

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions
- References

Estimation of Tire-Ground Interaction Forces in a 4-Wheel Vehicle under All-terrain Conditions

Rafael de Angelis Cordeiro

Estudante de Doutorado rcordeir@dt.fee.unicamp.br | rcordeiro@fem.unicamp.br

Advanced Computing, Control & Embedded Systems Laboratory Universidade Estadual de Campinas - UNICAMP Heuristique et Diagnostic des Systèmes Complexes - HEUDIASYC

05/Novembro/2015

Summary

BEPE HEUDIASYC

Cordeiro, Rafael

2 Vehicle model for estimators

Estimator

Conclusions

References

Summary

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions
- References

- Malaiala na alal fan activest
- B) Estimator
- 4 Results
- 5 Conclusions
- 6 References

Introduction

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Rosulte
- Conclusion
- References

Intelligent Vehicles

- Two typical researches:
 - Advanced Driver Assistance Systems (ADAS)
 - Indirect: Pedestrian Warnings
 - Direct: Anti-lock Breaking System (ABS)
 - Autonomous Vehicles (AVs)
 - No human-driver direct actions
- Sensors are a main key!
 - Precision
 - Price

Heudiasyc Internship – BEPE

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Objective

Estimate tire-ground interaction forces in all directions at off road conditions

- Main goals
 - Estimate vertical, lateral and longitudinal tire forces
 - Estimate tire forces under irregular ground profiles
- Previous Heudiasyc estimator
 - Estimator presented in [Jiang et al., 2014]
 - Vertical and lateral tire forces estimators
 - Planar grounds with slopes
 - Random walk models

VERO vs DYNA

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions
- References

VERO – CTI

- Autonomous platform
- Electrical propulsion
- Full-sensored (GPS, IMU, lasers)
- Objective: off-road autonomous vehicle

DYNA – Heudiasyc

- Ordinary passengers car
- Combustion propulsion
- Usually vehicle's sensors + suspension displacement
- Tire-ground forces transducers (validation)
- Objective: ADAS development

Inputs/Sensors

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions
- References

- 3-Axis accelerations/Integrated IMU
- 3-Axis angular speed/Integrated IMU
- Extremities vertical displacement/Lasers
- Longitudinal speed/Vehicle's odometry
- Wheel spin speed/Encoder

Summary

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimator
- Results
- Conclusions
- References

- 2 Vehicle model for estimators
 - Estimator
- 4 Results

6 References

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

- Vertical and lateral force estimators
- Cascade-observers structure
- Based on 2D models
- Equivalent torsional suspensions
- Random-walk models

BEPE HEUDIASYC

Cordeiro, Rafael

Heudiasyc Estimator

Vertical Model \rightarrow Roll dynamics

Introduction

Vehicle model for estimators

Estimator

Results

Conclusion

References

Dynamics Equations

•
$$J_{xx}\ddot{\phi}_v = -K_r\phi_v - C_r\dot{\phi}_v + mha_{v_y}$$

• $E_1/2(F_{z_{12}} - F_{z_{11}}) = (-K_r\phi_v - C_r\dot{\phi}_v) \frac{F_{z_{11}} + F_{z_{12}}}{\sum F_z}$

• $ma_{z_{eq}} = (F_{z_{11}} + F_{z_{21}}) + (F_{z_{12}} + F_{z_{22}})$ • $E_2/2(F_{z_{22}} - F_{z_{21}}) = (-K_r\phi_v - C_r\dot{\phi}_v) \frac{F_{z_{21}} + F_{z_{22}}}{\sum F_z}$

BEPE HEUDIASYC

Cordeiro, Rafael

Vehicle model for estimators

Heudiasyc Estimator

Vertical Model \rightarrow Pitch dynamics

Dynamics Equations

•
$$J_{yy}\ddot{\theta}_{\nu} = -K_{p}\theta_{\nu} - C_{p}\dot{\theta}_{\nu} + mha_{\nu_{x}}$$

• $ma_{z_{eq}} = (F_{z_{11}} + F_{z_{21}}) + (F_{z_{12}} + F_{z_{22}})$
• $-L_{1}(F_{z_{11}} + F_{z_{12}}) + L_{2}(F_{z_{21}} + F_{z_{22}}) = -K_{p}\theta_{\nu} - C_{p}\dot{\theta}_{\nu}$

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Vertical Model \rightarrow Vertical Forces

Solving the system for vertical forces

$$\begin{aligned} F_{z_{ij}} &= \\ &- \frac{m(L-L_i)}{2L} a_{z_{eq}} + (-1)^j \frac{(L-L_i)}{E_i L} T_r - (-1)^i \frac{1}{2L} T_p + (-1)^{(i+j)} \frac{T_r T_p}{ma_z E_i L} \\ &\text{where } T_r = -\kappa_r \phi - c_r \phi \text{ e } T_p = -\kappa_p \theta - c_p \phi. \end{aligned}$$

