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Abstract: This work investigates an application of intégtiog gain-scheduling control
for a structural acoustic problem. The dynamics of the systeder consideration are
highly sensitive to variation in the temperature. Therefdinear time invariant?5
output feedback controllers are designed for differenftemature conditions. Afterwards,
these controllers are interpolated to provide a globalrdisetime linear parameter-
varying controller. The closed-loop stability is a posterguaranteed using recent less
conservative analyses that consider bounds on the rateriativa of the temperature.
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1. INTRODUCTION proaches are commonly used to control linear time
varying systems, interpolating gain-scheduling (IGS)

A main source of noise within aircraft cabins is the control and linear parameter-varying (LPV) control.

noise generated by the vibration of the surrounding The main idea of the IGS control design is to split the
structure, usually denoted as structural noise. In recentcontrol design into two parts. First, local controllers
years, a significant amount of research in the area ofare designed for linearized models of the plant com-
acoustics has been carried out, showing that activeputed at several fixed values of the varying parame-
control strategies are efficient in reducing noise in the ter. Second, a global parameter-dependent controller
low frequency range (Donadaet al, 2006). Several is obtained by scheduling or interpolating these lo-
of these techniques assume that the plant under coneal controllers. Although the stability of the closed-
sideration is linear and time invariant, although, for loop system cannot be guaranteed, this approach has
some applications, this is not a realistic assumption. been successfully used in many industrial applications
For instance, the structure is frequently subject to (Nicholset al, 1993; Aoufet al,, 2002).

temperature changes, and consequently, its dynamic

change considerably according to the temperature. Dn the other hand, the LPV control design framework,

developed earlier in the 90’s, guarantees asymptotic
To deal with a time-varying system, the nominal stability of the closed-loop system. However, the ex-
model and the uncertainty bounds should be appropri-isting techniques for synthesis and analysis are still
ately determined, since the trade-off between perfor- significantly conservative for practical applications as
mance and robustness plays an important role in thepointed out in (Wassinkt al, 2005). Moreover, they
control design. For most practical applications, this require an LPV model of the system which is difficult
is a difficult task, and the final estimated uncertainty to obtain from measured data since LPV identifica-
set is in general too conservative. Therefore, a moretion is still in a state of development. The variety of
elaborate strategy should be applied. Two distinct ap-available LPV design strategies is also limited when
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well-established linear control design strategy. For the
case of#, dynamic output feedback control design for
discrete-time LPV systems, to the best of our knowl- ’ .

edge, the only available technique is the one presentedThese. Igcal modelsi” are not required to be stable
in (Apkarianet al,, 2000). A survey on gain scheduling hor minimum-phase. We do assume, however, that

¢
for nonlinear control design can be found in (Rugh and each local modeH" has the same prdgr and can .
Shamma, 2000; Leith and Leithead, 2002). be decomposed as the system gain times the series

connection of first and second order subsystems:
. . . , ALl B!

presented in Section 2 is an elegant solution for the H! =G ; 2

control of LPV systems. However, stability for all =1 | G| Dt

physically possible parameter trajectories is not guar- yhere the symbdf] should be interpreted as the series
anteed. Therefore, it is necessary to check the stabil-cgnnection of state-space models. The sd@fds the
ity of the closed-loop system after designing the IGS gystem gain, the intege is the number of first order
controller. This is analyzed in Section 3. By combin- subsystems associated with the real polestarigithe
ing the interpolating methodology with an a poste- nymper of second order subsystems associated with
riori closed-loop stability certificate, the IGS design ggch pair of complex conjugated poles or two real
becomes a practical engineering tool, as shown in Secpoles. In this division, the subsystems have unit gain,
tion 4 for a vibroacoustic application. since the system gain is provided 8. Throughout
the paper, “gain” denotes the gain associated with the
zero-pole-gain factorization of the transfer function

2. THE INTERPOLATING METHODOLOGY andnotthe DC-gain.

Notice that a first order subsystem can have either
This section presents the interpolating technique usedno zeros or one zero, thus defining two types of first
to construct a parameter-dependent model given a sebrder subsystems. Likewise, three types of second
of linear time invariant (LTI) models selected at differ- order subsystems can be defined, depending on the
ent operating conditions. Here, we do not distinguish number of zeros. We assume that all local models
between plant and controller, since this technique canshare the same numbey of first order subsystems
be used to interpolate either models. Thus, it can beand the same numbes of second order subsystems.
used to estimate an LPV model by interpolating local The local models are also assumed to have the same
plants, or as a gain-scheduling control technique by in- number of zeros, which are conveniently distributed
terpolating local controllers designed for fixed operat- along the subsystems (with the same ordering for all
ing conditions. The presented approach can be appliedhe models).
for both continuous- and discrete- time systems.

