

35th DASC

LOUBACH, DENIS. S.

Loubach Introduction Background Proposed

Case Stud

Results

Conclusior

Ack

A Runtime Reconfiguration Design Targeting Avionics Systems

Denis S. Loubach

Assistant Professor dloubach@fem.unicamp.br

Advanced Computing, Control & Embedded Systems Laboratory University of Campinas - UNICAMP

September 2016

Agenda

35th DASC

- LOUBACH, DENIS. S.
- About Denis Loubach
- Introduction
- Proposed Design
- Case Stud
- Results
- Conclusion
- Ack

- 3 Background
- Proposed Design
- 5 Case Study

- 7 Conclusion
- 8 Ack

About Denis Loubach

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach

Introduction

Background

Proposed Design

Case Study

Results

Conclusion

Ack

Assistant Professor at UNICAMP, since 2014

Background

- PhD in Electronics and Computer Engineering, ITA, 2012 Brazilian Aeronautics Institute of Technology - ITA
- MSc (ITA, 2007) and BSc in Computer Engineering (UMC, 2004)

ndustry experience as development engineer (e.g., Embraer 2011-2014)

- Reconfigurable computing
- Embedded systems
- Real time systems
- Real time operating systems
- Model-based design

About Denis Loubach

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach

Introduction

Background

Proposed Design

Case Study

Results

Conclusior

Ack

Assistant Professor at UNICAMP, since 2014

Background

- PhD in Electronics and Computer Engineering, ITA, 2012 Brazilian Aeronautics Institute of Technology - ITA
- MSc (ITA, 2007) and BSc in Computer Engineering (UMC, 2004)

ndustry experience as development engineer (*e.g.*, Embraer 2011-2014)

- Reconfigurable computing
- Embedded systems
- Real time systems
- Real time operating systems
- Model-based design

About Denis Loubach

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach

Introduction

Background

Proposed Design

Case Study

Results

Conclusior

Ack

Assistant Professor at UNICAMP, since 2014

Background

- PhD in Electronics and Computer Engineering, ITA, 2012 Brazilian Aeronautics Institute of Technology - ITA
- MSc (ITA, 2007) and BSc in Computer Engineering (UMC, 2004)

Industry experience as development engineer (e.g., Embraer 2011-2014)

- Reconfigurable computing
- Embedded systems
- Real time systems
- Real time operating systems
- Model-based design

About Denis Loubach

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach

Introduction

Background

Proposed Design

Case Study

Results

Conclusion

Ack

Assistant Professor at UNICAMP, since 2014

Background

- PhD in Electronics and Computer Engineering, ITA, 2012 Brazilian Aeronautics Institute of Technology - ITA
- MSc (ITA, 2007) and BSc in Computer Engineering (UMC, 2004)

Industry experience as development engineer (e.g., Embraer 2011-2014)

- Reconfigurable computing
- Embedded systems
- Real time systems
- Real time operating systems
- Model-based design

ACCES Lab	Contact
35th DASC	
LOUBACH, DENIS. S.	
About Denis Loubach	Email: dloubach@fem.unicamp.br
Introduction	
Background	
Proposed Design	Academic page:
Case Study	http://www.fem.unicamp.br/~dloubach/
Results	
Conclusion	
Ack	Lab page: http://www.fem.unicamp.br/~acceslab/

Introduction

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction

Propose Design

Case Stud

Results

Conclusion Ack

We introduce in this paper a **runtime reconfiguration design** that can be applied to avionics systems, mainly concerning **performance** and **power consumption** aspects

We implemented the design by using a **heterogeneous SoC**¹ with two major areas in the hardware architecture: a **hard processor area** and a **reconfigurable area**

The former has the authority to manage which configuration will be programmed/used in a given time. The developed design enables both **full** reconfiguration (FR) and **partial reconfiguration** (PR)

¹System on chip

Introduction

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction

Proposed Design

Case Stud

Results

Conclusion Ack We introduce in this paper a **runtime reconfiguration design** that can be applied to avionics systems, mainly concerning **performance** and **power consumption** aspects

We implemented the design by using a **heterogeneous SoC**¹ with two major areas in the hardware architecture: a **hard processor area** and a **reconfigurable area**

The former has the authority to manage which configuration will be programmed/used in a given time. The developed design enables both **full** reconfiguration (FR) and **partial reconfiguration** (PR)

¹System on chip

Introduction

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background

Proposed Design

Case Stud

Results

Conclusion

We introduce in this paper a **runtime reconfiguration design** that can be applied to avionics systems, mainly concerning **performance** and **power consumption** aspects