• Time derivative (neglecting the coupling term)

$$\dot{F}_{z_{ij}} = -\frac{m(L-L_i)}{2L}\dot{a}_{z_{eq}} + (-1)^j \frac{(L-L_i)}{E_i L} \dot{T}_r - (-1)^i \frac{1}{2L} \dot{T}_p$$
where $\dot{r}_r = -\kappa_r \dot{\phi} - c_r / J_{xx} (T_r + mha_{v_y}) e^{\hat{T}_p} = -\kappa_p \dot{\theta} - c_p / J_{yy} (T_p + mha_{v_x}).$

BEPE HEUDIASYC

Cordeiro, Rafael

$\textit{Vertical Model} \rightarrow \textit{State-Space Linear model}$

Vehicle model for estimators

Estimator

Results

Conclusions

References

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimator
- Results
- Conclusions
- References

Vertical Model \rightarrow Inputs/Outputs

- Inputs
 - None
- Outputs/Measures
 - Direct measured outputs: a_{v_x} , a_{v_y} , a_{v_z} , $\dot{\phi}$, $\dot{\theta}$
 - Pseudo-measured outputs: $\phi_{v}(h_{z_{ij}}), \theta_{v}(h_{z_{ij}}), a_{eq}(a_{v}, \phi_{v}, \theta_{v}),$

$$F_{z_{ij}}\left(a_{eq_z},\phi(h_{z_{ij}}),\dot{\phi},\theta_v(h_{z_{ij}}),\dot{\theta}\right)$$

• $hz_{ij} \rightarrow \text{Extremities vertical distance to ground}$

$$\phi_{\nu} \approx \frac{h_{z_{11}} - h_{z_{12}} + h_{z_{21}} - h_{z_{22}}}{E_1 + E_2}$$

$$\bullet \ \theta_{v} \approx \frac{h_{z_{11}} - h_{z_{21}} + h_{z_{12}} - h_{z_{22}}}{2L}$$

$$\begin{aligned} \mathbf{a}_{eq} &= R_{\theta_{v}} R_{\phi_{v}} a_{v} \\ \text{where } \mathbf{R} \text{ is a Rotation Matrix } (\mathbf{R}^{T} = \mathbf{R}^{-1}) \\ F_{z_{ij}} &\approx -\frac{m(L-L_{i})}{2L} a_{z} + (-1)^{j} \frac{(L-L_{i})}{E_{iL}} T_{r} - (-1)^{i} \frac{1}{2L} T_{p} + (-1)^{(i+j)} \frac{T_{r} T_{i}}{ma_{r} E} \end{aligned}$$

ιL

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimator
- Results
- Conclusions
- References

Lateral Model

- 2D yaw dynamic model
- Dugoff tire model
- $\bullet\,$ First order dynamic model \to Relaxation lengths
- Longitudinal forces dynamics are neglected
 - Motorized (front) wheels \Rightarrow random walk model
 - Non-motorized (rear) wheels $\Rightarrow F_x = 0$
- Vertical forces as inputs (cascade observer)

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimato
- Results
- Conclusion
- References

Lateral Model \rightarrow Yaw Dynamics

BEPE HEUDIASYC

Vehicle model for estimators

Heudiasyc Estimator

Lateral Model \rightarrow Dugoff tire model

•
$$\alpha_{11} = \tan^{-1} \left(\frac{v + \dot{\psi}L_1}{u + \dot{\psi}E_1/2} \right) - \delta$$

• $\alpha_{12} = \tan^{-1} \left(\frac{v + \dot{\psi}L_1}{u - \dot{\psi}E_1/2} \right) - \delta$
• $\alpha_{21} = \tan^{-1} \left(\frac{v - \dot{\psi}L_2}{u + \dot{\psi}E_2/2} \right)$
• $\alpha_{22} = \tan^{-1} \left(\frac{v - \dot{\psi}L_2}{u - \dot{\psi}E_2/2} \right)$
• $\chi_{ij} = \min \left\{ 1, \frac{\mu F_{zij}}{2C_{\alpha_{ij}} |\tan \alpha_{ij}|} \right\}$
• $\overline{F_{yij}} = -C_{\alpha_{ij}} \tan \alpha_{ij} (2 - \chi_{ij}) \chi_{ij}$

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusion

References

Lateral Model \rightarrow Longitudinal Force approximation

• Considering front-wheel propulsion (Dyna):

$$F_{x_{11}} = \frac{F_{z_{11}}}{F_{z_{11}} + F_{z_{12}}} (F_{x_{11}} + F_{x_{12}})$$

$$F_{x_{12}} = \frac{F_{z_{12}}}{F_{z_{11}} + F_{z_{12}}} (F_{x_{11}} + F_{x_{12}})$$

$$F_{x_{21}} = F_{x_{22}} = 0$$

 $(F_{x_{11}} + F_{x_{12}}) = w_F$ where w_F is a white noise.