compared to the IGS technique, which can use any o e — Al + Buy, (=1,
vk = C'x+ D u

The interpolating gain-scheduling (IGS) controller 1+

Similarly, following the same pattern as the local mod-
Different methods to interpolate local models exits. A els, we assume that the desired global LPV model is
straightforward approach is to interpolate the entries composed by a system gain times the series connec-
of the local state-space system matrices, assuming theion of 1, + 1, affine LPV subsystems
same canonical state-space representation is used. For A+ p(0)AL ‘ Bt
instance, the authors in (Wassiekal, 2005) used the H(p(8)) = G(p(8)) P 1
controllable form. However, as indicated by the au- =1 | Co+p(6)Ci ‘ D'
thors, this can lead to numerically ill-conditioned LPV  yith

models, reducing the use of this method for higher- N

order systems. Our interpolation technique does not p(8) = ,Z}pie 2
explicitly interpolate the entries of the system ma- iy
trices, instead, the interpolation is performed by fit-
ting the poles and zeros of the LPV model on the
poles and zeros of the local models. The result-

ing model is a well-conditioned parameter—dependentSubsystems allows us to obtain analytical formulas for

state-space modgl. A similar, but not eqU|vaIent a ihe poles and zeros of these LPV subsystems. For
proach, that also interpolates poles and zeros is pre-

sented in (Nicholgt al,, 1993). However, the resulting example, any unit gain” second order affine LPV
. . subsystem with two poles and two zeros can be put
model is a parameter-dependent transfer function.

in the following state-space form:

T1+T2

@)

Since the matriceB" andD' do not depend op(8),

the series connection of the subsystems remains affine.
We also enforce the LPV subsystems in (1) to have
unit gain. Dividing the global LPV model in low-order

Details of the proposed interpolating approach are _ (Al T T
found in (Paijmanset al, 2006). Here, we briefly He(p(6)) = {XkH _ (A?+p(g)é%)Xk+grUk
describe the main ideas. Suppes&ISO local mod- Y= (Co+P(O)C X+ D uk
els with the minimal state-space representation corre-with B' = [1 O]T andD' = 1. For this LPV subsystem,
sponding tom distinct operating condition8, of the the formulas for the poles and zeros are respectively
scheduling parametérare given by given by

®)



seem to exist that guarantee stability for discrete-time

T Y T T T T 2
P(8) = 0q +02p(8) + /o + aip(6) + a5 (p(6)) systems with time varying parameters.

and In (Xie et al, 1997) a piecewise-constant Lyapunov
Tg) _ QT 4 Al T, [t T 2 function is proposed, whereas in (Daafouz and Bernus-
2(8) =P1+P2p(8) + \/B3+ Pap(6) +Ps(p(0)) sou, 2001) an affine PDLF is used. These techniques,
wherea® = {aj,...,ag} andB' = {B},...,BL} are however, do not explicitly consider the bounds on
invertible functions of the entries of the matrica§ the rate of variation of the parameters, which can be
A], C}, Clin (3). In a similar way, one can derive the a source of conservatism. Taking the bounds on the
formulas for all the others types of subsystems. rate of variation explicitly into account, (Haddad and

Kapila, 1996) use a modified Lur'e-Postnikov Lya-
punov function and (Amatet al, 2005) use a grid
over the parameter space that depends on a bound on
the rate of variation.

The interpolation technique now consists of the fol-
lowing two main steps. First, we determine tbg,

B' andpg,p1,---,Pn by minimizing the least-squares

error between the poles and zeros of the local LTI
subsystems and the poles and zeros of the affine subWe now shortly present some of the technical de-
system, without considering the system gains. For thistails of the works cited above necessary to guarantee
purpose, we formulate the following nonlinear least- closed-loop stability. Consider the following linear-

squares optimization problem: parameter varying (LPV) system
St m g o x(k+1) = A(p(K))x(k), ()
E= 5“3'2 Z gl 2 1P*(8c) — i whereA(p(Kk)) belongs to the following polytopic set
+% 1280 -2, @ A={A:A=p(K)AL+(1-p(k))Ag,

0<pk)<1}. (8)
where p; and z, denote the poles and zeros of the Note that the matrixA in (1) can be represented in
subsystent for the local modef. We solve this prob-  his form by an appropriate definition @, A, and
lem using a standard Levenberg-Marquardt algorithm. p(k). With some abuse of notation we upék) in-
Once the optimati™ and 3" are .found,TtheTunknO\TNn stead ofp(8(k)). Usually, the system is considered
entries qf the subsystem matrica§, A], Cj andC] slowly varying whenevetp(k+ 1) — p(K)| is suffi-
can be directly computed. ciently small compared to the dynamics of the system.