We implemented the design by using a **heterogeneous SoC**¹ with two major areas in the hardware architecture: a **hard processor area** and a **reconfigurable area**

The former has the authority to manage which configuration will be programmed/used in a given time. The developed design enables both **full** reconfiguration (FR) and **partial reconfiguration** (PR)

¹System on chip

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach
- Background
- Proposed Design
- Results
- Conclusion
- Ack

Reconfigurable computing

• Programmable vs. reconfigurable device

- Full vs. partial reconfiguration
- Partition vs. static area

FPGA² compared to GPP³ and ASIC⁴

- Main reconfiguration techniques
 - Runtime vs. dynamic reconfiguration
- Configuration bitstream modes
 - And/or mode
 - Scrub mode
 - Scrub clear/set mode

²Field-programmable gate array

- ³General purpose processors
- ⁴Application-specific integrated circuit

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach
- Introduction
- Background
- Proposed Design Case Stud
- Results
- Conclusion
- Ack

Reconfigurable computing

- Programmable vs. reconfigurable device
- Full vs. partial reconfiguration
- Partition vs. static area
- FPGA² compared to GPP³ and ASIC⁴
- Main reconfiguration techniques
 - Runtime vs. dynamic reconfiguration
- Configuration bitstream modes
 - And/or mode
 - Scrub mode
 - Scrub clear/set mode
 - ²Field-programmable gate array
 - ³General purpose processors
 - ⁴Application-specific integrated circuit

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach
- Introduction
- Background
- Proposed Design Case Stud
- Results
- Conclusion
- Ack

Reconfigurable computing

- Programmable vs. reconfigurable device
- Full vs. partial reconfiguration
- Partition vs. static area

FPGA² compared to GPP³ and ASIC⁴

Main reconfiguration techniques

• Runtime vs. dynamic reconfiguration

Configuration bitstream modes

- And/or mode
- Scrub mode
- Scrub clear/set mode

²Field-programmable gate array

- ³General purpose processors
- ⁴Application-specific integrated circuit

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach
- Introduction
- Background
- Proposed Design Case Stud
- Results
- Conclusion
- Ack

Reconfigurable computing

- Programmable vs. reconfigurable device
- Full vs. partial reconfiguration
- Partition vs. static area

FPGA² compared to GPP³ and ASIC⁴

- Main reconfiguration techniques
 - Runtime vs. dynamic reconfiguration
- Configuration bitstream modes
 - And/or mode
 - Scrub mode
 - Scrub clear/set mode

²Field-programmable gate array

- ³General purpose processors
- ⁴Application-specific integrated circuit

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach
- Introduction
- Background
- Proposed Design
- Case Stud
- Results
- Conclusion
- Ack

Reconfigurable computing

- Programmable vs. reconfigurable device
- Full vs. partial reconfiguration
- Partition vs. static area
- FPGA² compared to GPP³ and ASIC⁴
- Main reconfiguration techniques
 - Runtime vs. dynamic reconfiguration

Configuration bitstream modes

- And/or mode
- Scrub mode
- Scrub clear/set mode
- ²Field-programmable gate array
- ³General purpose processors
- ⁴Application-specific integrated circuit

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach

Introduction

Background

Proposed Design

Case Study

Results

Conclusion

Ack

Reconfigurable computing

- Programmable vs. reconfigurable device
- Full vs. partial reconfiguration
- Partition vs. static area

FPGA² compared to GPP³ and ASIC⁴

Main reconfiguration techniques

Runtime vs. dynamic reconfiguration

Configuration bitstream modes

- And/or mode
- Scrub mode
- Scrub clear/set mode

²Field-programmable gate array

- ³General purpose processors
- ⁴Application-specific integrated circuit

Proposed Runtime Reconfiguration Design

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design Case Study

Results

Conclusio

Ack

The fundamental principle is to only place a partition implementation when its functionality is about to be required, and remove it as soon as it is no longer needed

This way, a **same hardware area may be reused over time** considering temporal mutually-exclusive partition implementations (**minimize the wasting** of on-chip resources)

Each partition is able to have one or more different implementations. A partition implementation is named **prosopon** in our design

Therefore, it is possible to have a prosopon that is based on performance results, another one concerned with power consumption constraints

Proposed Runtime Reconfiguration Design

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design

Case Stud

Results

Conclusio

Ack

The fundamental principle is to only place a partition implementation when its functionality is about to be required, and remove it as soon as it is no longer needed

This way, a **same hardware area may be reused over time** considering temporal mutually-exclusive partition implementations (**minimize the wasting** of on-chip resources)