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Ż

Lateral Model \rightarrow State-Space model

$$\begin{cases} \dot{x}_{1} &= \dot{u} = +v\dot{\psi} + \frac{1}{m} \left((F_{x_{11}} + F_{x_{12}}) \cos \delta - F_{y_{11}} \sin \delta - F_{y_{12}} \sin \delta \right) \\ \dot{x}_{2} &= \dot{v} = -u\dot{\psi} + \frac{1}{m} \left(F_{y_{11}} \cos \delta + F_{y_{12}} \cos \delta + (F_{x_{11}} + F_{x_{12}}) \sin \delta + F_{y_{21}} + F_{y_{22}} \right) \\ \dot{x}_{3} &= \dot{\phi} = \frac{1}{J_{zz}} \left[L_{1} \left(F_{y_{11}} \cos \delta + F_{y_{12}} \cos \delta + (F_{x_{11}} + F_{x_{12}}) \sin \delta \right) - L_{2} \left(F_{y_{21}} + F_{y_{22}} \right) + \\ &+ \frac{E_{1}}{2} \left(\frac{F_{z_{11}} - F_{z_{12}}}{F_{z_{11}} + F_{z_{12}}} (F_{x_{11}} + F_{x_{12}}) \cos \delta + (-F_{y_{11}} + F_{y_{12}}) \sin \delta \right) \right] \\ \dot{x}_{4} &= \dot{F}_{y_{11}} = \frac{u + \dot{\psi} E_{1}/2}{\rho_{y_{11}}} \left(\overline{F_{y_{12}}} - F_{y_{11}} \right) \\ \dot{x}_{5} &= \dot{F}_{y_{12}} = \frac{u - \dot{\psi} E_{1}/2}{\rho_{y_{12}}} \left(\overline{F_{y_{22}}} - F_{y_{22}} \right) \\ \dot{x}_{6} &= \dot{F}_{y_{21}} = \frac{u + \dot{\psi} E_{2}/2}{\rho_{y_{22}}} \left(\overline{F_{y_{22}}} - F_{y_{22}} \right) \\ \dot{x}_{8} &= (F_{x_{11}} + F_{x_{12}}) = 0 \end{cases}$$

BEPE HEUDIASYC	
Cordeiro, Rafael	
ntroduction	
ehicle model for stimators	Lateral Model \rightarrow Inputs/Outputs
stimator	 Inputs
Conclusions	Measured commands: δ Cascade-observer inputs: $F_{z_{ij}}$
	Outputs
	\blacktriangleright Direct measured measures: $\dot{\psi}$, u
	\blacktriangleright Cascade-observer measures: a'_x, a'_y
	Accelerations without gravitational components

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions
- References

Characteristics

- All-forces estimation
- 3D-based model for vertical forces
- No "random-walk" model
- Linear suspension model
- Unsprung mass neglected
- Delayed interconnected cascade-observer structure

BEPE HEUDIASYC Cordeiro, Rafael Vehicle model for estimators Vertical model 3D vehicle model Linear suspension model Horizontal ground assumption Ground is locally planar in each wheel Unsprung mass neglected

BEPE HEUDIASYC

Vehicle model for estimators

Proposed New Estimator

Vertical model \rightarrow 3D dynamics

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Vertical model \rightarrow 3D dynamics \rightarrow Linear

- $m\dot{u} = m(vr wq g\sin\theta) + F_{x_{11}}\cos\delta_{11} F_{y_{11}}\sin\delta_{11} + F_{x_{12}}\cos\delta_{12} F_{y_{12}}\sin\delta_{12} + F_{x_{22}} + F_{x_{22}}$
- $m\dot{v} = m(wp ur + g\sin\phi\cos\theta) + F_{y_{11}}\cos\delta_{11} + F_{x_{11}}\sin\delta_{11} + F_{y_{12}}\cos\delta_{12} + F_{x_{12}}\sin\delta_{12} + F_{y_{21}} + F_{y_{22}}$

• $m\dot{w} = m(uq - vp + g\cos\phi\cos\theta) + F_{z_{11}} + F_{z_{12}} + F_{z_{21}} + F_{z_{22}}$