Second, after the above optimization is solved, the For system (7) in the polytope given by (8), it is well
gain of the entire LPV model has to be determined. ynown that asymptotic stability is guaranteed if there

For this purpose, we calculate the polynomial exists a quadratic Lyapunov function
M T
i V (x(k),p(k)) = x(k)' P(p(k))x(k
G(p(0)) = zogj (p(8))! (5) | (x(k), p(k)) = x(k) (p(')) ( )” B
i= with P(p(k)) a bounded symmetric positive definite

such that it fits the local gaing’. Since thep; were matrix for allk = 0 satisfying

already determined from (4), it now suffices to solve  A(p(K))TP(p(k-+1))A(p(k)) —P(p(k)) < 0. (9)
a linear least square problem to obtain the After _ . _
G(p(0)) is calculated, the complete LPV model is [f the matrix P(p(k)) in (9) is assumed constant, the

readily obtained as the series connection (1), thatis, Problem reduces to the standard QS analysis for which
it suffices to check the LMI (9) only on the vertices of

H(p(6)) = G(p(8)) Ao+p(6)A1| B ©) the polytope given by (8). The QS analysis allows for
Co+p(8)Cy|D arbitrary fast variations of the scheduling parameter,
) ) o and in general, is a conservative approach.
Note that by choosing = 0 in (5), the gain is _ _ _ _
constant and the LPV model (6) is affineg®). For a time varying matrixP(p(k)), the results in

(Daafouz and Bernussou, 2001), which we denote
by DS, alleviate some of the conservatism associated
3. STABILITY ANALYSES with the standard QS analysis. Using a PDLF that

depends on the parametetk), sufficient conditions
Since closed-loop stability is not guaranteed by the are derived for the stability of (7) in the polytope
IGS technique presented in the previous section, it isgiven by (8). Bounds on the rate of variation are not
necessary to provide a certificate of stability. Different considered in this approach, thus it can be conservative
approaches based on the Lyapunov theory exist. Then some situations. On the other hand, the authors in
most common ones are based on the quadratic stabilityAmato et al., 2005) provide a sufficient condition
(QS) analysis, although they can be very conservative.for the stability of a linear parameter varying system
Trying to reduce this conservatism, techniques us-that considers a bountip on the rate of variation of
ing parameter-dependent Lyapunov functions (PDLF) p(k), using a piecewise constant parameter-dependent
have been recently investigated. However, few resultsLyapunov function. This condition is denoted by AS.
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This section presents the results obtained by applying
the methods proposed in Section 2 and Section 3 to
the structural acoustic problem. First, the experimental
setup is presented, followed by an overview of the &
frequency response function (FRFs) measured at dif-
ferent set points of the scheduling param&tgn this
case the temperature.
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Based on the measured FRFs, local plant models arée
identified and for each of these local models &p
controller is designed. Then, using the IGS procedureZ
described in Section 2, these local controllers are

Brer=

interpolated to obtain a global LPV controller that Frequency (Hz)
is affine inp(8), wherep(8) < [0,1] is a polynomial  Fig. 1. Measured FRRAdy,, andH, (dotted lines) and
function of the temperatur@in degrees Celsius. estimated modelsl,y, andHy, (solid lines).

Since the IGS approach does not guarantee closed-

loop stability, different methods from the literature, 4.2 Designing the IGS controller

presented in Section 3, are used to check the closed-

loop stability. For this purpose, the IGS procedure is For each of these 10th-order estimated modelsian

used to derive an estimated model for the open-loopcontroller is designed using the same weighting func-

plant that is affine inp(8) as well. Using the same tion as in (Donadoret al., 2006). These controllers,

polynomial p(8) for both the affine LPV controller ~ shown in Figure 2 (dotted lines), provide satisfac-

and the affine LPV model results in an affine closed- tory real-time performance for the corresponding fixed

loop that depends on the sam®). operating condition. On average, they reduced the
closed-loop#, norm by an amount of approximately
35% compared to the open loop situation. However,
we emphasize that the standatf controller is not

4.1 Experimental data and its estimated model robust (Doyle, 1987).

The setup consists of a lexan plate, highly sensitive to Each of the local controllers has= 10 poles (four
the temperature, clamped on a rigid baffle. For details complex pole pairs and two real poles), amd= 9

see (Donadoret al, 2006). The exogenous distur- Zeros (four complex zero pairs and one real zero).
bancew that causes the vibration of the plate is pro- Each local controller is decomposed into the product
vided by a point force driven by a shaker. The control Of five second-order subsystems, thiys= 0 andt, =
input u used to attenuate the sound pressure inside - Note thatwe could have chosen=2 andt, =4 as
semi-anechoic room is provided by a flexural moment Well. The complex zeros are placed in the subsystems
driven by a piezoelectric patch attached to the plate. containing the complex poles and the real zero in the
The sound pressure measured by a single microphone€maining subsystem.

