ) = ḠP

[

AP0 +ρ(θ)AP1 BP

CP0 +ρ(θ)CP1 DP

]

, (12)

As for the controller gain, a constant plant gain̄GP

is calculated. Figure 5 shows the obtained LPV plant
model evaluated at ten equidistant points (solid lines)
compared to the local LTI models (dotted lines).
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Fig. 5. Local LTI plant (dotted lines) and LPV plant
evaluated at ten equidistant values of the schedul-
ing parameter (solid lines).



4.4 Closed-loop system analysis

In this section some of the techniques described in
Section 3 are used to check stability of the closed-loop
model obtained using the LPV plantP(ρ(θ)) and the
LPV controllerK(ρ(θ)).

The DS condition that uses an affine parameter-
dependent quadratic Lyapunov function and the QS
condition assume no knowledge on the rate of vari-
ation of the temperature. For our example, both condi-
tions were found infeasible, thus being too conserva-
tive for our application. The AS condition, on the other
hand, incorporates a bound on the rate of variation by
limiting the variation ofρ(θ(k)) within one time step
to |ρ(θ(k+ 1))−ρ(θ(k))| < 1/ν. For our application
the lowestν was found to beν = 38 by applying
a bisection algorithm. This implies that|θ(k + 1)−
θ(k)| < 0.0369, which, for the sampling time used,
guarantees closed-loop stability for temperature vari-
ations smaller than 75.6◦C/s.

5. CONCLUSION

The proposed interpolating gain-scheduling (IGS) ap-
proach is a practical solution for the control of linear
time varying systems. Although it does not a priori
guarantee closed-loop stability, it possesses some ad-
vantages compared to LPV control design techniques.
The principal advantage being that the IGS approach
uses LTI local controllers that can be designed using
well established techniques. For instance, in our appli-
cation, we usedH2 discrete-time local controllers that
have satisfactory performance on the real-time setup.

In the literature few techniques have been reported
for H2 dynamic output feedback control syntheses for
discrete-time LPV models. In general, they are known
to be conservative since they are based on quadratic
stability conditions. For example the technique pro-
posed in (Apkarianet al., 2000), failed to provide a
controller for our application.

The closed loop stability is a posteriori guaranteed us-
ing less conservative stability analyses available from
the literature. The AS condition allows us to derive an
upper bound on the rate of variation of the schedul-
ing parameter. The obtained bound is large enough to
allow any realistic variation of temperature.

By combining the IGS approach with an a posteriori
stability check, we believe the IGS technique has a
large potential to provide satisfactory performance in
many practical applications as demonstrated in our
noise control problem.
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