Vertical model \rightarrow 3D dynamics \rightarrow Angular

- $J_{xx}\dot{p} = (J_{yy} J_{zz}) qr E/2(F_{z_{11}} + F_{z_{21}}) + E/2(F_{z_{12}} + F_{z_{22}}) h_{z_{11}}(F_{y_{11}} \cos \delta_{11} + F_{x_{11}} \sin \delta_{11}) h_{z_{12}}(F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta_{12}) h_{z_{21}}F_{y_{21}} h_{z_{22}}F_{y_{22}}$
- $J_{yy}\dot{q} = (J_{zz} J_{xx}) pr L_1(F_{z_{11}} + F_{z_{12}}) + L_2(F_{z_{21}} + F_{z_{22}}) + h_{z_{11}}(F_{x_{11}} \cos \delta_{11} F_{y_{11}} \sin \delta_{11}) + h_{z_{12}}(F_{x_{12}} \cos \delta_{12} F_{y_{12}} \sin \delta_{12}) + h_{z_{21}}F_{x_{21}} + h_{z_{22}}F_{x_{22}}$
- $J_{zz}\dot{r} = (J_{xx} J_{yy})pq + L_1(F_{y_{11}}\cos\delta_{11} + F_{x_{11}}\sin\delta_{11} + F_{y_{12}}\cos\delta_{12} + F_{x_{12}}\sin\delta_{12}) L_2(F_{y_{21}} + F_{y_{22}}) E/2(F_{x_{11}}\cos\delta_{11} F_{y_{11}}\sin\delta_{11} + F_{x_{21}}) + E/2(F_{x_{12}}\cos\delta_{12} F_{y_{12}}\sin\delta_{12} + F_{x_{22}})$

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimator
- Besults
- Conclusion
- References

Vertical model ightarrow 3D kinematics ightarrow Angular

- $\dot{\phi} = p + (q \sin \phi + r \cos \cos \phi) \tan \theta$
- $\dot{\theta} = q\cos\phi r\sin\phi$

$\text{Vertical model} \rightarrow \text{Suspension}$

• $F_{z_{ij}} = -k_s \left(\overline{h}_{z_{ij}} - h_{z_{ij}}\right) - c_s \frac{d}{dt} \left(\overline{h}_{z_{ij}} - h_{z_{ij}}\right)$

• Planar ground:

$$\frac{d}{dt}\left(\overline{h}_{z_{ij}}-h_{z_{ij}}\right)\approx w+(-1)^{i}qL_{i}+(-1)^{j}pE/2$$

ACCES Lab

Proposed New Estimator

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimator
- Posulte
- Conclusion

 $\dot{X} =$

$\text{Vertical Model} \rightarrow \text{State-Space model}$

$$\begin{cases} \dot{x}_{1} = \dot{u} = vr - wq - g \sin \theta + \frac{1}{m} \left(F_{x_{11}} \cos \delta_{11} - F_{y_{11}} \sin \delta_{11} + F_{x_{12}} \cos \delta_{12} - F_{y_{12}} \sin \delta_{12} + F_{x_{21}} + F_{x_{22}} \right) \\ \dot{x}_{2} = \dot{v} = wp - ur + g \sin \phi \cos \theta + \frac{1}{m} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{11}} \sin \delta_{11} + F_{y_{12}} \cos \delta_{12} + F_{x_{21}} \sin \delta_{12} + F_{y_{22}} \right) \\ \dot{x}_{3} = \dot{w} = uq - vp + g \cos \phi \cos \theta + \frac{1}{m} \left(F_{z_{11}} + F_{z_{12}} + F_{z_{22}} \right) - \frac{h_{z_{11}}}{J_{xx}} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{11}} \sin \delta_{11} \right) - \frac{h_{z_{12}}}{J_{xx}} \left(F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta_{12} \right) - \frac{h_{z_{21}}}{J_{xx}} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{11}} \sin \delta_{11} \right) - \frac{-\frac{h_{z_{12}}}{J_{xx}} \left(F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta_{12} \right) - \frac{h_{z_{21}}}{J_{xx}} F_{y_{22}} - \frac{h_{z_{21}}}{J_{xx}} F_{y_{22}} \\ \dot{x}_{5} = \dot{q} = \frac{J_{zz} - J_{xx}}{J_{yy}} rr - \frac{L_{1}}{J_{yy}} \left(F_{z_{11}} + F_{z_{12}} \right) + \frac{L_{2}}{J_{yy}} \left(F_{z_{21}} + F_{z_{22}} \right) + \frac{h_{z_{11}}}{J_{yy}} \left(F_{x_{11}} \cos \delta_{11} - F_{y_{11}} \sin \delta_{11} \right) + \frac{h_{z_{12}}}{J_{yy}} \left(F_{x_{12}} \cos \delta_{12} - F_{y_{12}} \sin \delta_{12} \right) + \frac{h_{z_{21}}}{J_{yy}} F_{x_{21}} + \frac{h_{z_{22}}}{J_{yy}} F_{x_{22}} \\ \dot{x}_{6} = \dot{r} = \frac{J_{xx} - J_{yy}}{J_{zx}} pq + \frac{L_{1}}{J_{zz}} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{11}} \sin \delta_{11} + F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta_{12} \right) - \frac{L_{2}}{J_{zz}} \left(F_{y_{21}} + F_{y_{22}} \right) + \frac{E_{z_{21}}}{J_{zz}} \left(F_{y_{21}} + F_{y_{22}} \right) + \frac{E_{z_{21}}}{J_{zz}} \left(F_{y_{21}} + F_{y_{22}} \right) + \frac{E_{z_{22}}}{J_{zz}} \left(F_{z_{21}} + F_{z_{22}} \right) + \frac{E_{z_{22}}}{J_{zz}} \left(F_{z_{21}} + F_{z_{22}}$$