located near the plate, provides the measured oytput ging the IGS procedure described in Section 2, an
We usez=y as the controlled output. Thus, the system | py/ controllerK, affine in p(6), will be determined
represented by = Hy,w+Hyyuhas two inputswand i, order to interpolate these locab controllers. The
u, and one outpuy. LPV controllerK will be in the form (6), that is, it will

We experimentally measured the FRFs at four dif- be given by
ferent tempe_rature@:_ _{22.9, 234,244,254}, Fo_r - AKo+p(9)AK1‘ B«
each operating condition, we compute an estimate K(p(B)) = Gk

state-space model using the command PEM from the Cico+P(8)Crk1 ‘ Dk
Matlab Identification toolbox, which uses a subspace To proceed, we choose the ordénf p(8) in (2) to be
method and further refines the model by optimizing N = 3 and solve the optimization problem (4) in the
the prediction error fit. Figure 1(:':1) presents the mag- unknownsAxg, A1, Bk, Cko, Ck1, Dk andp(8). The
nitude of the experimental FRAsy,, and of the es-  optimal solution is

timated modelHy,,, from the disturbancev to the

outputy. Figure iv(vb) shows the magnitude of the ex- p(6) = 1145-14220+5.89%° — 0.08%°, (1)
perimental FRFiﬂyu and of the estimated modll, which satisfies O< p(8) < 1 for 229 < 8 < 25.4.
from the control inputi to the outputy. All estimated It now remains to determine the controller g .
models are 10th order and have the same number ofor this purpose, we chood$é = 0 in (5), such that
poles and zeros. For this application, we focus on the Gk = gp is constant (thus, (10) remains affinepif®))
frequency range 120-260Hz. The sampling frequencyand solve a linear least square problem tgditat the
is fg= 2048 Hz. gain of the local/; controllers.

. (10)




Figure 2 shows the affine LPV controller evaluated at 8 =234 are presented in Figure 4. The other set points
ten equidistant points (solid lines) together with the show similar behavior.

local controllers (dotted lines). Figure 3 shows the

variation of two of the ten poles of the controller in 15
the z-plane. The diamonds indicate the poles of the
local controllers and the x-marks indicate the poles of
the LPV controller evaluated at ten different operat-
ing conditions. The thick solid line in the top of the
graphic represents part of the unit circle and the arrows
indicate increasing values of temperature. These fig-
ures show that the resulting LPV controller provides a
good fit for the local controllers.
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Fig. 4. Open looHyy, (dashed line), closed-loop CL-
LTI (dotted line), and closed-loop CL-LPV (solid
line), computed a® = 23.4.

1Pa/N)

4.3 Affine plant interpolation

To check whether the IGS controller obtained in the
‘ ‘ ‘ ‘ ‘ ‘ ‘ previous section ensures stability, we need an LPV
1200 M0 160 180 200 200 240 260 model of the closed-loop system. Therefore, an LPV
Frequency (Hz) model of the open-loop plant has to be derived. Note
Fig. 2. Local LTI controller (dotted lines) and LPV that to verify closed-loop stability, we only need to
controller evaluated at ten equidistant values of estimate an LPV model fdy,,.
the scheduling parameter (solid lines).

Magnitude (dBes

We impose that the plant model has the same schedul-
ing functionp(0) as the one obtained in the IGS con-
. trol design given by (11), since this ensures that the
- resulting closed-loop system will affinely depend on a
unique scheduling parametp(0). After solving the

2]
X o= optimization problem (4), the state-space matrices of
> s the estimated LPV plant modé&l(p(8)) are readily
_E obtained in the form (6) as
(@)
5
0s2 — | A 0)Ap1 | B
£ P(6) = Gp po+pP(6) Pl‘ Pl 1)
s Cro+p(6)Cp1 ‘ Dp
o As for the controller gain, a constant plant g&da
oS o7 oms o7 oms  ofs o is calculated. Figure 5 shows the obtained LPV plant
Real Axis model evaluated at ten equidistant points (solid lines)

Fig. 3. Variation of two poles for the four local LTI ~compared to the local LTI models (dotted lines).

controllers (diamonds) and for ten evaluations of

the LPV controller (x-marks). T
Recall that the LPV controller evaluated at the four set
points is not exactly the same as the LTI controllers
specifically designed for these set points. Hence, it
is important to check the change in performance that
may occur. In this example, the maximum variation
of the closed-loopH, norm is approximately 2.2%,
which indicates no significant loss of performance at
the set points.
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We also evaluate at the four set points two closed-loop
systems, one using the local LTI controller (denoted . i
by CL-LTI) and the other one using the LPV controller F19- 5 Local LTI plant (dotted lines) and LPV plant
evaluated at the set points (denoted by CL-LPV). evaluated at ten equidistant values of the schedul-
These closed-loop systems for the specific set point N9 parameter (solid lines).
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