Each partition is able to have one or more different implementations. A partition implementation is named prosopon in our design

Therefore, it is possible to have a prosopon that is based on performance results, another one concerned with power consumption constraints

Proposed Runtime Reconfiguration Design

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design

Cooo Stur

Results

Conclusior

Ack

The fundamental principle is to only place a partition implementation when its functionality is about to be required, and remove it as soon as it is no longer needed

This way, a **same hardware area may be reused over time** considering temporal mutually-exclusive partition implementations (**minimize the wasting** of on-chip resources)

Each partition is able to have one or more different implementations. A partition implementation is named **prosopon** in our design

Therefore, it is possible to have a prosopon that is based on performance results, another one concerned with power consumption constraints

Proposed Runtime Reconfiguration Design

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design

Case Stud

Results

Conclusion

Ack

The fundamental principle is to only place a partition implementation when its functionality is about to be required, and remove it as soon as it is no longer needed

This way, a **same hardware area may be reused over time** considering temporal mutually-exclusive partition implementations (**minimize the wasting** of on-chip resources)

Each partition is able to have one or more different implementations. A partition implementation is named **prosopon** in our design

Therefore, it is possible to have a prosopon that is based on performance results, another one concerned with power consumption constraints

Proposed Runtime Reconfiguration Design

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design

Case Stud

Results

Conclusion

Ack

The fundamental principle is to only place a partition implementation when its functionality is about to be required, and remove it as soon as it is no longer needed

This way, a **same hardware area may be reused over time** considering temporal mutually-exclusive partition implementations (**minimize the wasting** of on-chip resources)

Each partition is able to have one or more different implementations. A partition implementation is named **prosopon** in our design

Therefore, it is possible to have a prosopon that is based on performance results, another one concerned with power consumption constraints

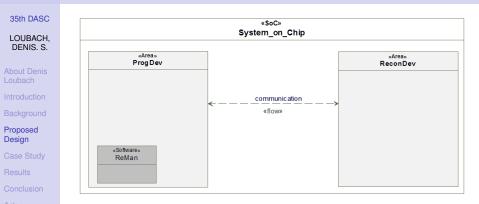


Figure: SoC with the ProgDev and ReconDev areas overview and also the ReMan software application inside the ProgDev

ProgDev⁵, ReconDev⁶, ReMan⁷

- ⁵Programmable device
- ⁶Reconfigurable device
- ⁷Reconfiguration manager

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction
- Background

Proposed Design

- Case Stud
- Results
- Conclusio
- Ack

The main steps of our design are:

Implement the ReconDev

- Describe the hardware without partitions
- Identify the parts to be partitioned
- Oefine the logical area and physical area for the identified partitions
- Implement and test each prosopon
- Generate the bitstream for FR and for each prosopon
- 3 Implement the ReMan in the ProgDev

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach
- Background

Proposed Design

- Case Stud
- Results
- Conclusio
- Ack

- Implement the ReconDev
 - O Describe the hardware without partitions
 - Identify the parts to be partitioned
 - Oefine the logical area and physical area for the identified partitions
 - Implement and test each prosopon
- Generate the bitstream for FR and for each prosopon
- 3 Implement the ReMan in the ProgDev

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction
- Background

Proposed Design

- Case Stud
- Results
- Conclusio
- Ack

- Implement the ReconDev
 - O Describe the hardware without partitions
 - Identify the parts to be partitioned
 - Obefine the logical area and physical area for the identified partitions
 - Implement and test each prosopon
- Openation of the second stream for FR and for each prosopon
- 3 Implement the ReMan in the ProgDev

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction
- Background

Proposed Design

- Case Stud
- Results
- Conclusio
- Ack

- Implement the ReconDev
 - O Describe the hardware without partitions
 - Identify the parts to be partitioned
 - Obefine the logical area and physical area for the identified partitions
 - Implement and test each prosopon
- 2 Generate the bitstream for FR and for each prosopon
- Implement the ReMan in the ProgDev

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach
- Background

Proposed Design

- Case Stud
- Results
- Conclusior
- Ack

The main steps of our design are:

- Implement the ReconDev
 - O Describe the hardware without partitions
 - Identify the parts to be partitioned
 - Obefine the logical area and physical area for the identified partitions
 - Implement and test each prosopon

Generate the bitstream for FR and for each prosopon

Implement the ReMan in the ProgDev

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach

Background

Proposed Design

Case Study

Results

Conclusion

Ack

The main steps of our design are:

- Implement the ReconDev
 - Describe the hardware without partitions
 - Identify the parts to be partitioned
 - Obefine the logical area and physical area for the identified partitions
 - Implement and test each prosopon
- Generate the bitstream for FR and for each prosopon

3 Implement the ReMan in the ProgDev

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction

Background

Proposed Design

Case Study

Results

Conclusior

Ack

- Implement the ReconDev
 - O Describe the hardware without partitions
 - Identify the parts to be partitioned
 - Obefine the logical area and physical area for the identified partitions
 - Implement and test each prosopon
- Generate the bitstream for FR and for each prosopon
- Implement the ReMan in the ProgDev

Case Study

35th DASC LOUBACH, DENIS. S. About Denis

Introduction

Background

Proposed Design

Case Study

Copolus

Conclusi

Ack

Implemented by using the Cyclone V SX SoC

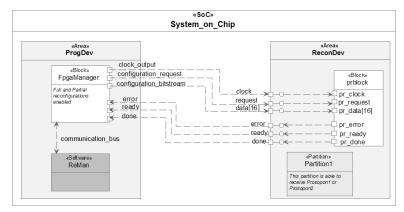


Figure: Implemented design overview showing the ProgDev and ReconDev areas, ReMan software part inside ProgDev, prblock and Partition1 inside the ReconDev area, and the communication signals between ProgDev and ReconDev

Results

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design

Case Study

Results

Conclusior

Ack

The average power consumption of ProgDev and ReconDev (regular operation)

Table: Average power consumption

Area	Average Power [Watt]
ProgDev	1.170
ReconDev	0.351

ACCES Lab	cont		
35th DASC			
LOUBACH, DENIS. S.	Table: Time	to co	omplete FR
About Denis Loubach	Bitstream		Time [mili second]
Introduction	FR bitstream with DC	;	32.40
Background	FR bitstream without	DC	29.33
Proposed Design			
Case Study			
Results	Table: Avera	age p	ower for FR
Conclusion	Bitstream	Av	erage Power [mili Watt]
Conclusion			
Ack	FR bitstream with DC		170.03

DC stands for data compression

ACCES Lab	cont			
35th DASC				
LOUBACH,				
DENIS. S.				
About Denis		Table: Time t	to co	omplete FR
Loubach	—	Bitstream		Time [mili second]
Introduction		FR bitstream with DC		32.40
Background		FR bitstream without D	bC	29.33
Proposed Design	_			
Case Study				
Results	Table: Average power for FR			
Conclusion	Bite	stream	٨٧	erage Power [mili Watt]
Ack			AV	• • •
		bitstream with DC		170.03
	FR	bitstream without DC		42.29

DC stands for data compression

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introductior

Background

Proposed Design

Case Study

Results

Conclusior

Ack

Table: Time to complete PR

Prosopon	Time [mili second]
Prosopon1 - AO	2.73
Prosopon1 - S	2.23
Prosopon1 - SCS	4.29
Prosopon2 - AO	2.76
Prosopon2 - S	2.22
Prosopon2 - SCS	4.28

Table: Average power for PR

Prosopon	Average Power [mili Watt]
Prosopon1 - AO	22.23
	30.89
	75.63
Prosopon2 - AO	19.05
	40.41
	73.32

35th DASC

About Denis Loubach

Introduction

Background

Proposed Design

Case Study

Results

Conclusion

Ack

Table: Time to complete PR

Prosopon	Time [mili second]
Prosopon1 - AO	2.73
Prosopon1 - S	2.23
Prosopon1 - SCS	4.29
Prosopon2 - AO	2.76
Prosopon2 - S	2.22
Prosopon2 - SCS	4.28

Table: Average power for PR

Prosopon	Average Power [mili Watt]
Prosopon1 - AO	22.23
Prosopon1 - S	30.89
Prosopon1 - SCS	75.63
Prosopon2 - AO	19.05
Prosopon2 - S	40.41
Prosopon2 - SCS	73.32

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction
- Background
- Proposed Design
- Case Study
- Results
- Conclusion

- Labels related to partial reconfiguration (PR) results:
 - AO stands for and/or mode
 - S stands for scrub mode
 - SCS stands for scrub clear/set mode

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction Background Proposed Design Case Study Results Conclusion
- Ack

We introduced a **runtime reconfiguration design** mainly concerning **performance** and **power consumption** aspects, which are considered key points to observe in real-time embedded systems design

Also, according to the literature, **reconfiguration capabilities** are pointed out as a **present challenge for next generation of avionics** architectures

Our design addressed those aspects and we showed through a case study that is possible to perform both **full and partial runtime reconfiguration** in tens of mili seconds. The average power spent in the reconfiguration was tens of mili Watt