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimato

Results

Conclusion

References

$\textit{Vertical Model} \rightarrow \textit{State-Space model}$

 $\dot{x}_{7} = \dot{\phi} = p + (q \sin \phi + r \cos \cos \phi) \tan \theta$ $\dot{x}_{8} = \dot{\theta} = q \cos \phi - r \sin \phi$ $\dot{x}_{9} = \dot{h}_{211} = -w + qL_{1} + p\frac{E}{2}$ $\dot{x}_{10} = \dot{h}_{212} = -w + qL_{1} - p\frac{E}{2}$ $\dot{x}_{11} = \dot{h}_{221} = -w - qL_{2} + p\frac{E}{2}$ $\dot{x}_{12} = \dot{h}_{222} = -w - qL_{2} - p\frac{E}{2}$

Where:

BEPE HEUDIASYC Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimato
- Results
- Conclusions
- References

Vertical Model \rightarrow Inputs/Outputs

- Inputs
 - Measured commands: δ
 - Sascade-observer delayed feedback: $F_{x_{ij}} \in F_{y_{ij}}$
 - Initial conditions is zero
- Outputs
 - Direct-measured measures: a_x , a_y , a_z , p, q, r, $h_{z_{ij}}$
 - Pseudo-measured outputs: $\phi(h_{z_{ij}}) \in \theta(h_{z_{ij}})$

$$\phi \approx \frac{h_{z_{11}} - h_{z_{12}} + h_{z_{21}} - h_{z_{22}}}{2E}$$

$$\phi \approx \frac{h_{z_{11}} - h_{z_{21}} + h_{z_{12}} - h_{z_{22}}}{2L}$$

Calculated vertical forces: F_{zij}

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimato

Results

Conclusions

References

ż

Lateral Model \rightarrow State-Space model

$$= \begin{cases} \dot{x}_{1} = \dot{u} = +v\dot{\psi} + \frac{1}{m} \left(F_{x_{11}} \cos \delta_{11} - F_{y_{11}} \sin \delta_{11} + F_{x_{12}} \cos \delta_{12} - F_{y_{12}} \sin \delta_{12} + F_{x_{21}} + F_{x_{22}} \right) \\ \dot{x}_{2} = \dot{v} = -u\dot{\psi} + \frac{1}{m} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{12}} \sin \delta_{11} + F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta + F_{y_{21}} + F_{y_{22}} \right) \\ \dot{x}_{3} = \dot{\phi} = \frac{L_{1}}{J_{zz}} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{11}} \sin \delta_{11} + F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta_{12} \right) - \frac{L_{2}}{J_{zz}} \left(F_{y_{21}} + F_{y_{22}} \right) + \\ + \frac{E}{J_{zz}} \left(-F_{x_{11}} \cos \delta_{11} + F_{y_{11}} \sin \delta_{11} - F_{x_{21}} + F_{x_{12}} \cos \delta_{12} - F_{y_{12}} \sin \delta_{12} + F_{x_{22}} \right) \\ \dot{x}_{4} = \dot{F}_{y_{11}} = \frac{u + \dot{\psi} E/2}{\rho_{y_{11}}} \left(\overline{F_{y_{11}}} - F_{y_{11}} \right) \\ \dot{x}_{5} = \dot{F}_{y_{12}} = \frac{u - \dot{\psi} E/2}{\rho_{y_{12}}} \left(\overline{F_{y_{12}}} - F_{y_{21}} \right) \\ \dot{x}_{6} = F_{y_{21}} = \frac{u + \dot{\psi} E/2}{\rho_{y_{21}}} \left(\overline{F_{y_{21}}} - F_{y_{21}} \right) \\ \dot{x}_{7} = \dot{F}_{y_{22}} = \frac{u - \dot{\psi} E/2}{\rho_{y_{22}}} \left(\overline{F_{y_{22}}} - F_{y_{22}} \right) \end{cases}$$

