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Analysis of metal forming process based on meshless method
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Abstract

Conventional finite element analysis of metal forming processes often breaks down due to severe mesh distortion. Since 1993,
meshless methods have been considerably developed for structural applications. The main feature of these methods is that the
domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This new generation of
computational methods reduces time-consuming model generation and refinement effort, and it provides a higher rate of
convergence than that of the conventional finite element methods. A meshless method based on the reproducing kernel particle
method (RKPM) is applied to metal forming analysis. The displacement shape functions are developed from a reproducing kernel
approximation that satisfies consistency conditions. The use of smooth shape functions with large support size are particularly
effective in dealing with large material distortion in metal forming analysis. In this work, a collocation formulation is used in the
boundary integral of the contact constraint equations formulated by a penalty method. Metal forming examples, such as ring
compression test and upsetting, are analyzed to demonstrate the performance of the method. © 1998 Elsevier Science S.A. All
rights reserved.
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1. Introduction

Forming processes play an important role in metal
part manufacturing. Numerical modeling has been ap-
plied to simulate forming processes, in order to pre-
dict incoming difficulties such as defects in formed
parts, improper tool profile, and low tool lifetime.
Numerical simulations prior to experimentation mini-
mizes the traditional ‘trial and error’ iterations. The
simulation of metal forming problems involves geo-
metric, material, and contact non-linearities, and thus
requires advanced numerical techniques.

The finite element method (FEM), which has been
used in these aforementioned applications, presents
some limitations when the mesh becomes highly dis-
torted. In order to avoid these problems, an alterna-
tive approach, called meshless method, has been
developed [1,2]. The meshless method discretizes a

continuum body by a finite number of particles (or
nodes) and the displacement field is interpolated un-
der these nodes without the aid of an explicit mesh.
This characteristic simplifies model refinement proce-
dures, and the use of the smoother shape functions
effectively handles large material distortion simulation
[1,2].

Many meshless methods have been developed, in-
cluding the material point method (MPM) [3], the
smooth particle hydrodynamics (SPH) [4], the diffuse
element method (DEM) [5], the element free Galerkin
methods [6], the reproducing kernel particle method
(RKPM) [7] which the present work is based upon,
the HP Clouds [8], and the partition of unity method
(PUM) [9].

Liu et al. [7] proposed a RKPM based on an inte-
gral transformation with modified kernel that exactly
reproduces polynomials. The study of the convergence
properties of this method is presented in [10]. Chen et
al. [1,11] extended RKPM to non-linear hyper-elastic-
ity and elasto-plasticity. A material kernel function
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that deforms with the material was introduced to assure
the stability during large deformations. A transforma-
tion method was also developed to prescribe the essen-
tial boundary conditions. The numerical studies
indicate that the RKPM is more effective in dealing
with large structural distortion than the FEM [1,2,11].

In this paper we present the application of RKPM to
metal forming problems such as ring compression test
and cold upsetting. Comparison with experiments
shows that the RKPM is effective for metal forming
applications.

2. Reproduction kernel particle method

2.1. Reproduction kernel shape functions

Consider an integral transformation T of a function u

n(x)=Tu=
&

V
Fa(x−s)u(s) ds, (1)

where n(x) is the transformation of u(x). If the kernel
Fa(x−s) is chosen to be close to d(x−s) then n(x)�
u(x). The kernel function used in this paper is:

Fa(x−s)=
1
a

f
�x−s

a
�

(2a)

F(z)=

Í
Á

Ä

2/3−4(�z �)2+4(�z �)3 for 05 �z �51/2
4/3−4(�z �)+4(�z �)2− (4/3)(�z �)3 for 1/25 �z �51
0 otherwise

(2b)

where z= (x−s)/a and a is the support of the function
Fa(z). This estimation is not accurate near the
boundaries. Liu et al. [10] corrected the approximation
by introducing a modified kernel function F( a as
follows:

ua(x)=
&

V
F( a(x ;x−s)u(s) ds (3)

F( a(x ;x−s)=C(x ;x−s)Fa(x−s) (4)

where ua(x) is called the reproduced function of u(x)
and it exactly reproduces N-th order polynomial.

C(x ; x−s) is called the correction function and was
developed to impose the completeness requirement, and
H(x−s) is a vector of polynomial of order N.

C(x ;x−s)=HT(0)M−1(x)HT(x−s) (5)

HT(x−s)= [1, x−s, (x−s2), …, (x−s)N] (6)

Applying the trapezoidal rule to Eq. (3) one gets:

ua(x)$ %
NP

I=1

F( a(x ;x−x1)u(x1)Dx1= %
NP

I=1

CI(x)uI, (7)

CI(x)=F( a(x ;x−x1)Dx1

=HT(0)M−1(x)H(x−x1)Fa(x−x1)Dx1 (8)

where NP is the total number of particles and CI ’s can
be interpreted as the shape functions of ua(x). Since the
kernel function Fa in Eq. (2b) is C2(Vx) one can show
that CI is also C2(Vx). The purpose of discretizing Eq.
(3) is to obtain the shape functions, therefore Dx in
Eqs. (7) and (8) is set to unity for simplicity. The
extension to multi-dimensional RKPM shape function
can be found in [1,2].