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design Case Study Results

Conclusion Ack We introduced a **runtime reconfiguration design** mainly concerning **performance** and **power consumption** aspects, which are considered key points to observe in real-time embedded systems design

Also, according to the literature, **reconfiguration capabilities** are pointed out as a **present challenge for next generation of avionics** architectures

Our design addressed those aspects and we showed through a case study that is possible to perform both **full and partial runtime reconfiguration** in tens of mili seconds. The average power spent in the reconfiguration was tens of mili Watt

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design Case Study Results

Conclusion Ack We introduced a **runtime reconfiguration design** mainly concerning **performance** and **power consumption** aspects, which are considered key points to observe in real-time embedded systems design

Also, according to the literature, **reconfiguration capabilities** are pointed out as a **present challenge for next generation of avionics** architectures

Our design addressed those aspects and we showed through a case study that is possible to perform both **full and partial runtime reconfiguration** in tens of mili seconds. The average power spent in the reconfiguration was tens of mili Watt

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction Background Proposed Design Case Study Results
- Conclusion

We introduced a **runtime reconfiguration design** mainly concerning **performance** and **power consumption** aspects, which are considered key points to observe in real-time embedded systems design

Also, according to the literature, **reconfiguration capabilities** are pointed out as a **present challenge for next generation of avionics** architectures

Our design addressed those aspects and we showed through a case study that is possible to perform both **full and partial runtime reconfiguration** in tens of mili seconds. The average power spent in the reconfiguration was tens of mili Watt

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction Background Proposed Design Case Study Results
- Conclusion Ack

Other highlights: one may achieve a **reduced circuit area** since just the functionality/hardware in use will take place in a given time frame (contributes for the minimization of SEU susceptibility, once the circuit area will be smaller)

Considering that FR generally takes more time to complete than PR, one may **speed up the system start** by just placing the essential parts in FR and then placing the other functionality after with PR

On-chip **resources wasting minimization** and the trade-off between performance and power consumption may also be handled in our design

Finally, our proposal opens up the possibility to **optimize a system towards adaptability** to comply with runtime constraints changing regarding performance and power consumption

35th DASC

LOUBACH, DENIS. S.

About Denis Loubach Introduction Background Proposed Design Case Study

Conclusion Ack Other highlights: one may achieve a **reduced circuit area** since just the functionality/hardware in use will take place in a given time frame (contributes for the minimization of SEU susceptibility, once the circuit area will be smaller)

Considering that FR generally takes more time to complete than PR, one may **speed up the system start** by just placing the essential parts in FR and then placing the other functionality after with PR

On-chip **resources wasting minimization** and the trade-off between performance and power consumption may also be handled in our design

Finally, our proposal opens up the possibility to **optimize a system towards adaptability** to comply with runtime constraints changing regarding performance and power consumption

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction Background Proposed Design Case Study Results
- Conclusion Ack

Other highlights: one may achieve a **reduced circuit area** since just the functionality/hardware in use will take place in a given time frame (contributes for the minimization of SEU susceptibility, once the circuit area will be smaller)

Considering that FR generally takes more time to complete than PR, one may **speed up the system start** by just placing the essential parts in FR and then placing the other functionality after with PR

On-chip **resources wasting minimization** and the trade-off between performance and power consumption may also be handled in our design

Finally, our proposal opens up the possibility to **optimize a system towards adaptability** to comply with runtime constraints changing regarding performance and power consumption

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction Background Proposed Design Case Study Results
- Conclusion Ack

Other highlights: one may achieve a **reduced circuit area** since just the functionality/hardware in use will take place in a given time frame (contributes for the minimization of SEU susceptibility, once the circuit area will be smaller)

Considering that FR generally takes more time to complete than PR, one may **speed up the system start** by just placing the essential parts in FR and then placing the other functionality after with PR

On-chip **resources wasting minimization** and the trade-off between performance and power consumption may also be handled in our design

Finally, our proposal opens up the possibility to **optimize a system towards adaptability** to comply with runtime constraints changing regarding performance and power consumption

Acknowledgments

35th DASC

LOUBACH, DENIS. S.

- About Denis Loubach Introduction
- Background
- Proposed Design
- Case Study
- Results
- Conclusion
- Ack

- This research work is supported by:
 - Regular Research Awards grant #2014/24855-8
 São Paulo Research Foundation FAPESP
 - Altera University Program (partially)

35th DASC

Loubach Introduction Background Proposed

Design

Case Study

Results

Conclusion

Ack

Thank you for your attention!

Questions & Answers