BEPE HEUDIASYC

Introduction

Vehicle model for estimators

- Estimator
- Results
- Conclusions
- References

Lateral Model ightarrow Inputs/Outputs

- Inputs
 - \blacktriangleright Measured Commands: δ
 - Ackerman Geometry correction: $\delta_{1j} = \tan^{-1}$

$$\left(\frac{L\tan\delta}{L-(-1)^{j}\frac{E}{2}\tan\delta}\right)$$

- Cascade-observer inputs: F_{zij}
- \blacktriangleright Cascade-observer delayed feedback: $F_{x_{ij}}$

Outputs

- Direct measured measures: \u00fc, u
- Example 2 Cascade-observer measures: a'_x, a'_y

Accelerations without gravitational components

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimator
- Results
- Conclusions
- References

Longitudinal model

- Same 2D yaw dynamic as the lateral model
- Also uses Dugoff tire model
 - Long./Lat. force coupling neglected
- No propulsion model
 - - Dyna does not provide this measure (just VERO provides)
 - This model should increase estimator's results
 - Instead, it uses measured wheel speed as input

BEPE HEUDIASYC

Vehicle model for estimators

Proposed New Estimator

Longitudinal Model \rightarrow Duggof tire model

•
$$\sigma_{11} = \frac{-(u + \dot{\psi}E/2) + \Omega_{11}r_{w_{11}}}{\max\left(u + \dot{\psi}E/2, \Omega_{11}r_{w_{11}}\right)}$$
•
$$\sigma_{12} = \frac{-(u - \dot{\psi}E/2) + \Omega_{12}r_{w_{12}}}{\max\left(u - \dot{\psi}E/2, \Omega_{12}r_{w_{12}}\right)}$$
•
$$\sigma_{21} = \frac{-(u + \dot{\psi}E/2) + \Omega_{21}r_{w_{21}}}{\max\left(u + \dot{\psi}E/2, \Omega_{21}r_{w_{21}}\right)}$$
•
$$\sigma_{22} = \frac{-(u - \dot{\psi}E/2) + \Omega_{22}r_{w_{22}}}{\max\left(u - \dot{\psi}E/2, \Omega_{22}r_{w_{22}}\right)}$$
•
$$\chi_{ij} = \min\left\{1, \frac{\mu F_{zij}}{2C_{\sigma_{ij}}|\sigma_{ij}|}\right\}$$
•
$$\overline{F_{xij}} = C_{\sigma_{ij}\sigma_{ij}}(2 - \chi_{ij})\chi_{ij}$$

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimato

Results

Conclusions

References

ż

Longitudinal Model \rightarrow State-Space model

$$= \begin{cases} \dot{x}_{1} = \dot{u} = +v\dot{\psi} + \frac{1}{m} \left(F_{x_{11}} \cos \delta_{11} - F_{y_{11}} \sin \delta_{11} + F_{x_{12}} \cos \delta_{12} - F_{y_{12}} \sin \delta_{12} + F_{x_{21}} + F_{x_{22}} \right) \\ \dot{x}_{2} = \dot{v} = -u\dot{\psi} + \frac{1}{m} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{12}} \sin \delta_{11} + F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta + F_{y_{21}} + F_{y_{22}} \right) \\ \dot{x}_{3} = \dot{\phi} = \frac{L_{1}}{J_{zz}} \left(F_{y_{11}} \cos \delta_{11} + F_{x_{11}} \sin \delta_{11} + F_{y_{12}} \cos \delta_{12} + F_{x_{12}} \sin \delta_{12} \right) - \frac{L_{2}}{J_{zz}} \left(F_{y_{21}} + F_{y_{22}} \right) + \\ + \frac{E}{2J_{zz}} \left(-F_{x_{11}} \cos \delta_{11} + F_{y_{11}} \sin \delta_{11} - F_{x_{21}} + F_{x_{12}} \cos \delta_{12} - F_{y_{12}} \sin \delta_{12} + F_{x_{22}} \right) \\ \dot{x}_{4} = \dot{F}_{x_{11}} = \frac{u + \dot{\psi}E/2}{\rho_{x_{11}}} \left(\overline{F_{x_{11}}} - F_{x_{11}} \right) \\ \dot{x}_{5} = F_{x_{12}} = \frac{u - \dot{\psi}E/2}{\rho_{x_{22}}} \left(\overline{F_{x_{12}}} - F_{x_{21}} \right) \\ \dot{x}_{6} = \dot{F}_{x_{21}} = \frac{u + \dot{\psi}E/2}{\rho_{x_{21}}} \left(\overline{F_{x_{22}}} - F_{x_{21}} \right) \\ \dot{x}_{7} = \dot{F}_{x_{22}} = \frac{u - \dot{\psi}E/2}{\rho_{x_{22}}} \left(\overline{F_{x_{22}}} - F_{x_{22}} \right) \end{cases}$$