3. Meshless formulation in elasto-plasticity with contact
conditions

Contact conditions are included to handle contact
between tools and workpiece. The classical Coulomb
law is used to model frictional contact and the penalty
method is applied to assure impenetration. The contact
traction’s tn and tt in the normal and tangential direc-
tions, respectively, are defined as follows:

tn= −angn (9)

tt=
!−a tgt if �atgt�5 �mftn� (stick conditions)

−m ftn sgn(gt) otherwise (slip conditions)
(10)

where m is the coefficient of friction, an and at are the
normal and tangential penalty numbers, and gn and gt

are normal and tangential gaps between contact sur-
faces. The variational equation of the problem can be
written as:&

Vx

dui, jti, j dV−
&

Vx

dui bi dV−
&

Gx
hi

dui hi dG

+
&

Gx
c

(tndgn+ ttdgt)dG=0 (11)

The contact term is integrated by collocation formula-
tion to yield&

Gx
c

(tndgn+ ttdgt)dG=%
A

(Fndgn+Ftdgt)A (12)

where Vx is the current domain, Gx
hi is the current

non-contact traction boundary, and Gx
c is the contact

boundary, tij is the Cauchy stress, bi is the body force,
hi is the non-contact surface traction, Fn and Ft are the
nodal normal and tangential contact forces and A is
summed over the contact nodes on the deformable
body.



J.-S. Chen et al. / Journal of Materials Processing Technology 80–81 (1998) 642–646644

Fig. 1. (a) Ring meshless model, (b) ring calibration curves.

The reproducing kernel shape functions as de-
scribed in Eqs. (7) and (8) are used in a Galerkin
approximation of the variational equation, Eq. (11).
The coordinate transformation method [1,2] is used in
the discrete RKPM equation so that the contact force
Fn and Ft are nodal quantities. The linearization of
Eq. (11) leads to a tangential stiffness, and the ex-
plicit expression of contact stiffness and contact force
in RKPM framework can be found in [11].

The radial return mapping algorithm is used to
compute the stress and internal variables [12] and the
consistent tangent operator [13], which preserves the
quadratic convergence rate of the Newton method, is
used. The matrix equations and numerical procedures
are given in detail in [1].

4. Numerical examples

Two examples of metal forming processes are mod-
eled: ring compression test and cold upsetting. The
ring test was developed to experimentally estimate the
friction coefficient in metal forming operations [14].
Upsetting is a basic metal forming operation used in
most forging sequences. These analysis are good test
problems to verify the use of the meshless method as
a simulation and design tool for metal forming
applications.

4.1. Ring compression

The test consists of compressing a ring at different
ratios with flat and smooth tools and measuring the
final height (hf ) and final internal diameter (d if ).
During compression, the internal and external diame-
ters will change according to the amount of compres-

sion and the friction condition of the interface.
Hence, curves relating changes in the internal diame-
ter with respect to the compression ratio characterize
the coefficient of friction (m).

The ring test was simulated with physical properties
of the cold forging steel 16MnCr5, considered as elas-
tic–perfectly-plastic with yield stress s̄=100 MPa,
Young’s modulus E=288 GPa, and Poisson’s ratio
n=0.3. The geometrical dimensions of the ring
deo :d io :ho (initial external diameter:initial internal di-
ameter:initial height) are in proportion to 6:3:2. The
lubricant used in this test was the bisulfate of molyb-
denum, which is widely used in cold metal forming
processes.

Due to the axial and radial symmetries, the simula-
tion was made with one quarter of the ring (dis-
cretized with 160 points). In Fig. 1(a) the half cross
section of the initial ring model is shown. The kernel
support was chosen to cover five points in each direc-
tion and the number of time steps was 1000. The
prescribed displacement was applied at the master
contact points which simulate the flat tool profile.

The ring test simulation results for coefficients m=
0 and m=0.15 shown in Fig. 1 (b) are in agreement
with Male’s results [14]. In the case of m=0.3 and
maximum friction, or stick condition, the results are
close to Male’s. Kernel functions with supports that
cover five and seven points are used to study the
solution convergence. Basically, with a bigger support
the contact surface appears smoother, but the ring
profile remains the same.

4.2. Upsetting

The upsetting process was modeled as shown in
Fig. 2(a). In this analysis, axisymmetric formulation
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Fig. 2. (a) Initial and (b) deformed configuration of the forging-upsetting operation.

was used, and prescribed displacement was applied to
the punch. The material constants are the following:
Young’s modulus E=288000 MPa, Poisson’s ratio
n=0.3 and the material was considered perfectly plas-
tic with yield stress s̄=100 MPa. Coulomb friction
(m) between punch and part is estimated from experi-
ments, mainly based on lubrication conditions and
tools’ finishing surface, and is adopted in the model
to be equal to 0.15. The final shape is compared to
experimental results [15] in Fig. 2(b).

In this analysis, upsetting operation is successfully
simulated by the meshless method without experienc-
ing mesh distortion. Numerical prediction of the final
shape of the formed part is in good agreement with
the experimental results.

5. Conclusions

A meshless formulation based on the RKPM is de-
veloped for the metal forming simulation. The empha-
sis is on the meshless treatment of large plastic
deformation and complicated contact conditions. It is
shown by numerical examples that the mesh distortion
difficulty in the finite element analysis is overcome by
the usage of a smooth kernel function with flexibly
adjustable support size. The comparison with the ex-
perimental data in the ring test and upsetting problem
also demonstrated the accuracy of the proposed
method.
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