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

- Estimator
- Results
- Conclusions
- References

Longitudinal Model \rightarrow Inputs/Outputs

- Inputs
 - \blacktriangleright Measured Commands: $\delta \in \Omega_{ij}$
 - Ackerman Geometry correction: $\delta_{1j} = \tan^{-1} \left(\frac{L \tan \delta}{L (-1)^j \frac{E}{2} \tan \delta} \right)$
 - \blacktriangleright Cascade-observer inputs: $F_{z_{ij}}$
 - \blacktriangleright Cascade-observer delayed feedback: $F_{y_{ij}}$

Outputs

- Direct measured measures: \u00fc, u
- Example 2 Cascade-observer measures: a'_x, a'_y
 - Accelerations without gravitational components

Summary

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Vehicle model for estimators

4 Results

Extended Kalman Filter

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

System assumption

$$\dot{X} = f(X, U) + W$$
$$Y = h(X, U) + V$$

where W and V are uncorrelated white noises

• Same goal of Kalman Filter

$$\implies \min E\left\{ (X - \hat{X})^T (X - \hat{X}) \right\}$$

• Difference: Locally linearized systems

$$egin{aligned} A_{k-1} &= I + T_S
abla_x f(X,U) \left|_{X = X_{k-1}, \ U = U_k}
ight. \ & C_k &=
abla_x h(X,U) \left|_{X = X_k, \ U = U_k}
ight. \end{aligned}$$

• Discrete system: Direct Euler Discretization

$$X_{k+1} = X_k + T_{\mathcal{S}}f(X_k, U_k)$$

ACCES

Extended Kalman Filter

Algorithm

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Initialization: time k = 0; $\hat{X}_0 = X_0$; $\hat{P}_0 = P_0$; 2 Time update: k = k + 1; 3 State prediction: $\overline{X}_k = \hat{X}_{k-1} + T_S f(\hat{X}_{k-1}, U_k);$ Output prediction: $\overline{Y}_k = h(\overline{X}_k, U_k)$; State linearization: $A_{k-1} = I + T_S \nabla_X f(X, U) \Big|_{X = \hat{X}_k}$ Output prediction linearization: $\overline{C}_k = \nabla_X h(X, U) \Big|_{X = \overline{X}_k \cup U = U_k}$; State covariance prediction: $\overline{P}_k = A_{k-1}\hat{P}_{k-1}A_{k-1}^T + Q$; **Output covariance prediction:** $\overline{S}_k = \overline{C}_k \overline{P}_k \overline{C}_k^T + R$: Kalman Filter gain: $K_k = \overline{P}_k \overline{C}_k^T \overline{S}_k^{-1}$: Innovation: $\eta_k = Y_k - \overline{Y}_k$; **1** State estimation: $\hat{X}_k = \overline{X}_k + K_k \eta_k$; 2 State covariance estimation: $\hat{P}_k = (I - K_k \overline{C}_k) \overline{P}_k$; Back to step 2;

Summary

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

Vehicle model for estimators

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Observers Comparison

- Data obtained with DYNA mission
- Mission was at Compiegne's town center
 - > No map description because DYNA does not have GPS data
- Data obtained from:
 - Tire forces and moments transducers (one for each wheel)
 - IMU system
 - Vehicle's CAN data
 - Simple laser ground distance (one for each extremity)
- Mechanical specifications available

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Observers Comp	ariaan V Daauma	
Observers Comb	$anson \rightarrow nesume$	

Characteristics	Heudiasyc	New	
Vert. dynamics	"Random-walk" model	Force model	
Lat. dynamics	Force model	Force model	
Suspension	2 Torsional	4 Linear	
Tire model	Dugoff	Dugoff	
Steering	Simple ($\delta_{11} = \delta_{12}$)	Ackerman ($\delta_{11} \neq \delta_{12}$)	
Estimator type	EKF	EKF	
Structure	Direct cascade	Interconnected cascade	
Vert. model	16 states	12 states	
Lat. model	8 states 7 states		
Long. model	none	7 states	
Ground type	Planar/Slopes	Irregular/Horizontal	

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusion
- References

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model fo estimators
- Estimator
- Results
- Conclusions
- References

F_x comparison

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Metrics comparison

Mean-square error

• mse =
$$\sqrt{\frac{1}{N}\sum_{k}\left(\hat{F}_{k}-F_{k}\right)^{2}}$$

Maximun absolute error

$$\implies \mathsf{mae} = \max_{k} \left| \hat{F}_{k} - F_{k} \right|$$

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

|--|

Mean-square error (N)								
		F_{11}	F_{12}	F_{21}	F_{22}			
F_z	Heud.	627.6	660.0	658.4	578.2			
	New	557.2	634.2	636.7	612.6			
Fy	Heud.	381.7	355.1	516.2	491.4			
	New	403.0	368.8	328.4	316.6			
F _x	Heud.	377.0	481.5	373.1	1286.1*			
	New	555.9	434.9	723.9	1590.1*			
Maximum Absolute error (N)								
		F_{11}	F_{12}	F_{21}	F_{22}			
F_z	Heud.	3670.2	3143.0	3541.4	2843.4			
	New	4574.0	3652.7	3316.0	3663.0			
Fy	Heud.	1815.3	1724.1	3165.6	2819.7			
	New	1841.3	1487.7	1626.7	1660.0			
F_x	Heud.	1234.2	1495.9	2094.6	2957.7*			
	New	1873.9	1329.3	2501.2	3073.9*			

Summary

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions

- Introduction
- Vehicle model for estimators
- 3 Estimator
- 4 Result

Conclusions

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions
- References

Estimators

- Both has good results
- New proposal has better response on rear wheels
- Longitudinal estimator is not accurate as expected
 - Need propulsion model
 - Longitudinal speed sensor

Future Works

- Use forces in path tracking control
- Development of delayed interconnected cascade-observer

Final

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimato

Results

Conclusions

References

Thank you for your attention!

Questions?

Summary

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

- Vehicle model for estimators
- Estimator
- Results
- Conclusions
- References

- Introduction
- Vehicle model for estimators
- 3 Estimator
- 4 Results
- 5 Conclusion

References I

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Bouton, N., Lenain, R., Thuilot, B., & Martinet, P. 2008 (Sept).

A rollover indicator based on a tire stiffness backstepping observer: Application to an All-Terrain Vehicle.

Pages 2726–2731 of: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on.

Cordeiro, R. A. 2013.

Modelagem e Controle de Trajetória de um Veículo Robótico Terrestre de Exterior. M.Phil. thesis, Faculdade de Engenharia Mecânica, UNICAMP, Campinas, Brasil.

Cordeiro, R.A., Azinheira, J.R., de Paiva, E.C., & Bueno, S.S. 2012 (Set).

Efeitos da Dinâmica Tridimensional no Controle de Trajetória de um Veículo Robótico Terrestre de Quatro Rodas.

In: XIX Congresso Brasileiro de Automática (CBA 2012).

Cordeiro, R.A., Azinheira, J.R., de Paiva, E.C., & Bueno, S.S. 2013a (Out).

Controle de Trajetória de um Veículo Robótico de Exterior em Terrenos Complexos, via Abordagem LQR Bioinspirada.

In: XI Simpósio Brasileiro de Automação Inteligente (SBAI 2013).

Cordeiro, R.A., Azinheira, J.R., de Paiva, E.C., & Bueno, S.S. 2013b (Nov).

Dynamic Modeling and Bio-Inspired LQR Approach for Off-Road Robotic Vehicle Path Tracking.

In: 16th IEEE International Conference on Advanced Robotics (ICAR 2013).

References II

BEPE HEUDIASYC

Cordeiro, Rafael

Introduction

Vehicle model for estimators

Estimator

Results

Conclusions

References

Doumiati, M. 2009.

Embedded estimation of vehicle's vertical and lateral tire forces for behavior diagnoses on the road.

Ph.D. thesis, Université de Technologie de Compiègne, France.

Doumiati, M., Victorino, A.C., Charara, A., & Lechner, D. 2011. Onboard Real-Time Estimation of Vehicle Lateral Tire-Road Forces and Sideslip Angle. *Mechatronics, IEEE/ASME Transactions on*, **16**(4), 601–614.

Dugoff, H., Fancher, P. S., & Segal, L. 1969 (August).

Tire Performance Characteristics Affecting Vehicle Response To Steering And Braking Control Inputs.

Tech. rept. Contract CST-460 (Final). Office of Vehicle Systems Research, US National Bureau of Standards, Washington, DC.

Hirschberg, W., Rill, G., & Weinfurter, H. 2007.

Tire model TMeasy.

Vehicle System Dynamics, 45(sup1), 101-119.

Jiang, K., Pavelescu, A., Victorino, A., & Charara, A. 2014 (out).

Estimation of vehicle's vertical and lateral tire forces considering road angle and road irregularity.

In: Intelligent Transportation System, 2014. ITSC '14., IEEE Conference on.

